

The T2K TPC

Dean Karlen / U. Victoria & TRIUMF ECFA LC Workshop – Durham, England September 1-4, 2004

Outline

- Introduction to the T2K experiment and long baseline neutrino physics
- Near detector concept for the T2K experiment
 tracker builds on the LC TPC R&D
- T2K Schedule
 - o current status of the project
 - opportunity to participate in a large TPC project before the LC detector construction begins

T2K neutrino project

- The J-PARC 50 GeV proton accelerator at Tokai, currently under construction, will be the highest intensity proton beam
 - \$1.5 B budget over 7 years for phase 1
- A neutrino beamline directed towards the Super Kamiokande detector was approved by the Japanese government in December 2003.
 \$160 M budget

T2K collaboration

January 2004: First official collaboration meeting at KEK

Geography – Off axis beam

For the 300 km baseline, the first neutrino oscillation maximum occurs at $E_v \sim 0.7$ GeV

 an off axis angle of about 2.5° gives a narrow band beam with peak energy ~ 0.7 GeV

Neutrino energy reconstruction

Use the quasi-elastic charged current process
 o dominates the cross section for low E_v

Muon neutrino disappearance

Precise measure of θ_{23} , Δm_{23}

Is
$$\sin^2 2\theta_{23} = 1?$$

Oscillation probability $P(\nu_{\mu} \rightarrow \nu_{\mu})$

Electron neutrino appearance

Observe v_e events at SK (single electrons)

The Near Detector

- Located 280 m downstream of the production target
- Purpose:
 - measure energy spectrum and flux × cross sections for v_{μ} reactions on Oxygen
 - Important processes:
 - $v_{\mu} n \rightarrow \mu p X$ $v_{\mu} n \rightarrow v_{\mu} n \pi^{0} X$

Near Detector concept

- Will use the UA1 magnet... most recently used for the NOMAD experiment
 - 7 m × 3.5 m × 3.5 m interior volume
 - \circ 0.2 T \rightarrow 600 kW

Near Detector Concept

Neutral current section:

- Use 5-10 Ton of segmented scintillator, surrounded by EM-calorimeter to measure π^0 production
- Charged current section:
 - Use active target (scintillator or scintillator+water) with a charged particle detector to measure μ momentum and other reaction products

The T2K TPC / Dean Karlen, U. Victoria & TRIUMF

Tracker design criteria

- Design criteria for the tracker:
 - Good point resolution
 - good muon momentum resolution
 - Good two particle resolution
 - better pattern recognition for more complicated events
 - Low mass
 - to reduce multiple scattering better momentum resolution
 - to reduce dead & non-0₂ target material neutrino cross section measurements
 - Simple, proven design
 - to be built in timely manner there is little time for R&D

TPC tracker is baseline choice

- Excellent resolution
- Fine granularity
- Low mass
- Proven technology
- The TPC gas itself can be used as an additional oxygen rich target:
 - eg. 2.5 m × 2.5 m × 1 m volume of $CO_2 = 12.5$ kg
 - 4 such modules (50 kg) would provide about 5000 events per year, with very fine granularity
 - similar statistics as SK

CO₂ gas properties

very slow at low fields very low diffusion μm / √(d [cm]) trans. diff. ~ long. diff. (cm / ms) **Transverse Diffusion** Drift velocity pure CO₂ E (V/cm) E (V/cm)

TPC with CO₂

- For a modest field: 200 V/cm (140 cm drift)
 - ~ 30 kV maximum potential no problem
 - o v ~ 1.5 mm/ μ s \rightarrow ~1 ms maximum drift time
 - no problem given the beam spill interval (seconds)
 - electronics can be "slow" (cheaper, less noise)
 - very small lorentz angle: ~ 2° at 0.5 T
 - minimum ionizing electon-ion pairs: ~91/cm
 - o diffusion: ~ 150 μ m / $\sqrt{cm} \rightarrow$ 1.7 mm max σ
 - diffusion limits space resolution to ~0.3 mm per 4 mm sample
 - o gain: lower, but probably acceptable
 - inexpensive and non-flammable
 - a good target material, rich in Oxygen

Magnetic field distortions

- Because drift velocity is so slow, the sensitivity to the magnetic field direction is very low:
 - o example: (Following notes by J. Va'vra)
 - here ωτ ~ 0.02

$$\mathbf{E} = (E_x, 0, 0) \quad \mathbf{B} = (B_x, 0, B_z) \quad |B_z| << |B_x|$$
$$v_x \approx v \qquad v_y \approx \omega \tau \frac{B_z}{B_x} v \qquad v_{yz} \approx (\omega \tau)^2 \frac{B_z}{B_x} v$$

- If $B_z / B_x \sim 1\%$ for full 125 cm drift distance, the offset in y is only 0.3 mm
- o ample cosmics can be used to develop corrections

GEMs for TPC endplate

- Andy White (UT Arlington) is negotiating with 3M for GEMs for their hadron calorimeter prototypes
 - The design is ideal for ND280m TPC:

Near detector TPC concept

GEMs or micromegas foils ~ 30 cm

figure below exaggerates the gaps between foils

Pad readout: an example

Behind each GEM have a rectangular array of 4mm x 4mm pads:

Simulation of a GEM TPC

Event displays with a minimum ionizing track:

Muon momentum resolution

- Using parameterizations in PDG, ignoring multiple scattering in gas: $\sigma_{1/r} \approx \frac{\sigma_x}{L^2} \sqrt{\frac{720}{N+4}}$
 - For L = 1 m, 4 mm samples, $\sigma = 0.3$ mm, B = 0.2 T $\frac{\delta p_{\perp}}{p_{\perp}} \approx 0.01 p_{\perp} [\text{GeV}]$ • For L = 0.5 m, 8 mm samples, $\sigma = 0.3$ mm, B = 0.2 T $\frac{\delta p_{\perp}}{p_{\perp}} \approx 0.05 p_{\perp} [\text{GeV}]$

Multiple scattering in CO₂

The T2K TPC / Dean Karlen, U. Victoria & TRIUMF

Neutrino events in gas target

- To see what events in the gas target look like, a sample of NEUT events were generated randomly in the gas volume
 - following images show some of the first 10 events in a small gas volume, 25 cm x 25 cm x 140 cm
 - GEANT was used to generate dE in 1 mm steps, insert the produced electrons into GEM-TPC simulation package
 - Charge collected by 4 mm × 4 mm pads

The T2K TPC / Dean Karlen, U. Victoria & TRIUMF

The T2K TPC / Dean Karlen, U. Victoria & TRIUMF

The T2K TPC / Dean Karlen, U. Victoria & TRIUMF

The T2K TPC / Dean Karlen, U. Victoria & TRIUMF

Electronics considerations

- At most 1 million pads (4mm x 4mm) needed to instrument the TPCs (both sides).
 - occupancy is extremely small
 - for a live time frame of 1 ms there are 10⁹ voxels
 - very safe against background hits that accumulate in 1ms
 - multiplexing possible
 - slow shaping & sampling times can be used:
 - 1 μ s sampling \rightarrow 2 mm resolution in drift direction
 - faster ADCs can be used to sample many pads
 - \$2/channel readout possible in ASIC (?)

Multiplexing

- Put as much on back of readout pad board as possible
- Total cost ~ \$2 /channel

R&D required for proof of concept

Field cage design

- needs more thought... simply use wires
- Need to build a long drift prototype
 - 140 cm drift, 30 cm x 30 cm
 - o test field cage design, look for attachment
 - use high density, slow electronics
 - discrete components to prove concept for ASIC design
 - o demonstrate space point resolution in test beam
- Significant effort and costs...
 - substantial effort needs to begin now

ND TPC as an international project?

- The TPC project can be naturally divided amongst several collaborating institutions:
 - Gas vessel and field cage:
 - Design and construction of vessel, field cage, and central cathode
 - HV and field cage resistor chain
 - GEM amplification
 - Design of GEM frames, mounting of GEMs into frames
 - HV distribution
 - Pad readout boards
 - Pad geometry design, construction of boards
 - ASIC design, fabrication, installation (\$\$\$)

T2K schedule

September 3, 2004

J-PARC facility construction

Near detector organization

- Led by Tsuyoshi Nakaya (Kyoto) with working groups:
 - Tracking group (mainly TPC+Magnet+FGD) convener: Akira Konaka (TRIUMF, CANADA) deputy-convener: Pier Loverre (Rome, Italy)
 - EM group (mainly EM cal, side MRD, π⁰ detector) convener: Kevin McFarland (Rochester, USA) deputy-convener: Dave Wark (Imperial, UK)
 - Neutrino Beam Monitor group (on-axis det., muon monitor) convener: Tsuyoshi NAKAYA (Kyoto, Japan)
 - Software/Physics simulation group convener: Federico Sanchez (Barcelona, Spain) deputy-convener: Clark McGrew (Stony Brook, USA)

Near detector near term goals

- End-November 2004:
 - agree upon near detector baseline design
 - first-order cost estimate
- February 2005:
 - draft "technical design report"

Upcoming meetings

- December 6-8, Rome
 - Near Detector working group meeting
 - Newcomers encouraged to attend
- February 21-23, KEK
 - Near Detector working group meeting

February 24-26, KEK T2K collaboration meeting

Summary

- The T2K project is an exciting physics opportunity that gets underway before LC construction begins
- The near detector TPC builds on the LC TPC R&D
 - we are well through the R&D phase
 - an excellent large scale "prototype" for the LC TPC
- Much work needs to be done
 - o needs to begin right away!

I encourage you to join this effort!