## Luminosity spectrum impact on the top mass

#### Stewart T. Boogert, University College London. QCD and top session, ECFA meeting, Durham, 2nd September 2004.



#### Next 15 mins

- This presentation is already out of date
  - Contains NLC/TESLA comparisons
  - But it is still instructive to look at effect of linac energy spread
- Ongoing analysis/previous presentations
  - Uses Guinea-Pig beam-beam interaction MC and attempts to extract the systematic shift due to the mis-reconstruction of luminosity spectrum
  - Does not include linac/beam spread

- Talk outline
  - New aim:
    - Take simplest luminosity spectrum and evaluate what causes significant shifts of the top mass
  - Introduction
    - Luminosity spectrum
    - Top threshold
    - Simulations/fitting
  - Energy spread
    - Size and shape
    - Add beamstrahlung and ISR
  - Beamstrahlung parameters (CIRCE)



#### Luminosity spectrum

- Three basic components
  - ISR (Calculable to high precision)
  - Beamstrahlung (CIRCE)
    - Simplest parametrisation available
    - $f(x) = a_0 \delta (1-x) + a_1 x^{a_2} (1-x)^{a_3}$
    - $a_1$  normalisation condition
    - a<sub>0</sub>=0.5461, a<sub>2</sub>=20.297, a<sub>3</sub>=-0.62747
  - Energy spread (Gaussian or parametrisation to NLC shape)
    - Single parameter ( $\sigma$ ~0.1%)
  - Beamstrahlung and energy spread determined from accelerator and/or physics event measurements (Bhabhas)





#### "Warm" energy spread shape

- TESLA energy spread is Gaussian
  - Not always the case, NLC has multiple peaked structure
  - Right: NLC energy distribution
    - Simulation of NLC energy spread from linac and beam delivery simulation.
    - Scaled (such that mean=0 and rms=1)
    - Fitted with 3 independent gassians
    - Use fit result to generate similar shaped distributions with alternative widths





#### Top threshold simulation



#### Smearing the threshold

- Two alternative methods are used to smear the threshold curve
  - Histogram (binned)
    - $\sigma(\sqrt{s}) = \int_0^1 f(x) \sigma(x\sqrt{s}) dx$
    - Large number of bins required when including all effects
      - ISR : 0<x<1
      - Beamstrahlung : 0.75<x<1
      - Energy spread : 0.99<x<1.01
  - Event sample (unbinned)
    - $\sigma(\sqrt{s}) = 1/N \sum_{samples}^{N} \sigma(x_i \sqrt{s})$
    - Large number of samples (N) of x distributed in a luminosity spectrum





#### Fitting introduction



- Definitions
  - Data
    - Theoretical cross section smeared with the TRUE luminosity spectrum

– Fit

- Theoretical cross section smeared with the MEASURED luminosity spectrum
- In this way biases introduced to the top cross section by the luminosity spectrum can be studied by comparing the top folded/smeared cross sections



#### Fitting the top threshold

- Generate data with
  - 20 equidistant scan points
  - Range 346→354 GeV
  - High luminosity, 30nb per point
  - Nominal luminosity spectrum
    - Linac energy spread 0.1%
    - CIRCE parameters on slide 3
- Fit cross section
  - Smeared with different luminosity spectra, so different CIRCE and beam spread parameters
  - Form usual χ<sup>2</sup> between "data" and "theory" cross section
  - $\Gamma_{t}$  fixed, extract  $m_{t}$  and  $\alpha_{s}$





#### Effect of beam spread

- Results sent to the ITRP
  - Effect of just beam spread without ISR or Beamstrahlung
  - Data and theory generated with histogram smearing method
- Conclusion
  - Beam spread effect more pronounced at larger values
    - "low" values <0.05% can almost neglect the energy spread in the fit ...
    - Effect of NLC/Warm/Multipeaked energy spread only has effect at large energy spreads





# Effect of beam spread (with Beamstrahlung and ISR)

- Again look at the effect of linac energy spread
  - It has been proposed the effect of energy spread on previous slide is reduced due to beamstrahlung and ISR
  - Take the Gaussian and  $\sigma$ =0.1% width case
  - Now including
    - Beamstrahlung
    - Beamstrahlung and ISR
    - Generated with unbinned method
- Effect of beam spread



∆ m<sub>t</sub> [MeV] bspr bspr+bstr 30 bspr+bstr+isr 20 10 -10 -20 0.0005 0.001 0.002 0.0015  $\sigma_{meas}$ ×0.0012 0.001 0.0008 0.0006 0.0004 0.0002 -0.0002 -0.0004 -0.0006

0.001

0.002

 $\sigma_{meas}$ 

0.0015

0.0005

0

### Effect of CIRCE parameters $(a_0)$

- Determines the fraction of particles at full beam energy
  - No beamstrahlung
  - Events at full beam energy  $\sim a_0^2$
  - Dependence on  $a_0$ 
    - Simple and linear
    - m<sub>t</sub>: larger a<sub>0</sub> ⇒ less radiation
      losses ⇒ fit cross section
      biased to higher energies
    - s: larger a₀ ⇒ smaller loss of full beam energy luminosity ⇒ overall increase in fit cross section





### Effect of CIRCE parameters $(a_2)$

- Power law term
  - $-x^{a_2}$
  - a<sub>2</sub> dependence
    - Again linear
    - m<sub>t</sub>: larger a<sub>2</sub> ⇒ less radiation
      losses ⇒ fit cross section
      biased to higher energies
    - s: larger a<sub>2</sub> ⇒ smaller loss of full beam energy luminosity ⇒ overall increase in fit cross section





## Effect of CIRCE parameters $(a_3)$

- Divergent term in Beta function
  - $-(1-x)^{a_3}$
  - a<sub>3</sub> dependence
    - m<sub>t</sub> : little dependence
    - same argument as before but just enters function as negative power
- Satistics
  - N=40,000 or 120,000 lumi spectrum samples
  - Trends consistent





#### Words of caution

- Luminosity spectrum parametrisation
  - Might be wrong, CIRCE function is only one choice
  - Not flexible enough
  - Must include effects of
    - correlation between colliding beams
    - Long time average of many accelerator effects
      - Ground motion
      - Accelerator configuration/performance
    - Subject of on going work on the luminosity spectrum

- Not yet optimised scan range
  - Essentially random choice for analysis presented here,
    - 20 scan points
    - √s : 346→354 GeV
  - Simple study can check this
    - Number of scan points
    - Start and end
    - Luminosity per point
- Only looked at systematic error on top mass
  - what about statistical error dependence, assumed it is small
  - Might depend on scan parameters

#### Summary and outlook

- Detour from previous presentations
  - Investigated the effect of linac energy spread
    - Larger energy spread has larger effect
      - "Set it small or measure it well"
    - Shape not important for cold energy spreads
    - Effect still present with beamstrahlung and ISR
  - Study of beamstrahlung shape effect on top mass reconstruction
    - Threshold top mass seems most sensitive to parameters  $a_0$  and  $a_2$ .
  - Future work
    - Perform fit with luminosity spectrum parameters extracted from Bhabha events generated with realistic accelerator and bunch-bunch interaction codes. Use the true luminosity spectrum to smear top threshold and create data
      - Provides "independent" cross check of previous analysis, where only Bhabha events were used for the luminosity spectrum
    - Merge two analyses, extract luminosity spectrum parametrisation from Bhabha events and apply to top threshold

