

Outline

- Searching for Stop Particles: Topologies and Strategies
- LEP and Fermilab Limits, LHC Expectations
- Stops at Linear Collider
 - A Stop near the Top Mass
 - **SPS** 5
 - SPA: A Stop with 400 GeV Mass
- Summary and Outlook

Topologies and Strategies

Common features of any signal topology:

- ullet missing momentum p_{miss} with no preferred direction
- missing mass M_{miss}
- acoplanar leptons and/or
- acoplanar jets in the final state

a given signal topology depends on:

- the nature of the signal
- \bullet the mass difference between a sparticle and LSP called ΔM
- the nature of the decay, e.g. direct decays, cascade decays, higher order processes

topology: 2 acoplanar jets $+E_{miss}$ signature for: neutralino, squark

topology: 2 jets + lepton $+E_{miss}$ signature for: chargino, squark

SM Backgrounds

- $q\bar{q}$ cross section 12 pb
- cross section for WW 7.9 pb
- ullet cross section for 180 GeV $ilde t_1$ 53 fb

Squarks

Squarks -

- SUSY partners of the helicity states of each quark
- large mixing, large mass splitting for the third generation

$$\tilde{t}_1 = \tilde{t}_L \cos \theta_{LR} + \tilde{t}_R \sin \theta_{LR}$$

 \bullet \tilde{t}_1 , \tilde{b}_1 (tan $\beta > 10$) light stop possible

Production via s-channel Z,γ exchange free parameters : mass and $\cos\theta_{LR}$ if vanishing coupling to Z cross section has its minimum

decays: three-body decay preferred if kinematically allowed

- two-body decays : $\tilde{t}_1 \to t \tilde{\chi}_1^0$, $\tilde{t}_1 \to c \tilde{\chi}_1^0$, $\tilde{t}_1 \to b \tilde{\chi}_1^\pm$, $\tilde{b}_1 \to b \tilde{\chi}_1^0$
- three-body decays $\tilde{t}_1 \to b l \tilde{\nu}_l$, for high $\tan \beta \ l = \tau$ preferred but not studied

Squarks

Searching for squarks:

- 2 jets + E_{miss} with and without b-tagging
- 2 jets + 2 (1) leptons + E_{miss} with b-tagging

main backgrounds - depending from ΔM

- low \triangle M (5...10 GeV) : 2 photon collision processes
- \bullet medium ΔM (20 ...40 GeV): 2f processes
- high \triangle M (50 ... 70 GeV): 4f processes (WW, ZZ)

LEP and FERMILAB have searched for \tilde{t}_1 **and** \tilde{b}_1 :

No evidence for any squark was found \rightarrow limits at 95% C.L.

LEP compilation of the LEP working group Systematics is taken into account with 100% correlation between the experiments Fermilab results included

One plot:

— mass limits for

$$\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$$

Squarks

Stop Cross Sections at 500 GeV

Cross Sections at 500 GeV

Polarization states : e^-/e^+ -80/60 versus 80/-60 minimum cross section (γ exchange only)

Pol.	$\widetilde{t_1}$ $\widetilde{t_1}$	$We\nu$	WW	$qar{q}$	$tar{t}$	ZZ
e^-/e^+	fb	pb	pb	pb	pb	pb
8/.6	23.15	10.72	22.64	21.49	1.113	0.909
9/0	15.67	6.86	14.9	14.4	0.771	1.17
0/0	16.29	5.59	7.86	12.1	0.574	0.864
.9/0	16.97	4.61	0.906	9.66	0.376	0.554
.8/6	25.16	1.780	0.786	13.99	0.542	0.464

better signal/background ratio for 0.8/-0.6 use this polarization state in case of low cross sections for parameter determination

Light Stop

Light stop - near the top mass favoured from Baryogenesis

high x-sec: we have studied it in any detail (see our old 180 GeV study) for both decay modes: charm neutralino and bottom chargino

now used for detector studies (see ICHEP'04 contribution 12-0438 and Andre's talk in Paris)

 $e^+e^- o \tilde{t}_1$ $\bar{t} o c\tilde{\chi}_1^0 \bar{c}\tilde{\chi}_1^0$ benchmark reaction used for studying the charm tagging and the vertex detector performance

for comparison with previous 'SGV'studies M(stop) = 180 GeV $m_{\chi_1^0}=100$ GeV no beam polarization

Light Stop

Channel	Generated events	${\bf Preselection/500~fb^{-1}}$	Previous SGV
$c\tilde{\chi}_1^0 \bar{c}\tilde{\chi}_1^0$	50 k	48%	47%
${ m q}ar{ m q}$	12169 k	64963	46788
${ m t} \overline{ m t}$	620 k	32715	43759
eeZ	5740 k	24864	4069
ZZ	560 k	3100	4027
${ m We} u$	4859 k	252367	252189
WW	6800 k	122621	115243
Total backgr.		500631	466075

After additional cuts, $E_{\rm vis}/\sqrt{s} < 0.52$ and $P_{\rm t}/E_{\rm vis} > 0.05$, the following numbers of events are obtained:

Channel	$q\bar{q}$	$\mathbf{W}\mathbf{W}$	$\mathbf{We}\nu$	$t\overline{t}$	$\mathbf{Z}\mathbf{Z}$	eeZ	Total
Total background	6801	23278	226070	5267	125	2147	263691

compare 263691 with previous 278377 event with SGV — o.k.

Light Stop

studies continue

SPS 5 is the only scenario with a light stop

four different methods of mass determination see Alex's talk at Paris see also ICHEP'04 contribution 12-0438

all for $e^+e^- \rightarrow \tilde{t}_1\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0\bar{c}\tilde{\chi}_1^0$ M(stop) = 220.7 GeV and $m_{\chi_1^0}=120$ GeV with beam polarization

The Analysis in Brief

- ullet 500 fb^{-1} for each polarization state at 500 GeV cms energy
- Detector simulation with SIMDET 4.03
- Thorsten's b/c tagging
- Either IDA selection
- or cut based selection

IDA Analysis

knowing dependence of the cross section from the stop mass, the mixing angle and the polarization state (CALVIN32 from the Vienna SUSY group)

$$\Delta M(stop) = 0.57 \, GeV \, and \, \Delta \cos \theta_{LR} = 0.012$$

Threshold Scan

 ${\bf 50}~fb^{-1}$ per point - right handed polarization (lowest backgrounds)

 $\Delta M(stop) = 1.9$ GeV from fit to the "data"

Cut Based Analysis - end point method - requires quark energies but one measures jets

jets have a finit resolution - jet algorithm and hadronization must be studied IDA is disturbing the energy spectrum use cut selection, substract the background and measure

endpoints at the half hight position, calibrate the method

$$\Delta M(stop) = 1.7 \text{ GeV}$$

Cut Based Analysis Minimum Mass Method

the minimum allowed mass of the two jets peaks at M(stop)

$$\Delta M(stop) = 1.5 \text{ GeV}$$

SPS1a Stop at 400 GeV

SPA Scenario - high stop mass

needs 1 TeV and more dedicated analysis - other decay modes and SUSY backgrounds

stop decays via stau or chargino

dependence of the cross section from the stop mass, the mixing angle and no polarization CALVIN32 from the Vienna SUSY group) - study at 1 TeV possible but hard to do

Generation of background and signal just started

Summary and Outlook

- mass determination with four different methods
- charm tagging reduces the background up to a factor of 3
- continue the study of the vertex detector performance
- first look at SPS1a for a high stop mass
- other interesting stop decays ????