Distinguishing between MSSM and NMSSM via combined LHC/LC analyses

- ('work in progress') -

Gudrid Moortgat-Pick (IPPP Durham)

S. Hesselbach, F. Franke, H. Fraas Susy Session 'ECFA04'@Durham, September 2nd, 2004

- The question:
 - \rightarrow MSSM NMSSM separation with light particles
 - → numerical example (including some exp. errors)
 - \rightarrow assumption: no separation@LC_{500} possible
- The answer:
 - \rightarrow LHC/LC interplay
 - \rightarrow motivation for using LC_{650}
- Conclusions

'Gedankenexperiment' – The question:

Start assumptions:

- LHC is running
- LC_{500} is running at the same time

One believes that:

- probably the Higgs sector divides the models
- gaugino/higgsino sector leaves also unique hints for the model

But could it happen, e.g. not assuming SUGRA conditions, that:

- * the Higgs sectors are experimentally not distinguishable?
- * the light neutralino and charginos have same mass spectra in MSSM and NMSSM although rather large singlino admixture?
- * the corresponding cross section are also 'similar?'
- * the standard parameter strategies do not fail for the light spectrum?

How to proceed in that case?

What has been done so far?

NMSSM:

- Higgs phenomenology Drees'89, Ellis'89, Franke'95, Ellwanger et al.'95, 99', 00', Choi'04, Han'
- Neutralino sector phenomenology Franke'95, Hesselbach'00, '01, Choi'0

MSSM:

Parameter determination in the general MSSM see all ECFA worksho
 Breaking scheme dependent methods at LHC
 Combined analysis at LHC/LC
 Rurua'00 (mSUGRA), Allanach'02 (mAMS)
 Desch et al. '0

$NMSSM \leftrightarrow MSSM$:

• Strategies for the separation of both models: GMP et al.'99 ($\tilde{\chi}_1^0, \tilde{\chi}_2^0$: polarisation effective Choi'et al 02 ($\tilde{\chi}_i^0, i = 1, ..., 4$: application of sumrules

What will be done today?

- light Higgs sector, $\tilde{\chi}^0_i$ and $\tilde{\chi}^\pm_1$ sector similar in both models
- \rightarrow how to get experimental hints which model is fulfilled in nature?
- \rightarrow strategy for combined analyses at LHC \leftrightarrow LC₅₀₀ motivating LC₆₅₀^{$\mathcal{L}=1/3$}!

Particle sectors in both models

MSSM:

- * Higgs sector h, H, A, H^{\pm} determined by aneta and m_A
- * Chargino sector $\tilde{\chi}_{1,2}^{\pm}$ determined by M_2 , μ , tan β
- * Neutralino sector $\tilde{\chi}^0_{1,2,3,4}$ determined by M_1 , M_2 , μ , tan β

NMSSM (='MSSM'+ one Higgs singlet):

- * Higgs: $S_{1,2,3}$, $P_{1,2}$, $H_{1,2}^{\pm}$ determined by $\tan\beta$, λ , x, κ , A_{λ} , A_{κ}
- * Chargino sector $\tilde{\chi}_{1,2}^{\pm}$ determined by M_2 , $\mu_{eff} = \lambda x$, tan β
- * Neutralino sector $\tilde{\chi}^0_{1,2,3,4,5}$ determined by M_1 , M_2 , λ , κ , x, tan β
- ⇒ 'typical' NMSSM features: one $\tilde{\chi}_k^0 \sim \tilde{S}$ * small 'singlino' cross sections * small NLSP width if LSP= $\tilde{\chi}_1^0 \approx \tilde{S}$ → displaced vertices possible * Higgs sector: S_1 may be very light, escaped LEP Ellwanger '02, Choi et al. '

Our strategy and assumptions for today:

Assumptions:

- we only measure the light Susy masses, e.g. $m_{ ilde{\chi}_{1,2}^0}$, $m_{ ilde{\chi}_1^\pm}$, $m_{ ilde{e}_{L,R}}$, $m_{ ilde{
 u}}$
- we only measure $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0, \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ at $\sqrt{s} = 400$, 500 GeV ($\rightarrow 650$ GeV)
- polarised beams with $P_{e^-}=\pm90\%$, $P_{e^+}=\pm60\%$ are available

Strategy:

- 1. We choose two scenarios, MSSM and NMSSM, with
 - \rightarrow similar masses
 - \rightarrow similar cross sections although rather large $ilde{S}$ admixture
- 2. take into account 'realistic' 'experimental' uncertainties $\rightarrow \delta m \sim 1\%$, motivated by simulation for an 'close' AMSB scenario (small $m_{\tilde{\chi}_1^\pm} m_{\tilde{\chi}_1^0}$)
- 3. apply the 'usual' MSSM parameter strategy for BOTH scenarios \rightarrow i.e. using 1. light charginos and 2. light neutralinos
 - \rightarrow derive the fundamental MSSM parameters
 - \rightarrow predict the heavier MSSM states
- 4. Verification/falsification of the predictions with analyses at the LHC \rightarrow feeding back the LHC results into LC analyses
- 5. If non resolvable contradictions occur: \rightarrow motivation for using the low luminosity option LC₆₅₀

C. Hen

Our example: mass spectra in MSSM and NMSSM

• We use $M_1 \gg M_2$ – no GUT relation!

	M_1	M_2	aneta	$\mu \ (\mu_{eff} = \lambda x)$	κ
NMSSM	360	147	10	457.5	0.2
MSSM	375	152	8	360	—

derived mass spectra:

	$ ilde{\chi}_1^\pm$	$ ilde{\chi}^\pm_2$	$ ilde{\chi}_1^0$	$ ilde{\chi}^0_2$	$ ilde{\chi}_{ extsf{3}}^{ extsf{0}}$	$ ilde{\chi}_{ t 4}^{ t 0}$	$ ilde{\chi}_5^0$
NMSSM	139	474	138	337	367	468	499
MSSM	139	383	138	344	366	410	-

- \Rightarrow masses are rather close
- \Rightarrow at $\sqrt{s} = 500$ GeV: only $\tilde{\chi}_1^0 \tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ pairs can be produced at $\sqrt{s} = 400$ GeV: only $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ accessible
- ⇒ polarised beams and both energies needed to resolve ambiguities and to improve statistics/errors

1. Step: Chargino production at $\sqrt{s} = 400$ and 500 GeV

$\sqrt{s} = 400 \text{ GeV}$	$\sigma^{NMSSM}(e^+e^- ightarrow ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp})/{ m fb}$	$\mid \sigma^{MSSM}(e^+e^- ightarrow { ilde\chi_1^{\mp}})/{ ext{fb}}$	
unpolarised beams	1441.3±3.8±70.2	1373.9±3.7±66.3	
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	4381.0±6.6±213.4	$4176.3 \pm 6.5 \pm 201.6$	
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	$58.3 \pm 0.8 \pm 2.8$	55.3±0.7±2.7	
$\sqrt{s} = 500 \text{ GeV}$			
unpolarised beams	$2770.4 \pm 5.3 \pm 57.9$	$2638.1{\pm}5.1{\pm}54.8$	
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	8421.9±9.2±175.9	8019±4.0±166.4	
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	111.0±1.0±2.3	$106.1 \pm 1.0 \pm 2.4$	

 \Rightarrow Errors that are taken into account:

first number: 1 σ stat. error on $\mathcal{L} = 100 \text{ fb}^{-1}$

second number: error due to $\delta m_{\widetilde{\chi}_1^\pm} \approx 1\%$

 δP and $\delta m_{\widetilde{
u}}$, $\delta m_{\widetilde{e}_L}$ neglible

Desch et al. '

- \Rightarrow cross sections rather similar within the experimental uncertainties
 - \rightarrow no immediate MSSM \leftrightarrow NMSSM distinction expected (although different μ !)
- \Rightarrow But the chargino sector is not the crucial point...

Neutralino cross sections in MSSM and NMSSM

2. Step: Neutralino production at $\sqrt{s} = 500 \text{ GeV}$

$\sqrt{s} = 500 \text{ GeV}$	$\sigma^{NMSSM}(e^+e^- ightarrow { ilde\chi_2^0})/{ m fb}$	$\sigma^{MSSM}(e^+e^- ightarrow ilde{\chi}_1^0 ilde{\chi}_2^0)/{ m fb}$
unpolarised beams	5.4±0.3	5.2±0.3
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	16.5±0.5	$15.8 {\pm} 0.5$
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	0.23±0.1	0.23±0.1

 \Rightarrow Errors that are taken into account:

1 σ stat. error on $\mathcal{L} = 100 \text{ fb}^{-1}$, all others neglible

 \Rightarrow neutralino cross sections very similar!

What are the mixing characters?

NMSSM						MSSM					
$ ilde{\chi}^{O}_i$	$ ilde{B}^0$	$ ilde W^0$	$ ilde{H}^{0}_{a}$	$ ilde{H}^{0}_{b}$	$ ilde{S}$		$ ilde{\chi}^{O}_i$	$ ilde{B}^0$	$ ilde W^0$	$ ilde{H}^{O}_{a}$	$ ilde{H}^{0}_{b}$
$ ilde{\chi}_1^0$	0.05%	95%	1.2%	3.5%	0.5%	_	$ ilde{\chi}_1^0$	0.08%	91%	2.6%	6.1%
$ ilde{\chi}^{0}_{2}$	39%	2%	11%	4.8%	43%		$ ilde{\chi}^{0}_{2}$	51%	4.7%	27%	17%
$ ilde{\chi}_{ extsf{3}}^{ extsf{0}}$	56%	0.2%	1.4%	0.0%	42%		$ ilde{\chi}_{ extsf{3}}^{ extsf{0}}$	0.1%	0.9%	38%	61%
$ ilde{\chi}_{ extsf{4}}^{ extsf{0}}$	0.1%	0.7%	40%	59%	0.6%		$ ilde{\chi}_4^0$	48%	3.2%	33%	16%
$ ilde{\chi}_5^0$	4.4%	2.4%	46%	33%	14%						
\Rightarrow pr	etty larg	e $ ilde{S}$ con	nponent	t in $ ilde{\chi}^0_2$							

G. Moortgat-Pick, IPPP, Durham

Parameter determination within assumed uncertainties

Start with NMSSM scenario and apply MSSM strategy:

- a) Chargino sector: observables $m_{\tilde{\chi}_1^{\pm}}$, $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)|_{400,500}$ leads to:
 - $\begin{array}{ll} M_2/{\rm GeV}{=}147.5{\pm}5.3 & M_2^{th}{=}147 \,\, {\rm GeV} \\ 400 < \mu/\,\, {\rm GeV} & \mu_{eff} = 458 \,\, {\rm GeV} \\ 1 < \tan\beta & \tan\beta^{th} = 10 \end{array}$

 \rightarrow rather good M_2 , but μ , tan β very weak (expected since $\rightarrow \tilde{\chi}_1^{\pm} \sim \tilde{W}$)

b) Neutralino sector: observables $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_2^0)|_{500}$ and $m_{\tilde{\chi}_1^0}$ and/or $m_{\tilde{\chi}_2^0} \Rightarrow M_1$ \rightarrow use one of $m_{\tilde{\chi}_i^0}$ to determine M_1

• if $m_{\tilde{\chi}_1^0}$ used $\Rightarrow M_1 < -300$ negativ! \Rightarrow not consistent with cross section!

Parameter determination, cont.

- \Rightarrow still large uncertainty in M_1 and μ , tan β very weak, but were we worry about it?
- \Rightarrow Would you claim, that the wrong model has been applied?

How to find a possible inconsistency?

 \Rightarrow predict heavier particles and let them find from LHC or $\ldots?$

Predictions, consistent with parameter tuples:

- $m_{\tilde{\chi}_{3}^{0}}/\text{GeV} = [410,730]$ $m_{\tilde{\chi}_{4}^{0}}/\text{GeV} = [420,800]$ $m_{\tilde{\chi}_{2}^{\pm}}/\text{GeV} = [420,750]$
- \Rightarrow all heavier gauginos/higgsinos larger than 410 GeV!
- Could LHC measure the masses and confirm the model?
- \rightarrow heavy gauginos reconstructed in decay chains e.g. via dilepton edges (strongly dependent on $m_{\tilde{\chi}_1^0}!$) LC input: $m_{\tilde{\chi}_1^0}$ and mass predictions extremely helpful Desch etal'04, Polesello'
- What do we expect here?
- $\Rightarrow \mbox{Since } \tilde{\chi}^0_3 \sim 43\% (\tilde{H},\tilde{S}) \mbox{like, but } \tilde{\chi}^0_4 > 98\% \ (\tilde{H},\tilde{S}) \mbox{like and even} \\ \tilde{\chi}^0_5 > 93\% \ (\tilde{H},\tilde{S}) \mbox{like} \end{cases}$
- \rightarrow probably only $\tilde{\chi}_3^0$ observable in cascades and perhaps if lucky also $\tilde{\chi}_5^0$.
- \Rightarrow we assume that $\delta m_{\tilde{\chi}_3^0}^{LHC} \sim 2\%$: $m_{\tilde{\chi}_3^0} = 367 \pm 7$ GeV from LHC \leftrightarrow LC!

 \Rightarrow obvious contradiction with LC prediction $(m_{\tilde{\chi}^0_2}>410~{\rm GeV})!$

Motivation for using a further LC option

- use subsequently higher energy but low luminosity LC option: $LC_{650}^{\mathcal{L}=1/3}$
- \rightarrow production cross sections [fb] for heavier $\tilde{\chi}_1^0 \tilde{\chi}_i^0$ pairs and also $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$:

$\sqrt{s} = 650 \text{ GeV}$	$\sigma(e^+e^- ightarrow { ilde\chi}^0_1 { ilde\chi}^0_3)$	$\sigma(e^+e^- ightarrow { ilde\chi}^0_1 { ilde\chi}^0_4)$	$\sigma(e^+e^- ightarrow { ilde\chi}^0_1 { ilde\chi}^0_5)$	
unpolarised	15.1 ± 0.7	6.3±0.4	0.03±0.03	
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	45.8±1.2	17.1 ± 0.7	0.07±0.05	
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	0.7±0.1	2.3±0.3	0.009 ± 0.02	

$\sqrt{s} = 650 \text{ GeV}$	$\sigma(e^+e^- ightarrow { ilde\chi_1^\pm} { ilde\chi_2^\mp})$
unpolarised	27.8±0.9
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	83.2±1.6
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	2.6±0.3

- \rightarrow only statistical error given based on $\mathcal{L}/3 = 100/3$ fb⁻¹ for each configuration.
- \Rightarrow at least $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$ and $\tilde{\chi}_2^{\pm}$ accessible!

expected: masses (e.g. $m_{\tilde{\chi}_3^0}!$) and rates precisely measureable

 $\Rightarrow \text{ With } LHC+LC_{650}^{\mathcal{L}=1/3}: \text{ strong evidence if deviations from MSSM!} \\ \text{ application of more general fits will probably nail down the NMSSM}$

Further application: apply MSSM strategy on MSSM scenario

Again: $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ at $\sqrt{s} = 400$ and 500 GeV and $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ at $\sqrt{s} = 500$ GeV

a) Chargino sector: observables $m_{\tilde{\chi}_1^{\pm}}$, $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)|_{400,500}$ leads to:

 $\mu/\text{GeV}=433\pm73$ $\mu_{eff}=360 \text{ GeV}$

 $M_2/\text{GeV}=152.8\pm5.3$ $M_2^{th}=152 \text{ GeV}$ $340 < \mu \text{ GeV} < 670$ $\mu = 360 \text{ GeV}$ $1 < \tan \beta < 38$ $\tan \beta^{th} = 8$

 $1 < \tan \beta$

b) Neutralino sector: observables $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_2^0)|_{500}$ and $m_{\tilde{\chi}_1^0}$ and/or $m_{\tilde{\chi}_2^0} \Rightarrow M_1$ \rightarrow use one of $m_{\tilde{\chi}_1^0}$ to determine M_1 • if $m_{\tilde{\chi}_1^0}$ used: $M_1/\text{GeV}=363\pm13$ $M_1^{th}=375$ GeV $M_2/\text{GeV}=153\pm2$ $M_2^{th}=152$ GeV $M_2^{th}=152$ GeV

 $\tan \beta^{th} = 8$

 \Rightarrow everything seems to be very promising!

MSSM scenario: which help could come from LHC?

We assume – analogous to the former study in SPS1a: Desch et al. '

- $\tilde{\chi}^0_3 \sim 99\% \tilde{H}$ -like will not be accessible at the LHC
- However, $\tilde{\chi}_4^0 \sim 50\% \tilde{H}$ only, so, there are good chances.

Same game as before with heavy gauginos – mass predictions from LC studies:

 $m_{\tilde{\chi}_{3}^{0}}/\text{GeV} = [360,505]$ $m_{\tilde{\chi}_{4}^{0}}/\text{GeV} = [405,540]$ $m_{\tilde{\chi}_{2}^{\pm}}/\text{GeV} = [380,520]$

 \rightarrow we assume that the LHC can then measure/identify (as in SPS1a) Polesello'

a gaugino particle with

 $\hat{m}_{\tilde{\chi}_i^0} = 410 \pm 8 \text{ GeV}$ (again 2% uncertainty assumed)

How to know that it is $\tilde{\chi}_4^0$?

⇒ Play with both possibilities, determine the parameters, predict the masses and check it experimentally

Further motivation for $\text{LC}_{650}^{\mathcal{L}=1/3}$ in the MSSM example

- 1. Assuming measured particle is $\hat{m}_{\tilde{\chi}_{i}^{0}} = m_{\tilde{\chi}_{3}^{0}}$: \Rightarrow this assumption leads to the predictions $m_{\tilde{\chi}_{4}^{0}}/\text{GeV} = 440 \pm 10 \text{ and } m_{\tilde{\chi}_{2}^{\pm}}/\text{GeV} = 427 \pm 9$ $m_{\tilde{\chi}_{4}^{0}}^{th}/\text{GeV} = 410 \text{ and } m_{\tilde{\chi}_{2}^{\pm}}^{th}/\text{GeV} = 383$
- 2. Assuming measured particle is $\hat{m}_{\tilde{\chi}_{i}^{0}} = m_{\tilde{\chi}_{4}^{0}}$: \Rightarrow this assumption leads to the predictions $m_{\tilde{\chi}_{3}^{0}}/\text{GeV} = 367 \pm 15$ and $m_{\tilde{\chi}_{2}^{\pm}}/\text{GeV} = 384 \pm 16$ $m_{\tilde{\chi}_{3}^{0}}^{th}/\text{GeV} = 366$ and $m_{\tilde{\chi}_{2}^{\pm}}^{th}/\text{GeV} = 383$
- \rightarrow in both cases sufficient motivation to use $LC_{650}^{\mathcal{L}=1/3}$
- \rightarrow immediate model verfication/falsification

 \Rightarrow LHC \leftrightarrow LC interplay crucial for model determination and searches outlin

Conclusions: Crucial Synergy of LHC/LC in Susy Searches

- Example for new physics searches/determination where simultaneous running of LHC+LC_[1.stage,500,650] may be decisive!
- Here@LC₅₀₀ only: measured observables do not point to NMSSM! \rightarrow not obvious that the MSSM is the wrong model!
 - Key points:
 LC: analysis of non-coloured light particle sector
 → prediction (!) of heavier states ('Telling the LHC, where to look!')

 LHC: prediction leads to increase of statistical sensitivity!
 test of a fixed hypotheses
 ⇒ 'Feeding back to LC analysis'
 - Important consistency tests of the new physics (NP) model at an ear stage! ⇒ outline for future search analysis strategies
 - LHC \leftrightarrow LC₅₀₀ interplay motivates the use of the low luminosity option LC₆₅₀^{$\mathcal{L}=1/3$}!

App1:Typical features of the AMSB Susy breaking scenarios

AMSB feature: small mass difference $\delta m_{(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})}$ between $\tilde{\chi}_{1}^{0}$ and $\tilde{\chi}_{1}^{\pm}$: \rightarrow tricky scenario for LHC Allanach, 02082 if $\delta m_{(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})} < 200$ MeV no problem if 200MeV $< \delta m_{(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})} < 2$ GeV: tricky due to softly emitted particles and large background assuming AMSB relations and specific cuts: resolvable Lester' \rightarrow simulation for the LC exist C. Hensel, Thesis, ' $\delta m_{(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})}$ measureable at per cent level

 \Rightarrow AMSB scenario may be perfectly suited for combined LHC/LC analyse

Mixing characteristics in the neutralino sector:

- inversion: lightest $\tilde{\chi}_1^0 \sim \tilde{W}$ determined mainly by M_2 $\tilde{\chi}_2^0 \sim \tilde{B}$ determined mainly by M_1
- lightest chargino $\tilde{\chi}_1^{\pm} \sim \tilde{W}$ determined by M_2 (as 'usual') heavy chargino $\tilde{\chi}_2^{\pm} \sim \tilde{H}$ determined by μ ('as usual')

App2: Mass Measurement at the LHC: cascade decays

Search for heavy neutralinos at the LHC: \sim^{0}

main decay chains for heavy $\tilde{\chi}_i^0$ + background \rightarrow very tricky analysis!

•
$$\tilde{\chi}_i^0(q) \to \tilde{\ell}_R^{\pm}(\ell^{\mp}) \to \tilde{\chi}_1^0 \ell^{\pm}$$
 G. Polesello '04

•
$$\tilde{\chi}_i^0(q) \to \tilde{\ell}_L^{\pm}(\ell^{\mp}) \to \tilde{\chi}_1^0 \ell^{\pm} \text{ or } \tilde{\chi}_2^0 \ell^{\pm}$$

•
$$\tilde{\chi}_2^{\pm}(q') \to \tilde{\nu}_{\ell}(\ell^{\pm}) \to \tilde{\chi}_1^{\pm}\ell^{\mp}$$

 \Rightarrow heavy $m_{\tilde{\chi}_i^0}$ edge challenging!

in e.g. scenario SPS1a in combination with invariant masses:

 \Rightarrow OS-SF signal derivable

with $\delta(m_{\tilde{\chi}^0_4})\pm 5.1~{\rm GeV}$