R_p violating decays of the sneutrinos

Diego Restrepo

Consejo Superior de Investigaciones Científicas Universitat de València IFIC - INSTITUTO DE FISICA CORPUSCULAR

Supersymmetry with minimal content of fields: Supersymmetric Standard Model (SSM)

Outline

- Supersymmetry with minimal content of fields: Supersymmetric Standard Model (SSM)
- Majorana neutrino masses in SSM with minimal content of couplings:
 Minimal Lepton number violation (SSSM)

Outline

- Supersymmetry with minimal content of fields: Supersymmetric Standard Model (SSM)
- Majorana neutrino masses in SSM with minimal content of couplings:
 Minimal Lepton number violation (SSSM)
- Correlations between neutrino oscillation experiments and collider physics Section decays

Quarks			
(u_L)		Leptons	Sleptons
$\begin{pmatrix} -\\ d_I \end{pmatrix}$		$\langle \boldsymbol{\nu}_L \rangle$	
<u>L</u> /		$\left(e_L \right)$	
u_R^{+}			
d_{P}^{\dagger}		e_R	
R		-	I
Higgsinos	Higgs	Gauginos	Gauge P.
	$\langle H_{u}^{+} \rangle$		W^{\pm}
	$\left(\begin{array}{c} H_{u}^{0} \end{array} \right)$		W^0
			D
			B°

Quarks	Squarks		
	$\frac{\partial q u u}{\partial u}$	Leptons	Sleptons
$\begin{pmatrix} a_L \\ d_L \end{pmatrix}$	$\begin{pmatrix} a_L \\ \tilde{d}_L \end{pmatrix}$	(ν_L)	$\left(\begin{array}{c} \tilde{\boldsymbol{v}}_L \\ \tilde{\boldsymbol{v}}_L \end{array} \right)$
u_{D}^{\dagger}	$ ilde{\mathcal{U}}_{D}^{*}$	(e_L)	$\langle e_L \rangle$
<u> </u>	<u> </u>	$ar{e}_R^\dagger$	$ ilde{e}_R^*$
d_R^{\dagger}	d_R^*		
Higgsinos	Higgs	Gauginos	Gauge P.
$\frac{\text{Higgsinos}}{\left(\tilde{H}_{u}^{+}\right)}$	Higgs (H_u^+)	${f Gauginos}\ { ilde W^\pm}$	Gauge P. W [±]
$\begin{array}{c} \textbf{Higgsinos} \\ \begin{pmatrix} \tilde{H}_{u}^{+} \\ \tilde{H}_{u}^{0} \end{pmatrix} \end{array}$	Higgs $\begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \end{pmatrix}$	Gauginos \widetilde{W}^{\pm} \widetilde{W}^0_u	Gauge P. W [±] W ⁰
$ \begin{array}{c} \text{Higgsinos}\\ \begin{pmatrix} \tilde{H}_{u}^{+} \\ \tilde{H}_{u}^{0} \\ \tilde{H}_{u}^{0} \\ \begin{pmatrix} \tilde{H}_{d}^{0} \\ \tilde{H}_{u}^{-} \\ \end{pmatrix} \end{array} $	Higgs $\begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \\ H_{u}^{0} \end{pmatrix}$ $\begin{pmatrix} H_{d}^{0} \\ H_{d}^{-} \end{pmatrix}$	$\frac{\text{Gauginos}}{\tilde{W}^{\pm}}$ \tilde{W}^0_u \tilde{B}^0	Gauge P. W [±] W ⁰ B ⁰

SUSY particles SM particles

Fermions Bosons

SSM Superpotential

$W = h_U \hat{Q} \hat{U} \hat{H}_u + h_D \hat{Q} \hat{D} \hat{L}_0 + h_E \hat{L}_0 \hat{L}_i \hat{E}$ $-\mu_0 \hat{L}_0 \hat{H}_u$

SSM Superpotential

$W = h_U \hat{Q} \hat{U} \hat{H}_u + h_D \hat{Q} \hat{D} \hat{L}_0 + h_E \hat{L}_0 \hat{L}_i \hat{E}$ $-\mu_0 \hat{L}_0 \hat{H}_u$ $-\mu_i \hat{L}_i \hat{H}_u$ $+\lambda_{ijk} \hat{L}_i \hat{L}_j \hat{E}_k + \lambda'_{ijk} \hat{L}_i \hat{Q}_j \hat{D}_k$

SSM Superpotential

$\bigstar W = h_U \widehat{Q} \widehat{U} \widehat{H}_u + h_D \widehat{Q} \widehat{D} \widehat{L}_0 + h_E \widehat{L}_0 \widehat{L}_i \widehat{E}$ $-\mu_0 \widehat{L}_0 \widehat{H}_u$ $-\mu_i \widehat{L}_i \widehat{H}_u$ Ř $+\lambda_{ijk}\widehat{L}_{i}\widehat{L}_{j}\widehat{E}_{k}+\lambda_{ijk}^{\prime}\widehat{L}_{i}\widehat{Q}_{j}\widehat{D}_{k}$ Ř $\lambda_{11k}^{\prime}\lambda_{11k}^{\prime\prime}<10^{-27}$ $+\lambda_{i\,ik}^{\prime\prime}\widehat{U}_{i}\widehat{D}_{j}\widehat{D}_{k}$

mass eigenstates

For the third generation the squark and stau mixing can be large:

$$\widetilde{t}_{L}, \ \widetilde{t}_{R} \longrightarrow \widetilde{t}_{1}, \ \widetilde{t}_{2}, \ \cos \theta_{\widetilde{t}}$$

$$\widetilde{b}_{L}, \ \widetilde{b}_{R} \longrightarrow \widetilde{b}_{1}, \ \widetilde{b}_{2}, \ \cos \theta_{\widetilde{b}}$$

$$\widetilde{\tau}_{L}, \ \widetilde{\tau}_{R} \longrightarrow \widetilde{\tau}_{1}, \ \widetilde{\tau}_{2}, \ \cos \theta_{\widetilde{\tau}}$$

$$\widetilde{W}^{+}, \ \widetilde{H}^{+}_{u} \longrightarrow \widetilde{\chi}^{+}_{1}, \ \widetilde{\chi}^{+}_{2}$$

$$\widetilde{W}^{0}, \ \widetilde{B}^{0}, \ \widetilde{H}^{0}_{u}, \ \widetilde{H}^{0}_{d} \longrightarrow \ \widetilde{\chi}^{0}_{1}, \ \dots, \ \widetilde{\chi}$$

 $\longrightarrow \tilde{\mathcal{V}}_i$

mass eigenstates

For the third generation the squark and stau mixing can be large:

$$\tilde{t}_{L}, \tilde{t}_{R} \longrightarrow \tilde{t}_{1}, \tilde{t}_{2}, \cos \theta_{\tilde{t}}$$

$$\tilde{b}_{L}, \tilde{b}_{R} \longrightarrow \tilde{b}_{1}, \tilde{b}_{2}, \cos \theta_{\tilde{b}}$$

$$\tilde{\tau}_{L}, \tilde{\tau}_{R} \longrightarrow \tilde{\tau}_{1}, \tilde{\tau}_{2}, \cos \theta_{\tilde{\tau}} \longrightarrow S_{i}^{\pm}$$

$$\tilde{W}^{+}, \tilde{H}_{u}^{+} \longrightarrow \tilde{\chi}_{1}^{+}, \tilde{\chi}_{2}^{+} \longrightarrow \tilde{\chi}_{i}^{+}, \tau^{+}$$

$$\tilde{W}^{0}, \tilde{B}^{0}, \tilde{H}_{u}^{0}, \tilde{H}_{d}^{0} \longrightarrow \tilde{\chi}_{1}^{0}, \ldots, \tilde{\chi}_{4}^{0} \longrightarrow \tilde{\chi}_{i}^{0}, \nu_{i}$$

$$\tilde{\nu} \longrightarrow \tilde{\nu}_{i} \longrightarrow S_{i}^{0}, P_{i}^{0}$$

mass eigenstates

For the third generation the squark and stau mixing can be large:

$$\tilde{t}_{L}, \tilde{t}_{R} \longrightarrow \tilde{t}_{1}, \tilde{t}_{2}, \cos \theta_{\tilde{t}}$$

$$\tilde{b}_{L}, \tilde{b}_{R} \longrightarrow \tilde{b}_{1}, \tilde{b}_{2}, \cos \theta_{\tilde{b}}$$

$$\tilde{\tau}_{L}, \tilde{\tau}_{R} \longrightarrow \tilde{\tau}_{1}, \tilde{\tau}_{2}, \cos \theta_{\tilde{\tau}} \longrightarrow S_{i}^{\pm}$$

$$\tilde{W}^{+}, \tilde{H}_{u}^{+} \longrightarrow \tilde{\chi}_{1}^{+}, \tilde{\chi}_{2}^{+} \longrightarrow \tilde{\chi}_{i}^{+}, \tau^{+}$$

$$\tilde{W}^{0}, \tilde{B}^{0}, \tilde{H}_{u}^{0}, \tilde{H}_{d}^{0} \longrightarrow \tilde{\chi}_{1}^{0}, \ldots, \tilde{\chi}_{4}^{0} \longrightarrow \tilde{\chi}_{i}^{0}, \nu_{i}$$

$$\tilde{\psi} \longrightarrow \tilde{\psi}_{i} \longrightarrow S_{i}^{0}, P_{i}^{0}$$

The mixing $\tilde{\chi}_1^0 - \nu$ induce the mass

$$m_{\nu} \approx 2 \frac{m_W^2}{M_2} \frac{\sin^2 \xi}{1 + \tan^2 \beta}$$

The mixing $\tilde{\chi}_1^0 - \nu$ induce the mass

$$m_{\nu} \approx 2 rac{m_W^2}{M_2} rac{\sin^2 \xi}{1 + \tan^2 \beta}$$

$$\sin^{2} \xi = \frac{\sum_{i} \Lambda_{i}^{2}}{\mu^{2} + v_{d}^{2}} = \frac{\sum_{i} (\mu_{0} v_{i} - \mu_{i} v_{0})^{2}}{(\mu_{0}^{2} + \sum_{i} \mu_{i}^{2})(v_{0}^{2} + \sum_{i} v_{i}^{2})}$$
where $v_{0} = \langle L_{0} \rangle = \langle H_{d} \rangle$, $v_{i} = \langle L_{i} \rangle$, $\epsilon_{i} = -\mu_{i}$

The mixing $\tilde{\chi}_1^0 - \nu$ induce the mass

$$m_{\nu} \approx 2 rac{m_W^2}{M_2} rac{\sin^2 \xi}{1 + \tan^2 \beta}$$

For $m_{\nu} = 1 \,\mathrm{eV}$ and $1 \leq \tan \beta \leq 60 \longrightarrow$

The mixing $\tilde{\chi}_1^0 - \nu$ induce the mass

$$m_{\nu} \approx 2 rac{m_W^2}{M_2} rac{\sin^2 \xi}{1 + \tan^2 \beta}$$

For $m_{\nu} = 1 \,\mathrm{eV}$ and $1 \leq \tan \beta \leq 60 \longrightarrow$

 $10^{-5} \lesssim \sin \xi \lesssim 10^{-4}$

The mixing $\tilde{\chi}_1^0 - \nu$ induce the mass

$$m_{\nu} \approx 2 rac{m_W^2}{M_2} rac{\sin^2 \xi}{1 + \tan^2 \beta}$$

For
$$m_{\nu} = 1 \text{ eV}$$
 and $1 \leq \tan \beta \leq 60 \longrightarrow$

 $10^{-5} \lesssim \sin \xi \lesssim 10^{-4}$

Radiative Generated Misalignment (RGM)

$$\sin^2 \xi \sim \frac{\sum_i \mu_i^2}{\mu^2} \frac{4g^4 m_b^4}{m_W^4} \left(1 + \tan^2 \beta\right)^2 \sim 10^{-3} \frac{\sum_i \mu_i^2}{\mu^2} \left(1 + \tan^2 \beta\right)^2$$
$$\mathsf{RGM:} \qquad \qquad \mathsf{RGM:} \qquad \mu_i \sim 1 \,\mathsf{GeV}$$

Sneutrino Production

Mainly \tilde{v}_e

Sneutrino Production

CSIC

Decay Lenght

 $\begin{array}{l} m_{\nu_{3}} \approx 0.06 \, \mathrm{eV}, \\ 2 < \tan \beta < 50, \\ 200 < \mu < 500 \, \mathrm{GeV}, \\ 100 < m_{A} < 500 \, \mathrm{GeV}, \\ 65 < m_{L_{i}} < 100 \, \mathrm{GeV}, \\ M_{2} = 140 \, \mathrm{GeV}, \\ -2 < \epsilon_{1,2}/\epsilon_{3} < 2, \end{array}$

 $\frac{\sum_{i,j} \Gamma(\tilde{\nu}_e^R \to l_i^+ l_j^-)}{\Gamma(\tilde{\nu}_e^R \to b\bar{b})} \approx \frac{\Gamma\left(\tilde{\nu}_e^R \to \tau^+ \tau^-\right)}{\Gamma(\tilde{\nu}_e^R \to b\bar{b})} \approx \frac{m_{\tau}^2}{3m_h^2}$

$$\frac{\Gamma(\tilde{\nu_{\tau}} \to \tau^{\pm} e^{\mp})}{\Gamma(\tilde{\nu_{\tau}} \to \tau^{\pm} \mu^{\mp})} \approx \frac{\epsilon_1^2}{\epsilon_2^2} \approx \tan^2 \theta_{\rm sol}$$

Conclusions

- Solution Enhanced \tilde{v}_e production
- Bilinear R-parity Violation
 - \bigcirc Correlations of $\tilde{\nu}_{\tau}$ decays with neutrino physics

$$\widehat{\boldsymbol{\nu}}_{\tau} \to \tau \tau \neq 0$$

Measurable invisible decays

