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N = 1 Supersymmetry

A general N = 1 theory is described by the
superpotential:

W (Φ) =
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The corresponding Lagrangian is:
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where W i ≡ ∂W
∂φi

etc.



Soft Supersymmetry Breaking

The following standard terms are usually added to break
supersymmetry:

L
(1)
SOFT = (m2)jiφ

iφj

+
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1
6h
ijkφiφjφk +

1
2b
ijφiφj +
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2Mλλ+ h.c.

)

.

but there is no reason not to have the following non-

standard terms as well (unless there are gauge singlet
fields):

L
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None of these terms introduce quadratic divergences so we
say they preserve naturalness. But it’s usual to ignore L(2).



The Minimal Supersymmetric Standard

Model

The superpotential is :

W = H2QYtt
c +H1QYbb

c +H1LYττ
c + µH1H2

The soft breaking terms are:

L
(1)
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∑

φ

m2
φφ

∗φ+
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3H1H2 +

3
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+ [H2Qhtt
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c +H1Lhττ
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L
(2)
SOFT = mψψH1ψH2 +H∗

1Qĥtt
c

+ H∗

2Qĥbb
c +H∗

2Lĥττ
c + h.c.

NB the susy limit when m4 = µ, ĥt = µYt, ĥb = −µYb,
ĥτ = −µYτ , m2

H1
= m2

H2
= µ2.

In most supersymmetry-breaking models the L
(2)
SOFT

terms have coefficients of O(m2
SUSY/M).



The β-functions

The renormalisation of a supersymmetric theory is
governed by the gauge β-function(s) βg(g, Y, Y

∗) and the
matter multiplet anomalous dimension γij(g, Y, Y

∗); the
latter governs both mass and Yukawa β-functions.

βijkY = Y p(ijγk)p = Y ijpγkp + (k ↔ i) + (k ↔ j)

βijµ = µp(iγj)p

In DRED (Dimensional Reduction) βg has been
calculated through four loops and γij through three loops in
general and through four loops in the ungauged case. (In
QCD four loops marks the first appearance in βg of higher
order group invariants; these cancel in the supersymmetric
case).

Retaining the top Yukawa only:

βyt = 6y3
t − 22y5

t + [102 + 36ζ(3)]y
7
t

− [678 + 696ζ(3)− 216ζ(4) + 1440ζ(5)] y9
t .

Note the increasing coefficients, and the sign alternation.



The gauge β-function

βNSVZ
g =

g3

16π2

[

Q− 2r−1tr[γC(R)]

1− 2g2C(G)(16π2)−1

]

,

where Q = Nf − 3Nc for SQCD. For the case γ = 0:
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while
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+ · · ·

Evidently βNSVZ
g has a finite radius of convergence when

γ = 0. We can reconcile these results with a redefinition
of g:

δg = 3
2g

5C(G)2(16π2)−2.

δβg = β(1)
g .

∂
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δg − δg. ∂

∂g
β(1)
g = −9g7C(G)3(16π2)−3.



βg at Three Loops

β(3)DRED
g =

g

r
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− 4g4C(G)tr[PC(R)]}
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where β
(1)
g ∼ Q, γ(1) ∼ P and
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p
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is essentially unique apart from the overall constant, and
leads to
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{
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}

−g7Q2C(G).



The soft β-functions

The non-standard soft β-functions have been calculated
thru 2 loops, and the β-function of the Fayet-Iliopoulos
term thru 3 loops.

All the standard soft β-functions can be expressed
exactly in terms of the βg(g, Y, Y

∗) and the γ(g, Y, Y ∗) of
the unbroken theory:
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(i
l h
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l Y
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where
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,

(Γ)ij = Oγij.



The soft scalar mass β-function

The β-function for the scalar m2 is:

βm2 =
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2OO∗ + 2|M |2g2 ∂

∂g2
+

(

Ỹ
∂
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∂
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where Ylmn = (Y
lmn)∗, and Ỹ ijk = Y l(jk(m2)i)l

Here

XNSVZ = −2
g3

16π2

r−1tr[m2C(R)]−MM∗C(G)

1− 2C(G)g2(16π2)−1
.

XDRED′ is known through three loops.

This means that we can write down the soft β-functions
through three loops. For the MSSM the three loop βs have
now been calculated.



Three Loop Results

Here’s the three loop result for βm2
Qt

in the

approximation that we retain only yt and α3, in the MSSM
with 3 generations and n5, n10 additional 5, 10 multiplets:
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where k = 6ζ(3). Note the large coefficients, even for
n5,10 = 0.



Precision QFT and the MSSM

Calculations of sparticle spectrum resulting from given
assumptions about the underlying theory have become
increasingly refined, with several public programs available
(ISAJET, SOFTSUSY, SPHENO, SUSPECT...) that
incorporate two-loop Renormalisation Group Equations
(RGEs) and one-loop radiative corrections (Bagger,
Matchev, Pierce, Zhang 1997)

We have repeated this analysis for a selection of MSSM
“benchmark” points and extended it to include three-loop
β-function corrections. For weakly interacting particles the
three loop running corrections are small but for the squark
masses they tend to be the same or bigger than the two
loop ones.

We have also extended this analysis to incorporate
additional matter representations. As the amount of matter
is increased the effect of two and three loop corrections
becomes more dramatic Kolda, March-Russell (1999).

We have also looked at the impact on the running
analysis of R-parity violating soft terms.



Snowmass Benchmark Points

Some CMSSM benchmark points

Point tanβ M m0 A signµ
SPS1a 10 250GeV 100GeV −100GeV +
SPS1b 30 400GeV 200GeV 0 +
SPS3 10 400GeV 90GeV 0 +
SPS5 5 300GeV 150GeV −1TeV +

SPS1a: “Typical” MSUGRA point.

SPS1b: “Typical” MSUGRA point with larger tanβ.

SPS3: Light stau, almost degenerate with the neutralino
LSP.

SPS5: Large A-parameter, leading to a light stop quark.



Examples

SPS5 benchmark point: (mt = 174.3GeV)

Particle 1 loop 2 loops 3 loops AKP
g̃ 743 729 727 718-728
ũL 684 677 668 676-684
ũR 658 656 646 653-660

t̃2 243 257 240 232-258
LSP 128 120 120 119-121
h 115 115 115 112-119

SPS5 benchmark point: (mt = 178.0GeV)

Particle 1 loop 2 loops 3 loops AKP
g̃ 743 729 727 719-729
ũL 684 677 668 676-685
ũR 658 656 646 655-660

t̃2 265 278 263 258-280
LSP 128 120 120 119-120
h 117 118 118 116-122

The light stop mass is very sensitive to the input top
quark mass here.



SPS1a benchmark point:

Particle 1 loop 2 loops 3 loops AKP
g̃ 628 613 611 604-612
ũL 573 565 557 565-569
ũR 552 548 539 547-549

t̃2 400 399 391 396-401
LSP 104 97 97 95.6-97.4
h 114 114 114 112-115



Conclusions

The LHC and an e+e− linear collider will measure
sparticle masses with high accuracy. Very precise
theoretical calculations will be required to disentangle the
parameters of the underlying theory from the observations,
and to distinguish, for example, nonuniversal boundary
conditions from extra matter in the Desert or R-parity
violation. By LHC-time state-of-the-art calculations will
consist of complete two-loop mass-shell/threshold effects
(with some three loop effects), plus the three loop running
presented here.


