T-odd Asymmetries in Chargino and Neutralino Production and Decay

Stefan Hesselbach Institut für Theoretische Physik der Universität Wien

A. Bartl, H. Fraas, K. Hohenwarter-Sodek, G. Moortgat-Pick

hep-ph/0406190, to be published in JHEP

ECFA Linear Collider Workshop, Durham

September 1, 2004

Outline

- Introduction
 - MSSM with complex parameters
 - complex parameters in chargino and neutralino sectors
- Aim: deriving the phases and analysing the CP structure of the theory
- T-odd asymmetries in chargino and neutralino sectors
 - full spin correlations between production and decay
 - triple products and T-odd asymmetries
 - for three-body and two-body decays
- Conclusions and outlook

Introduction MSSM with complex parameters

General MSSM:

Complex parameters in Higgs potential and soft SUSY breaking terms

- Physical phases of the parameters
 - μ : Higgs-higgsino mass parameter
 - M_1 : U(1) gaugino mass parameter
 - $m_{\tilde{g}}$: gluino mass
 - A_f : trilinear couplings of sfermions
- Introduction of CP violation
 - may help to explain baryon asymmetry of universe
 - constraints from electric dipole moments (EDMs)of e, n, Hg, TI

[Ibrahim, Nath, '99; Barger, Falk, Han, Jiang, Li, Plehn, '01; Abel, Khalil, Lebedev, '01]

Introduction Complex parameters in $ilde{\chi}^{\pm,0}$ sectors

• Chargino mass matrix:
$$X = \begin{pmatrix} M_2 & \sqrt{2} m_W s_\beta \\ \sqrt{2} m_W c_\beta & \mu \end{pmatrix}$$

Neutralino mass matrix:

$$Y = \begin{pmatrix} M_1 & 0 & -m_Z s_W c_\beta & m_Z s_W s_\beta \\ 0 & M_2 & m_Z c_W c_\beta & -m_Z c_W s_\beta \\ -m_Z s_W c_\beta & m_Z c_W c_\beta & 0 & -\mu \\ m_Z c_W c_\beta & -m_Z c_W s_\beta & -\mu & 0 \end{pmatrix}$$

 $s_{\beta} \equiv \sin \beta, c_{\beta} \equiv \cos \beta$

 $\mu : \text{Higgs-higgsino mass parameter} \rightarrow |\mu|, \varphi_{\mu}$ $M_{1} : \text{U(1) gaugino mass parameter} \rightarrow |M_{1}|, \varphi_{M_{1}}$ $M_{2} : \text{SU(2) gaugino mass parameter}$ $\tan \beta = \frac{v_{2}}{v_{1}} : \text{ratio of Higgs vevs}$

T-odd asymmetries in $ilde{\chi}^{\pm}, ilde{\chi}^{0}$ sectors

Chargino/neutralino production with subsequent three-body decays

$$e^+e^- \longrightarrow \tilde{\chi}_i + \tilde{\chi}_j \longrightarrow \tilde{\chi}_i + \tilde{\chi}_1^0 f \bar{f}^{(\prime)}$$

- full spin correlation between production and decay [Moortgat-Pick, Fraas, '97; Moortgat-Pick, Fraas, Bartl, Majerotto, '98, '99; Choi, Song, Song, '99]
- amplitude squared $|T|^2 = PD + \sum_{P}^{a} \sum_{D}^{a}$
- in Σ_P^a and Σ_D^a : products like $i\epsilon_{\mu\nu\rho\sigma}p_i^{\mu}p_j^{\nu}p_k^{\rho}p_l^{\sigma}$
 - \Rightarrow with complex couplings: real contributions to observables
 - \Rightarrow CP violation at tree level

T-odd asymmetries in $ilde{\chi}^{\pm}, ilde{\chi}^{0}$ sectors

Triple products:
$$\mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_f \times \vec{p}_{\bar{f}^{(\prime)}})$$
 or $\mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_{\tilde{\chi}_j} \times \vec{p}_f)$

 \rightarrow T-odd asymmetry:

$$A_T = \frac{\sigma(\mathcal{T} > 0) - \sigma(\mathcal{T} < 0)}{\sigma(\mathcal{T} > 0) + \sigma(\mathcal{T} < 0)} = \frac{\int \operatorname{sign}(\mathcal{T}) |T|^2 d\operatorname{Lips}}{\int |T|^2 d\operatorname{Lips}}$$

 \rightarrow CP-odd, if final state interactions and finite-widths effects can be neglected

 $e^+e^- \to \tilde{\chi}^0_4 \tilde{\chi}^0_2 \to \tilde{\chi}^0_4 \tilde{\chi}^0_1 \ell^+ \ell^- : \sigma \cdot BR \lesssim 1 \text{ fb}$

Asymmetry A_T for $e^+e^- \rightarrow \tilde{\chi}_j^- \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_j^- \tilde{\chi}_1^0 c\bar{s}$, $\mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_{\bar{s}} \times \vec{p}_c)$ \rightarrow tagging of c jet important

• $e^+e^- \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^0 c\bar{s}$ for

 $\tan \beta$ = 5, M_2 = 150 GeV, $|M_1| = M_2 5/3 \tan^2 \theta_W$, $|\mu|$ = 320 GeV, $m_{\tilde{\nu}}$ = 250 GeV,

 $m_{\tilde{u}_L}$ = 500 GeV, \sqrt{s} = 500 GeV, P_{e^-} = -0.8, P_{e^+} = +0.6, P_{e^-} = +0.8, P_{e^+} = -0.6

S. Hesselbach

ECFA-WS, Durham, Sep. 1, 2004

T-odd Asymmetries in $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$ Production and Decay 9

• Contours of A_T [in %] for $e^+e^- \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^0 c\bar{s}$

• Contours of A_T [in %] for $e^+e^- \rightarrow \tilde{\chi}_1^- \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^- \tilde{\chi}_1^0 c\bar{s}$

Asymmetry A_T for $e^+e^- \rightarrow \tilde{\chi}_j^- \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_j^- \tilde{\chi}_1^0 \ell^+ \nu$, $\mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_{\tilde{\chi}_1^+} \times \vec{p}_{\ell^+})$ \rightarrow reconstruction of $\vec{p}_{\tilde{\chi}_1^+}$ with information from $\tilde{\chi}_j^-$ decay

P⁺e⁻ →
$$\tilde{\chi}_{2}^{-} \tilde{\chi}_{1}^{+} \to \tilde{\chi}_{2}^{-} \tilde{\chi}_{1}^{0} \ell^{+} \nu$$
 for
 tan β = 5, M_{2} = 120 GeV, $|M_{1}| = M_{2} 5/3 \tan^{2} \theta_{W}$, $|\mu| = 320$ GeV, $m_{\tilde{\nu}} = 250$ GeV,
 $m_{\tilde{u}_{L}} = 500$ GeV, $\sqrt{s} = 500$ GeV, $P_{e^{-}} = -0.8$, $P_{e^{+}} = +0.6$

• Contours of A_T [in %] for $e^+e^- \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^0 \ell^+ \nu$

 $e^+ e^- \to \tilde{\chi}_1^- \tilde{\chi}_1^+ \to \tilde{\chi}_1^- \tilde{\chi}_1^0 \ell^+ \nu : A_T = \mathcal{O}(1 \%)$

T-odd asymmetries for two-body decays

Chargino/neutralino production with subsequent two-body decays

Leptonic decays:

$$e^+e^- \rightarrow \tilde{\chi}^0_1 + \tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 + \tilde{\ell}\ell_1, \quad \tilde{\ell} \rightarrow \tilde{\chi}^0_1\ell_2 \quad (\ell = e, \mu, \tau)$$

[Bartl, Fraas, Kittel, Majerotto, hep-ph/0308141, hep-ph/0308143]
[Bartl, Fraas, Kernreiter, Kittel, W. Majerotto, hep-ph/0310011]

$$e^+e^-
ightarrow {\tilde \chi}^-_i$$
 + ${\tilde \chi}^+_j
ightarrow {\tilde \chi}^-_i$ + ${ ilde
u} \ell^+$

[Bartl, Fraas, Kittel, Majerotto, hep-ph/0406309]

Decays into Z and W:

 $e^+e^- \rightarrow \tilde{\chi}^0_i + \tilde{\chi}^0_j \rightarrow \tilde{\chi}^0_i + \tilde{\chi}^0_n Z$, $Z \rightarrow \ell \bar{\ell}, q \bar{q}$ [Bartl, Fraas, Kittel, Majerotto, hep-ph/0402016]

 $e^+e^- \rightarrow \tilde{\chi}_i^- + \tilde{\chi}_j^+ \rightarrow \tilde{\chi}_i^- + \tilde{\chi}_n^0 W^+, \quad W^+ \rightarrow c\bar{s}$ [Bartl, Fraas, Kernreiter, Kittel, Majerotto, '04]

CP asymmetries using tau polarisation for $\ell = \tau$ [Bartl, Kernreiter, Kittel, hep-ph/0309340; Choi, Drees, Gaissmaier, Song, hep-ph/0310284]

T-odd asymmetry for $ilde{\chi}^{\pm}$ two-body decays

Asymmetry A_T for two-body decay of charginos into sneutrino

[Bartl, Fraas, Kittel, Majerotto, hep-ph/0406309]

$$e^+e^- \to \tilde{\chi}_2^- + \tilde{\chi}_1^+ \to \tilde{\chi}_2^- + \tilde{\nu}\ell^+, \qquad \mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_{\tilde{\chi}_1^+} \times \vec{p}_{\ell^+})$$

in scenario: M_2 = 200 GeV, $|\mu|$ = 400 GeV, $m_{\tilde{
u}}$ = 185 GeV

 \sqrt{s} = 800 GeV, P_{e^-} = -0.8, P_{e^+} = 0.6

 $\sigma \cdot BR$ = 2 fb – 20 fb

S. Hesselbach

ECFA-WS, Durham, Sep. 1, 2004 T-odd Asymmetries in $ilde{\chi}^\pm$ and $ilde{\chi}^0$ Production and Decay 15

T-odd asymmetry for $ilde{\chi}^{\pm}$ two-body decays

Asymmetry A_T for two-body decay of charginos into W

[Bartl, Fraas, Kernreiter, Kittel, Majerotto, '04]

$$e^+e^- \rightarrow \tilde{\chi}_1^- + \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^- + \tilde{\chi}_1^0 W^+, \quad W^+ \rightarrow c\bar{s}, \qquad \mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_c \times \vec{p}_{\bar{s}})$$

in scenario: $|M_1|$ = 200 GeV, M_2 = 400 GeV, $|\mu|$ = 350 GeV m_0 = 300 GeV, tan β = 10

$$\sqrt{s}$$
 = 800 GeV, P_{e^-} = -0.8, P_{e^+} = 0.6

 $\sigma \cdot BR$ = 66 fb – 74 fb

Conclusions and outlook

- Aim: revealing the CP structure of the underlying model
- T-odd asymmetries in chargino and neutralino sectors
 - based on triple product correlations
 - full spin correlations between production and decay necessary
 - for three-body and two-body decays
- ▶ Asymmetries of $\mathcal{O}(30\%)$ ($\tilde{\chi}^{\pm}$) and $\mathcal{O}(10\%)$ ($\tilde{\chi}^{0}$) possible
 - \Rightarrow important tool for \rightarrow search for CP violation in SUSY \rightarrow determination of SUSY phases
- Monte Carlo study in neutralino sector → next talk [Aquilar-Saavedra, hep-ph/0404104]
- Outlook: incorporation in strategies for parameter determination