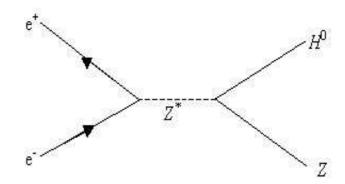
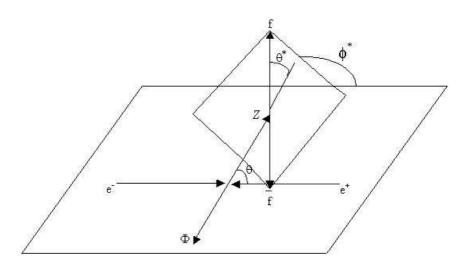
On the determination of \mathcal{CP} -even and \mathcal{CP} -odd components of a mixed \mathcal{CP} Higgs boson at e^+e^- linear colliders.

María Teresa Dova & Sergio Ferrari

Departamento de Física
Universidad Nacional de La Plata
Argentina


Thanks to W. Lohmann for this presentation

Physics Motivation


- Quantum numbers $\mathcal{J}^{\mathcal{PC}}$ of Higgs can be determined independently of the model.
- Higgstrahlung $e^+e^- \to Z\Phi$, Φ a generic Higgs boson, most important process to check deviations from SM.
- Φ could correspond to mixtures of \mathcal{CP} -even and \mathcal{CP} -odd states and exhibit \mathcal{CP} violation.

We present a method to distinguish the SM-like Higgs boson from a \mathcal{CP} -odd state or a \mathcal{CP} violating mixture Φ .

Higgs-strahlung

• Angular distribution of production $\sigma_{e^+e^- \to Z\Phi}$ and decay $Z \to f\overline{f}$ allow determination of $\mathcal J$ and $\mathcal P$ of the Higgs.

 \Rightarrow The angular distribution of the Higgs-strahlung process, can be written as a function of the angles θ , θ^* , ϕ^* , The corresponding distributions allow to distinguish if the Higgs Φ is \mathcal{CP} -even, \mathcal{CP} -odd or a mixture.

Method

Comparison of angular distribution of data with predictions from Monte Carlo.

Simulation of a "data" sample with arbitrary value of η.
 → Obtained by weighting the distributions for η = 0:

$$W(\cos \theta, \cos \theta^*, \cos \phi^*) = \frac{|\mathcal{M}_{Z\Phi}(\eta)|^2}{|\mathcal{M}_{Z\Phi}(\eta = 0)|^2}$$

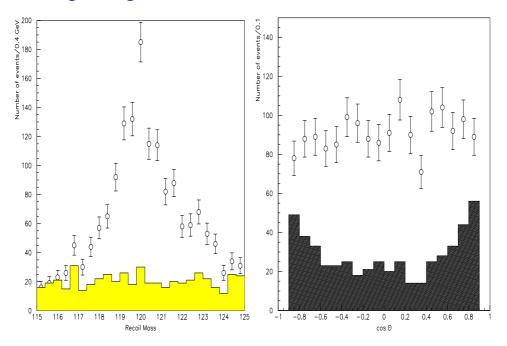
- 2,000 events; 2 years of TESLA ($\int Ldt = 500 \ fb^{-1}$).
- Monte Carlo samples:
 - 1. Scalar Higgs events $e^+e^- \to ZH \ [Z \to f\overline{f}]$ (MC_ZH).
 - 2. Pseudo-scalar Higgs events $e^+e^- \to ZA$ [$Z \to f\overline{f}$] (MC_ZA).
 - 3. Interference term (MC_IN).
- Decay channel: $Z \to \mu^+ \mu^-$ (cleanest).
- Use all kinematic variables: θ , θ^* , ϕ^*
- Generate 3-D distributions $\{\cos \theta, \cos \theta^*, \cos \phi^*\}$ of the "data" and Monte Carlo samples.

Fit technique

Binned maximum likelihood fit of the 3-D distributions.

$$\mathcal{L} = \prod_{(\cos \theta)_i, (\cos \theta^*)_j, (\cos \phi^*)_k} \frac{\mu_{ijk}^{N_{sample}(i,j,k)} e^{-\mu_{ijk}}}{N_{sample(i,j,k)}!}$$

$$\mu_{ijk} = \mathcal{N}(\alpha MC ZH + \beta MC IN + \gamma MC ZA)$$


 \mathcal{N} is the normalization factor between number of data and Monte Carlo events (≈ 0.1 in our case).

Parameters α , β and γ give the contributions of scalar, interference and pseudoscalar events, needed to build the data sample.

• Estimation of the parameters is done minimizing the function $-2 \ln \mathcal{L}$.

Kinematical cuts: some distributions

- 1. A pair muon and anti-muon are identified with $E \ge 15$ GeV each.
- 2. Invariant mass of the system consistent with Z boson hypothesis within 5 GeV.
- 3. Recoil mass of the di-muon system consistent with H boson hypothesis within 5 GeV.
- 4. The absolute z-component of the di-muon system should be smaller than 120 GeV. This removes a significant part of the remaining background.

Left: Recoil mass spectra of the Z in $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- X$.

Right: Angular distribution, $\cos \theta$, of the selected events.

Results

η	α	β	γ
-0.4	0.002 ± 0.03	-0.05 ± 0.02	0.98 ± 0.04
-0.25	0.08 ± 0.04	-0.06 ± 0.02	0.92 ± 0.04
-0.1	0.43 ± 0.04	-0.09 ± 0.02	0.57 ± 0.04
-0.05	0.69 ± 0.04	-0.06 ± 0.02	0.31 ± 0.04
0	0.97 ± 0.05	0.003 ± 0.02	0.03 ± 0.04
0.05	0.70 ± 0.05	0.05 ± 0.02	0.29 ± 0.04
0.1	0.40 ± 0.04	0.04 ± 0.02	0.59 ± 0.04
0.25	0.08 ± 0.04	0.04 ± 0.02	0.92 ± 0.04
0.4	0.002 ± 0.03	0.01 ± 0.02	0.98 ± 0.04

- α gives the contribution of CP-even Higgs in the sample.
- γ gives the contribution of CP-odd Higgs in the sample.
- β gives the interference term which constitutes a distinctive signal of \mathcal{CP} violation.

High sensitivity:

- To distinguish pure \mathcal{CP} -even state $(\eta = 0)$ from pseudoscalar \mathcal{CP} -odd.
- To determine whether the Higgs is a \mathcal{CP} mixture and measure the odd and even components.

Summary

- Novel method for the measurement of the parity of the Higgs.
- For $\int \mathcal{L}dt \sim 500 \ fb^{-1}$ at 350 GeV center of mass energy TESLA will unambiguously determine whether a Higgs is:
 - 0^{++} (\mathcal{CP} -even, scalar), or
 - has also a contribution 0^{-+} (\mathcal{CP} -odd, pseudoscalar)
- Statistical uncertainties for the measurement of the \mathcal{CP} violating interference terms are presented.