On the determination of \mathcal{CP} -even and \mathcal{CP} -odd components of a mixed \mathcal{CP} Higgs boson at e^+e^- linear colliders. María Teresa Dova & Sergio Ferrari Departamento de Física Universidad Nacional de La Plata Argentina Thanks to W. Lohmann for this presentation ### **Physics Motivation** - Quantum numbers $\mathcal{J}^{\mathcal{PC}}$ of Higgs can be determined independently of the model. - Higgstrahlung $e^+e^- \to Z\Phi$, Φ a generic Higgs boson, most important process to check deviations from SM. - Φ could correspond to mixtures of \mathcal{CP} -even and \mathcal{CP} -odd states and exhibit \mathcal{CP} violation. We present a method to distinguish the SM-like Higgs boson from a \mathcal{CP} -odd state or a \mathcal{CP} violating mixture Φ . ## **Higgs-strahlung** • Angular distribution of production $\sigma_{e^+e^- \to Z\Phi}$ and decay $Z \to f\overline{f}$ allow determination of $\mathcal J$ and $\mathcal P$ of the Higgs. \Rightarrow The angular distribution of the Higgs-strahlung process, can be written as a function of the angles θ , θ^* , ϕ^* , The corresponding distributions allow to distinguish if the Higgs Φ is \mathcal{CP} -even, \mathcal{CP} -odd or a mixture. #### **Method** Comparison of angular distribution of data with predictions from Monte Carlo. Simulation of a "data" sample with arbitrary value of η. → Obtained by weighting the distributions for η = 0: $$W(\cos \theta, \cos \theta^*, \cos \phi^*) = \frac{|\mathcal{M}_{Z\Phi}(\eta)|^2}{|\mathcal{M}_{Z\Phi}(\eta = 0)|^2}$$ - 2,000 events; 2 years of TESLA ($\int Ldt = 500 \ fb^{-1}$). - Monte Carlo samples: - 1. Scalar Higgs events $e^+e^- \to ZH \ [Z \to f\overline{f}]$ (MC_ZH). - 2. Pseudo-scalar Higgs events $e^+e^- \to ZA$ [$Z \to f\overline{f}$] (MC_ZA). - 3. Interference term (MC_IN). - Decay channel: $Z \to \mu^+ \mu^-$ (cleanest). - Use all kinematic variables: θ , θ^* , ϕ^* - Generate 3-D distributions $\{\cos \theta, \cos \theta^*, \cos \phi^*\}$ of the "data" and Monte Carlo samples. #### Fit technique Binned maximum likelihood fit of the 3-D distributions. $$\mathcal{L} = \prod_{(\cos \theta)_i, (\cos \theta^*)_j, (\cos \phi^*)_k} \frac{\mu_{ijk}^{N_{sample}(i,j,k)} e^{-\mu_{ijk}}}{N_{sample(i,j,k)}!}$$ $$\mu_{ijk} = \mathcal{N}(\alpha MC ZH + \beta MC IN + \gamma MC ZA)$$ \mathcal{N} is the normalization factor between number of data and Monte Carlo events (≈ 0.1 in our case). Parameters α , β and γ give the contributions of scalar, interference and pseudoscalar events, needed to build the data sample. • Estimation of the parameters is done minimizing the function $-2 \ln \mathcal{L}$. #### **Kinematical cuts: some distributions** - 1. A pair muon and anti-muon are identified with $E \ge 15$ GeV each. - 2. Invariant mass of the system consistent with Z boson hypothesis within 5 GeV. - 3. Recoil mass of the di-muon system consistent with H boson hypothesis within 5 GeV. - 4. The absolute z-component of the di-muon system should be smaller than 120 GeV. This removes a significant part of the remaining background. Left: Recoil mass spectra of the Z in $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- X$. Right: Angular distribution, $\cos \theta$, of the selected events. #### **Results** | η | α | β | γ | |-------|------------------|------------------|-----------------| | -0.4 | 0.002 ± 0.03 | -0.05 ± 0.02 | 0.98 ± 0.04 | | -0.25 | 0.08 ± 0.04 | -0.06 ± 0.02 | 0.92 ± 0.04 | | -0.1 | 0.43 ± 0.04 | -0.09 ± 0.02 | 0.57 ± 0.04 | | -0.05 | 0.69 ± 0.04 | -0.06 ± 0.02 | 0.31 ± 0.04 | | 0 | 0.97 ± 0.05 | 0.003 ± 0.02 | 0.03 ± 0.04 | | 0.05 | 0.70 ± 0.05 | 0.05 ± 0.02 | 0.29 ± 0.04 | | 0.1 | 0.40 ± 0.04 | 0.04 ± 0.02 | 0.59 ± 0.04 | | 0.25 | 0.08 ± 0.04 | 0.04 ± 0.02 | 0.92 ± 0.04 | | 0.4 | 0.002 ± 0.03 | 0.01 ± 0.02 | 0.98 ± 0.04 | - α gives the contribution of CP-even Higgs in the sample. - γ gives the contribution of CP-odd Higgs in the sample. - β gives the interference term which constitutes a distinctive signal of \mathcal{CP} violation. #### High sensitivity: - To distinguish pure \mathcal{CP} -even state $(\eta = 0)$ from pseudoscalar \mathcal{CP} -odd. - To determine whether the Higgs is a \mathcal{CP} mixture and measure the odd and even components. ## Summary - Novel method for the measurement of the parity of the Higgs. - For $\int \mathcal{L}dt \sim 500 \ fb^{-1}$ at 350 GeV center of mass energy TESLA will unambiguously determine whether a Higgs is: - 0^{++} (\mathcal{CP} -even, scalar), or - has also a contribution 0^{-+} (\mathcal{CP} -odd, pseudoscalar) - Statistical uncertainties for the measurement of the \mathcal{CP} violating interference terms are presented.