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1 Introduction: History of the Universe

Before the Big Bang: Speculations about pre–BB
universe, e.g. in superstring theory. Few predictions, no
known connections with collider physics.

Inflation: Scale factor (“radius”) R −→ eNR, N ≥ 60

Universe was dominated by vacuum energy; empty at
end of inflation
Quantum fluctuations can cause density perturbations:
confirmed by CMB observations (WMAP, . . . )
Scalar fields can get large vevs due to these
fluctuations
No known connections to collider physics
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History (cont.d)

Reheating: (Re-)populates Universe with particles.
Re-heat temperature TR not known: TR ≥ 1 MeV (BBN)

Thought to begin with coherent oscillation of inflaton
field
No direct connections to collider physics
Dynamics of thermalization has some connection to
dynamics of heavy ion collisions (→ RHIC, LHC)

Baryogenesis: Happened sometime after end of
inflation

Many models exist
Work at different temperatures
Some models make predictions for colliders!
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History (cont.d)

Creation of Dark Matter: Happened sometime after end
of inflation

Many models exist
Work at different temperatures
Most models have connections to collider physics!

Electroweak Phase Transition: Happened at
T = TEW ' 100 GeV, if TR > TEW

May be related to baryogenesis
May have come connection to collider physics
(sphalerons)
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History (cont.d)

QCD phase transition: Happened at
T = TQCD ' 170 MeV, if TR > TQCD

Related to dynamics of heavy ion collisions,
“soft” QCD

Big Bang Nucleosynthesis (BBN): Started at T ' 1 MeV
Constrains many extensions of SM, if TR was
sufficiently high to create new particles
Sets lower bound on TR, if standard BBN is essentially
correct

Matter–Radiation Equilibrium: Happened at T ' 3 eV.
Energy density of the Universe begins to be
dominated by (dark) matter
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History (cont.d)

Decoupling of Matter and Radiation: Happened at
T ' 0.3 eV

“Last scattering” of CMB photons
Visible structures (galaxies etc.) start to form

Equilibrium of Matter and Dark Energy: Probably
happened at redshift z ' 1 (T ' 6 · 10−4 eV).

Nobody knows when (or if) Dark Energy was created
If Dark Energy ' const: Plays no role for T > 0.1 eV
In models with dynamical Dark Energy
(“quintessence”): Can affect dynamics of BBN,
creation of Dark Matter, . . .
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2 Dark Energy

Origin and nature of DE are completely unclear:
Biggest mystery in current cosmology!

In 4 dimensions: No connection to collider physics

In models with extra dimensions: Connections to
collider physics may exist (radion–Higgs mixing;
spectrum of KK states), but no example is known (to
me)
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3 Baryogenesis

Reminder: Sakharov conditions: Need

Violation of C and CP symmetries
Violation of baryon or lepton number
Deviation from thermal equilibrium (or CPT violation)

Many models work at very high temperatures (GUT
baryogenesis; most leptogenesis; most Affleck–Dine):
Have no connection to collider physics

Some models work at rather low temperature: can be
tested at colliders! Will discuss two such models.
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Leptogenesis with degenerate neutrinos

Basic idea of leptogenesis:

Out–of–equilibrium decay of heavy “right–handed”
neutrinos Ni creates lepton asymmetry
Is partially transformed to baryon asymmetry via elw
sphaleron transitions

Standard thermal leptogensis with hierarchical heavy
neutrinos reqires TR ≥ M1 ≥ 108 GeV: Not testable at
colliders Buchmüller, Di Bari, Plümacher 2002/3/4; Davidson 2003; Giudice et al.

2004

If M2 − M1 � M1: effective CP violation enhanced: Can
have M1 ' TeV! Pilaftsis 1997/9; Pilaftsis and Underwood 2004
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Leptogenesis (cont.d)

Ni

H

`j

Nk

`m (¯̀m)

H (H̄)

Enhanced for i = 1, k = 2

Ni only couple to Higgs boson(s): productions at
colliders not easy!

Constrain via precision measurements of Higgs
properties?

Other scenarios with low-scale leptogenesis: Grossman,

Kashti, Nir, Roulet 2004; Hambye et al. 2003; Raidal, Strumia, Turzynski 2004
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Electroweak Baryogenesis

Basic idea: Bubbles of true vacuum form in phase of
exact SU(2). Baryon asymmetry generated during
transport through bubble walls.

B violation: elw sphalerons
Out of equlibrium: Elw. phase transition was strongly
1st order
CP violation: in bubble wall

Does not work in SM: cross–over (no phase transition)
for mH >

∼ 60 GeV!
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Baryogenesis (cont.d)

Mechanism can work in MSSM! Requirements:

Light Higgs: mh <
∼ 120 GeV

Light stop: mt̃1
<
∼ mt

Little t̃L − t̃R mixing: θt̃ ' π/2

CP violation in χ̃ sector: φµ >
∼ 0.1, |M2|, |µ|<∼ 150 GeV

Remains to be checked:
Determination of θt̃ in presence of CP violation
Determination of φµ in relevant region of parameter
space
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4 Dark Matter

Several observations indicate existence of non-luminous
Dark Matter (DM) (more exactly: missing force)

Galactic rotation curves imply ΩDMh2 ≥ 0.05.

Ω: Mass density in units of critical density; Ω = 1 means flat
Universe.
h: Scaled Hubble constant. Observation: h = 0.72 ± 0.07

Models of structure formation, X ray temperature of
clusters of galaxies, . . .

Cosmic Microwave Background anisotropies (WMAP)
imply ΩDMh2 = 0.111 ± 0.009 Bennet et al., astro–ph/0302207
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Density of thermal DM

Decoupling of DM particle χ defined by:

nχ(Tf )〈vσ(χχ → any)〉 = H(Tf )

nχ: χ number density ∝ e−mχ/T

v: Relative velocity
〈. . . 〉: Thermal average
H: Hubble parameter; in standard cosmology ∼ T 2/MPlanck

Gives average relic mass density

Ωχ ∝ 1
〈vσ(χχ→any)〉

Gives roughly right result for weak cross section!
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Assumptions

χ is effectively stable, τχ � τU: partly testable at
colliders

No entropy production after χ decoupled: Not testable
at colliders

H at time of χ decoupling is known: partly testable at
colliders
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SUSY Dark Matter

Conditions for successful DM candidate:

Must be stable ⇒ χ = LSP and R−parity is conserved
(if LSP in visible sector)

Exotic isotope searches ⇒ χ must be neutral

Must satisfy DM search limits ⇒ χ 6= ν̃

And the winner is . . .
χ = χ̃0

1
(or in hidden sector)
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χ̃0

1
relic density

To predict thermal χ̃0

1
relic density: have to know

σ(χ̃0

1
χ̃0

1
−→ SM particles)

In general, this requires knowledge of almost all sparticle and
Higgs masses and of all couplings of the LSP!

Neutralino mass matrix in the MSSM:

M0 =

0

B

B

B

B

B

@

M1 0 −MZ cosβ sinθW MZ sinβ sinθW

0 M2 MZ cosβ cosθW −MZ sinβ cosθW

−MZ cosβ sinθW MZ cosβ cosθW 0 −µ

MZ sinβ sinθW −MZ sinβ cosθW −µ 0

1

C

C

C

C

C

A

=⇒ Can determine decomposition of χ̃
0
1

by studying χ̃
±

1
, χ̃

0
2
, χ̃

0
3
.

Well studied in the MSSM, but not much is known about extensions
(e.g. NMSSM)
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χ̃0

1
annihilation in the MSSM

m
f̃L

, m
f̃R

, θ
f̃
: Needed for χ̃0

1χ̃
0
1 → ff̄

mh, mH , mA, α, tanβ: Needed for
χ̃0

1χ̃
0
1 → ff̄ , V V, V φ, φφ (V : Massive gauge boson; φ:

Higgs boson).

For many masses: lower bounds may be sufficient

If coannihilation is important: final answer depends
exponentially on mass difference

Parameters in Higgs and squark sector are also needed
to predict χ̃0

1 detection rate, i.e. σ(χ̃0
1N → χ̃0

1N)
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Impact on particle physics (mSUGRA)

w./ A. Djouadi, J.-L. Kneur, P. Slavich

Parameter space is constrained by:

Sparticle searches, in particular χ̃±
1 , τ̃1 searches at

LEP: σ < 20 fb

Higgs searches, in particular light CP–even Higgs
search at LEP (parameterized)

Brookhaven gµ − 2 measurement: Take envelope of
constraints using τ and e+e− data for SM prediction

Radiative b decays (BELLE, . . . ): Take
2.65 · 10−4 ≤ B(b → sγ) ≤ 4.45 · 10−4

Simple CCB constraints (at weak scale only)
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100 1000
m0 [GeV]

100

1000

m
1/

2 [G
eV

]
mSUGRA, mt = 178 GeV, tanβ = 10, µ>0, A0 = 0

All constraints except DM included

τ∼1  is LSP

h is too light

χ~+
1 is too light
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Is the apparently small size of the allowed parameter
parameter space a problem? Not necessarily . . .

1e-06 0.0001 0.01 1 100
me [GeV]

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

α

QED parameter space
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All constraints included
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Beyond mSUGRA

The predicted Dark Matter density can be altered by
modifying the SUSY model and/or by modifying the
cosmological model.

Reducing Ωχ̃0

1
by changing the SUSY model:

Dial up co-annihilation

Increase h̃ component of χ̃0
1

Increase W̃3 component of χ̃0
1

These modifications lead to greatly altered collider
phenomenology!
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Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density
if LSP is in hidden or invisible sector. It could be:

The axino Covi et al., hep-ph/9905212 . . .

The gravitino Buchmüller et al.; J.L. Feng et al.; J. Ellis et al.; Di Austri and

Roszkowski; . . .

A modulino
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Hidden Sector DM (contd.)

Unfortunately,

ΩDM can no longer be predicted from particle physics
alone; e.g. ΩG̃h2 ∝ Treheat

hidden sector LSP may leave no imprint at colliders,
unless lightest visible sparticle (LVSP) is charged; LVSP
is quite long-lived

Detection of hidden sector DM seems impossible:
Cross sections are way too small!
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Nonstandard cosmology

Can either reduce or increase density of stable χ̃0
1

Increase: through incease of H(Tf ); or through
non-thermal χ̃0

1 production mechanisms.

Reduce: through decrease of H(Tf ); through late
entropy production; or through low Treheat.

None of these mechanisms in general has observable
consequences (except DM density).

If χ̃0
1 makes DM: Can use measurements at colliders to

constrain cosmology!
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4 Summary

Dark Energy: Difficult to probe at colliders; perhaps
some possibilities if D > 4

Baryogenesis: Some models can be tested at colliders,
others cannot

Dark Matter: Many models can be tested at colliders,
some cannot

Much work remains to be done

Join the new Astro–Particle Working Group! Convenors: A.

Djouadi, M. Drees
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