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Chapter 1

Introduction

1.1 General remarks about the structure of couplings
In general the cross section of any process in an e+e− collider can be subdivided according
to the initial helicity states (see Tab.1.1):

σPe−Pe+
=

1

4
{(1 + Pe−)(1 + Pe+)σRR + (1− Pe−)(1− Pe+)σLL

+ (1 + Pe−)(1− Pe+)σRL + (1− Pe−)(1 + Pe+)σLR}, (1)

where σRL stands for the cross section of the process when both the electron and the
positron beam are 100% polarised in right-handed e− and left-handed e+; the cross sec-
tions σLR, σRR and σLL are defined analogously. We use the right-handed helicity basis, so
that Pe± < 0 means that the beam is left-handed polarised.

e
−

e
+

σRR
1+Pe−

2
·1+Pe+

2

σLL
1−Pe−

2
·1−Pe+

2

Jz = 0

σRL
1+Pe−

2
·1−Pe+

2

σLR
1−Pe−

2
·1+Pe+

2

Jz = 1

Table 1.1: Graphical representation of the various spin configurations in e+e− collisions.
The thick arrow represents the direction of motion of the particle and the double-arrow
its spin direction. The first column indicates the corresponding cross section, the third
column the fraction of this configuration and the last column the total spin assuming a
zero orbital angular momentum.

One has to distinguish two cases:
a) in annihilation diagrams the helicities of the incoming beams are coupled to each other,
whereas
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e−

e+

J=1 ← only from RL,LR: γ, Z (e.g. in SM) or e.g. Z ′ (in NP)

J=0 ← only from LL,RR: NP!

Figure 1: Possible configurations in annihilation diagrams: the helicities of the incoming
e+e− beams are directly coupled. Within the Standard Model (SM) only the recombination
into a vector particle with J=1 is possible, which is given by the LR and RL configurations.
New physics (NP) models might allow J=0, which results LL or RR configurations.

	
depends on P (e+)!

Idepends on P (e−)!

ie+

e−

a

c

b

i

⇒ helicity of e− not coupled
with helicity of e+!

Figure 2: Possible configurations in exchanged diagrams: the helicity of the incoming e
beam is directly coupled to the helicity of the final particle and is completely independent
of the helicity of the second incoming particle. All possible helicity configurations are
therefore possible in principle.

b) in exchanged diagrams the helicities of the incoming beams are directly coupled to the
helicities of the final particles, see Fig. 2.

In case a) within the SM only the recombination into a vector particle with the total
angular momentum J = 1 is possible, i.e. both beams have to carry opposite sign of
helicities. New physics (NP) models might allow to produce also scalar particles, so that
also J = 0 would be allowed, which results in same sign helicities of the incoming beams,
see Fig. 1.

In case b) the exchanged diagrams could result in a vector, fermionic or scalar particle;
the helicity of the incoming particle is directly coupled to the vertex and is independent of
the helicity of the second incoming particle. Therefore all possible helicity configurations
are possible in principle, see Fig. 2. Prominent candidates for case b) are single W pro-
duction, see Fig. 3, where the e+W+ν̄ is only influenced by P (e+), and Bhabha scattering,
where the γ, Z exchange in the crossed channel leads to higher cross sections for the LL
configuration than the LR configurations, see Table 1.2.

unpolarised Pe− = −80% Pe− = −80%, Pe+ = −60% Pe− = −80%, Pe+ = +60%
4.50 pb 4.63 pb 4.69 pb 4.58 pb

Table 1.2: Bhabha scattering at
√

s = 500 GeV: due to the γ, Z exchange in the crossed
channel all possible helicity configurations are allowed, e.g. the configuration LL leads to
higher cross sections than LR.
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only influenced byP (e+)!

ie+

e−

ν̄

e−

W+

γ

Figure 3: Single W + production: vertex e+W+ν̄ depends on P (e+).

σRL/σ0 σLR/σ0 σRR/σ0 σLL/σ0 Peff Leff/L
Pe− = 0, Pe+ = 0 0.25 0.25 0.25 0.25 0. 0.5
Pe− = −1, Pe+ = 0 0 0.5 0 0.5 −1 0.5
Pe− = −0.8, Pe+ = 0 0.05 0.45 0.05 0.45 −0.8 0.5
Pe− = −0.8, Pe+ = +0.6 0.02 0.72 0.08 0.18 −0.95 0.74

Table 1.3: Effective polarisation and the fraction of colliding particles for some valies of
beam polarisation

In the case of e+e− annihilation into a vector particle (in the SM this would be e+e− →
γ/Z0) only the two J=1 configurations σRL and σLR contribute and the cross section for
arbitrary beam polarizations is given by

σPe−Pe+
=

1 + Pe−

2

1− Pe+

2
σRL +

1− Pe−

2

1 + Pe+

2
σLR

= (1− Pe−Pe+)
σRL + σLR

4

[
1 − Pe− − Pe+

1− Pe+Pe−

σLR − σRL

σLR + σRL

]

= (1− Pe+Pe−) σ0 [1 − Peff ALR] (2)

with the unpolarized cross section σ0 =
σRL + σLR

4
(3)

the left-right asymmetry ALR =
σLR − σRL

σLR + σRL
(4)

and the effective polarization Peff =
Pe− − Pe+

1− Pe+Pe−
(5)

Introducing the effective luminosity

Leff/L =
1

2
(1− Pe−Pe+), (6)

which gives the fraction of colliding particles, eq. (2) can be written as:

σPe−Pe+
= 2 σ0 Le{{ [1 − Peff ALR] . (7)

Some values for the effect. polarisation as well as for the effective luminosity are given
in Table 1.3, which shows that the fraction of colliding particles can only be enhanced
if both beams are polarised. The values of the effective polarization can be read from
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fig. 4. Notice that the effective polarization is closer to 100 % than any of the two beam
polarizations. Further excellent reference see also [15].

In the experiment one would like to extract the two quantities σ0 and ALR. This can be
done by running the experiment with two different polarizations. One would choose one
setup with the electron beam predominantly left-handed and the positron beam right-
handed and in the second setup one would reverse both spin directions. The cross sec-
tions measured with the two setups are denoted as σ−+ and σ+− and are given by:

σ−+ =
1

4
{(1 + |Pe−||Pe+|)(σLR + σRL) + (|Pe−|+ |Pe+|)(σLR − σRL)} (8)

σ+− =
1

4
{(1 + |Pe−||Pe+|)(σLR + σRL)− (|Pe−|+ |Pe+|)(σLR − σRL)} . (9)

It is then

σ0 =
σ−+ + σ+−

2 (1 + |Pe+||Pe−|)

ALR =
1

|Peff|
Aobs =

1

|Peff|
σ−+ − σ+−

σ−+ + σ+−
, (10)

where Aobs is the measured left-right asymmetry of processes with partially polarised
beams.

Both quantities ALR and σ0 depend on the beam polarisations. The contribution of the
uncertainty of the polarisation measurement to the error is – under the assumption that
the errors are completely independent:

∆ALR

ALR
= −∆Peff

|Peff|
(11)

∆Peff
|Peff|

=
x

(|Pe+|+ |Pe−|) (1 + |Pe+||Pe−|)

√
(1− |Pe−|2)2 P 2

e− + (1− |Pe+|2)2 P 2
e+ (12)

∆σ0

σ0

=

√
2 x

1 + |Pe+||Pe−|
(|Pe+|+ |Pe−|) (13)

(14)

100.*(x/100.+0.70)/(1+0.70*x/100.)

70

80

90

100

0 20 40 60 80 100
P(e+) in %

P ef
f i

n 
%

P(e-) = -90%

-80%

-70%

100.*(0.40-x/100.)/(1-0.40*x/100.)

40

60

80

100

-100 -80 -60 -40 -20 0
P(e-) in %

P ef
f i

n 
%

P(e+) = 80%

60%

40%

Figure 4: Effective polarization as a function of the beam polarization.
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sqrt(2.)*1./(1.+x/100.*0.00)*sqrt((x/100.)**2+0.00**2)

0

0.5

1

1.5

0 20 40 60 80 100
|P(e-)| in %

1/
∆P

  ∆
σ 0/

σ 0

|P(e+)| = 80%

60%

40%

e+ unpolarized

sqrt(2.)*1.0/(1.+x/100.*0.00)/(0.00+x/100.)*sqrt((1.-(x/100.)**2)**2+(1.-0.00**2)**2)

0

1

2

3

4

5

0 20 40 60 80 100
|P(e-)| in %

1/
∆P

 ∆
A

FB
/A

FB

|P(e+)| = 40%

60%

80%

e+ unpolarized

Figure 5: Left: Contribution of the uncertainty on beam polarization on the measurement
of the unpolarized cross section. Right: Same for the left-right asymmetry. Both plots are
normalized to the polarimeter resolution ∆P which is assumed to be identical for both
beams.

Equal relative precision x := ∆Pe−/Pe− ∼ ∆Pe+/Pe+ for the measurement of the two beam
polarizations is assumed.

In case that the relative errors of e− and e+ are fully correlated, like depolarisation
effects from Bremsstrahlung, the errors are given by the linear sum:

∆Peff
Peff

=
1 + Pe+Pe−

1− Pe+Pe−
x (15)

∆σ0

σ0
=

2 x

1 + |Pe+||Pe−|
(|Pe+|+ |Pe−|) (16)

The resulting uncertainties are shown in fig. 5. The error contribution from the po-
larimeter to the unpolarized cross section is rather small. For a polarimeter precision of
0.05%, it only becomes relevant for data samples with more than 4 · 106 signal events. For
an electron beam polarization of 80 % there is a small improvement in the extraction of
the unpolarized cross section due to positron beam polarization. The error introduced in
ALR by the polarization measurement is larger. Without positron beam polarization one is
limited by the polarimeter (0.05 % precision) for samples with more than 106 events. The
improvement due to positron beam polarization is substantial. For a positron polariza-
tion of 60 % the error on ALR is reduced by a factor of 3.8.

1.2 Longitudinally polarised Electrons – Examples from SLD

1.3 Improvement of effective Polarisation – Example: top
threshold

J. Kuehn, LC-TH-2001-04
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Chapter 2

Physics with Polarisation of e− and e+

beam

2.1 Determination of chiral quantum numbers of new physics
particles

We demonstrate the importance of having both beams polarised at one example of physics
beyond the SM: Supersymmetry is one of the most motivated possibilities for NP. How-
ever, even its minimal version, the MSSM, leads to about 105 new free parameters. At
future experiments, the LHC and the LC, one has - after detecting signals expected by
susy – to determine the Susy parameters as model independent as possible, as well as
to prove the underlying Susy assumptions, e.g. that the Susy particles have to carry the
same quantum numbers (with the exception of the spin) as their SM partners.

E.g. Susy transformations associate chiral (anti)fermions to scalars e−L,R ↔ ẽ−L,R but
e+

L,R ↔ ẽ+
R,L. In order to prove this association the use of both beam polarised is necessary

[2]. The process e+e− → ẽ+ẽ− occurs via γ and Z exchange in the s–channel and via
neutralino χ̃0

i exchange in the t–channel. The association can be directly tested only in the
t–channel and the use of polarised beams serves to separate this channel. We demonstrate
this by isolation of the pair ẽ+

Rẽ−L by the LL configuration of the initial beams in an example
where the selectron masses are close together, mẽL

= 200 GeV, mẽR
= 195 GeV so that ẽL,

ẽR decay via the same decay channels, directly into ẽL,R → χ̃0
1e. At a LC it is possible to

measure the selectron masses with an accuracy of about 1 GeV [34], e.g. via invariant mass
spectra of the decay products. The other Susy parameters are taken as M1 = 100 GeV,
M2 = 210 GeV, µ = 400 GeV, tanβ = 20. As can be seen from Fig. 1, even extremely
high electron polarisation P (e−) ≥ −90% may not be sufficient to disentangle the pairs
ẽ+

Rẽ−L and ẽ+
L ẽ−L , their cross sections are too close together, σ(e+e− → ẽ+

Rẽ−L ) × BR2(ẽ± →
χ̃0

1e
±) = 102 fb, σ(e+e− → ẽ+

L ẽ−L ) × BR2(ẽ± → χ̃0
1e

±) = 94 fb. Even 100% left-handed
polarised electron beams may not change this feature.

With Pe− = −80%, Pe+ = −60% (P (e+) = −40%), however, the pairs are clearly
separated and the association to the chiral quantum number may be tested, see Fig. 2:
σ(e+e− → ẽ+

Rẽ−L) × BR2(ẽ± → χ̃0
1e

±) = 164 fb (143 fb), σ(e+e− → ẽ+
L ẽ−L) × BR2(ẽ± →

χ̃0
1e

±) = 38 fb (57 fb). In addition all SM background events, e.g. from W +W− are strongly
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suppressed within this LL polarisation configuration.
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R in e+e− → ẽ+

L,Rẽ−L,R may not be possible,
even with extremely high left-handed electron polarisation.
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Figure 2: Separation of the selectron pair ẽ−L ẽ+
R in e+e− → ẽ+

L,Rẽ−L,R → e+e−2 ˜chi
0

1 with
both beams polarized in order to test the association of chiral lepton quantum numbers
to the scalar fermions in Susy transformations. In addition all SM background is strongly
supressed.
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2.2 Suppression of SM Background in new physics searches

2.2.1 Susy example: Smuon production
It is well known that beam polarisation is suitable to suppress SM background processe
in new physics searches. E.g. W +W− presents one of the worst backgrounds, however,
it can be easily suppressed with right-handed electron/left-handed positron beams. The
scaling factors are listed in Table 2.1, [3].

It was already shown in sect. 2.1 that for the experimental proof of selectron chiral
quantum numbers it is crucial to have both beam polarised.

In the case of µ̃+µ̃− production we have only poduction via γ and Z0 exchange, there-
fore only the beam configurations LR and RL are allowed. The predominant background
for this signal is that due to W +W− process. In [51] an example is given for the reference
point SPS3 [1], where the masses are given by

µ̃R = 178.3 GeV, µ̃L = 287.1 GeV. (1)

The cross sections are shown in Table 2.2 and one notes the considerable reduction in
the production cross section fort right-handed electrons and left-handed positrons. In
Fig. 3 the expected muon energy distributions for an integrated luminosity of 500 fb−1 at√

s = 750 GeV are shown. On the left (right) side the spectrum for Pe− = −80% (+80%),
Pe+ = +80 (-80%)% is given. The background from W +W− decaying into µν final state
is included. This shows the importance of positron polarisation for a clear observation
of the low energy edge of the m̃uL, which cannot be clearly seen when the positron is
unpolarised.

Figure 3: The muons energy spectrum from smuon decays including the properly nor-
malized background from W +W− production when they decay into a µν final state. On
the left we show the case where the positron is 80% polarized right handed and the elec-
trons is 80% polarized ledt handed. On the right we show the case in which the positron
is 80% polarized left handed and the electron is 80% polarized right handed. These plots
are for

√
s = 750 GeV [51].
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Beam polarisation e+e− →W+W− e+e− → ZZ
Pe− = +80%, unpol. e+ 0.20 0.76
Pe− = −80%, unpol. e+ 1.80 1.25

Pe− = +80%, Pe+ = −60% 0.10 1.05
Pe− = −80%, Pe+ = +60% 2.85 1.91

Table 2.1: Scaling factors, i.e. ratios of polarised and unpolarised cross section σpol/σunpol,
for WW and ZZ production.

Polarisation σ(µ̃+
Rµ̃−

R)/fb σ(µ̃+
L µ̃−

L)/fb σ(W +W−)/fb
Pe− = −80%, Pe+ = −80% 11.44 5.06 1448.
Pe− = −80%, Pe+ = +80% 21.23 37.74 12995.
Pe− = +80%, Pe+ = −80% 82.99 8.37 198
Pe− = +80%, Pe+ = +80% 11.44 5.06 1448
Pe− = −80%, e+ unpol. 16.34 21.40 7241
Pe− = +80%, e+ unpol. 47.21 6.72 824

Table 2.2: The cross sections for e+e− → µ̃+µ̃− in fb. Beamstrahlung is neglected in these
studu [51]. One observes a large reduction of the W +W− cross section when the electron
is right handed and the positron is left handed. It helps significantly in observing µ̃L.
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δ MD (Pe−,e+ = 0) MD (Pe− = 80%) MD (Pe− = 80%, Pe+ = −60% MD@LHC
2 4.48 6.27 7.86 4-7.5
3 3.54 4.63 5.55 4.5-5.9
4 2.91 3.64 4.23 5.0-5.3

Table 2.3: Discovery (5σ) reach in mass scale MD in TeV for direct graviton production
in the process e+e− → γG at the LC for various numbers of extra dimensions δ [52];
the major background is e+e− → νν̄γ which can be efficiently suppressed with beam
polarisation. In the right column the discovery reach for MD at the LhC is given for the
process pp→jet+G with 100 fb−1 [53].

2.2.2 Large extra dimensions example: graviton production
The signature for direct graviton production in e+e− → γGis a relatively soft photon and
missing energy. The major background is e+e− → γνν̄ and is largely irreducible. The
study [52] is done for an integrated luminosity of 1000 fb−1 and 800 GeV with polarised
beams. The background process shows nearly maximal asymmetry, therefore polarised
beams are extremely effective in suppressing the background since ν couples only left-
handed.

After applying effective cuts and background simulations the reach for the Mass scale
MD of extra dimensions is given Table. 2.3. It is obvious that polarising both beams to
a high degree maximises the LC potential for exploring this physics. For regions wich
can be compared at te LC and the LHC, the discovery reach in MD is similar for both
machines. However, the LC offers a more model-independent test of the theory.

If extra dimensions are the cause of anomalous single photon rate, the
√

s dependence
of the cross section should follow σ ∼ sδ/2. Measuring excess cross sections with polarised
beams at two different energies, e.g.

√
s = 500 GeV and 800 GeV allows to determine the

number of extra dimensions with rather high accuracy [52]. This can be seen from Fig. 4,
where the cross section for e+e− → γG as a function of the scale MD for different numbers
δ of extra dimensions is shown. Obviously the reduction of the background process via
the use of polarised beams, in particular both beams polarised, may be crucial for the
determination of the numbers of extra dimensions.
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Figure 4: Total cross sections for e+e− → γG at
√

s = 800 GeV as a function of the scale
MD for different numbers δ of extra dimensions. The cross section takes into account
80% electron and 60% positron polarisation. The three horizontal lines indicate the back-
ground cross sections from e+e− → νν̄γ for both beams polarised (solid), only electron
beam polarisation (dashed) and no polarisation (dot-dashed). The signal cross sections
are reduced by a factor of 1.48 for the latter two scenarios [52].
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2.3 Search for Supersymmetry

2.3.1 Determination of sfermion parameters
In this section phenomenological studies on the production of third generation sfermions
in e+e− annihilation at

√
s = 500 GeV are summarised [48]. We take into account the

effects of both e− and e+ beam polarizations. The main advantages of using polarized
beams are: (i) larger cross sections can be obtained, (ii) background reactions can be sup-
pressed, (iii) measurements of appropriate observables lead to additional information on
the SUSY parameters. All calculations are performed within the Minimal Supersymmet-
ric Standard Model (MSSM) with real parameters.

Sfermion Production
In the third generation, Yukawa terms give rise to mixing between the ‘left’ and ‘right’
states f̃L and f̃R (f̃ = t̃, b̃, τ̃ ). Neglecting the mixing between generations this mixing is
described by a hermitian 2 × 2 mass matrix which depends on the soft SUSY–breaking
mass parameters MQ̃, MŨ etc., and the trilinear scalar coupling parameters At, Ab, Aτ .
The mass eigenstates are f̃1 = f̃L cos θf̃ + f̃R sin θf̃ , and f̃2 = f̃R cos θf̃ − f̃L sin θf̃ , with θf̃

the sfermion mixing angle.
Information on the sfermion mixing angle can be obtained from measuring production

cross sections using different combinations of beam polarizations. It has be shown in [47–
49] that beam polarisation may be crucial to resolve ambiguities, see as an example Fig. 5,
where for the unpolarised case still two mixing angles cos 2θτ̃ were consistent with the
measured cross sections (red lines). However, using polarised beams projects out a single
solution (green and blue line). In that case the simultaneous polarisation of both beams is
interesting for enhancing the Peff , enhancing the signal and reducing systematics which
might be quite decisive for τ analyses [47].

In the following we discuss in detail the production of light stops. The reaction
e+e− → f̃i

¯̃
fj proceeds via γ and Z exchange in the s–channel. The f̃i couplings depend

on the sfermion mixing angle θf̃ . In Figs. 6 a, b we show contour lines of the cross sec-
tion σ(e+e− → t̃1

¯̃t1) as a function of the e− and e+ beam polarizations P− and P+ at√
s = 500 GeV for mt̃1 = 200 GeV and (a) cos θt̃ = 0.4 and (b) cos θt̃ = 0.66. We have

included initial–state radiation (ISR) and SUSY–QCD corrections (for details see [48, 49]).
The white windows show the range of polarizations |P−| < 0.9 and |P+| < 0.6. As can be
seen, one can significantly increase the cross section by using the highest possible e− and
e+ polarization available. Moreover, beam polarization strengthens the cos θt̃ dependence
and can thus be essential for determining the mixing angle. Corresponding cross sections
for the production of sbottoms, staus and τ–sneutrinos are presented in [48].

Parameter Determination
We estimate the precision one may obtain for the parameters of the t̃ sector from cross
section measurements using the parameter point mt̃1 = 200 GeV, cos θt̃ = −0.66 as an
illustrative example: For P− = −0.9 we find σL(t̃1

¯̃t1) = 44.88 fb and for P− = 0.9
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ambiguity in cos 2θτ̃ (red dots); for polarised beams, however, only one solution lies in
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Figure 7: (a) Error bands and 68% CL error ellipse for determining mt̃1 and cos θt̃ from
cross section measurements; the dashed lines are for L = 100 fb−1 and the full lines for
L = 500 fb−1. (b) Error bands for the determination of cos θt̃ from ALR. In both plots
mt̃1 = 200 GeV, cos θt̃ = −0.66,

√
s = 500 GeV, P− = ±0.9, P+ = 0.

σR(t̃1
¯̃t1) = 26.95 fb (with P+ = 0) including SUSY–QCD, Yukawa coupling, and ISR cor-

rections. According to the Monte Carlo study of [50] one can expect to measure the t̃1
¯̃t1

production cross sections with a statistical error of ∆σL/σL = 2.1 % and ∆σR/σR = 2.8 %
in case of an integrated luminosity ofL = 500 fb−1 (i.e.L = 250 fb−1 for each polarization).
Scaling these values to L = 100 fb−1 leads to ∆σL/σL = 4.7 % and ∆σR/σR = 6.3 %. Fig-
ure 7 a shows the corresponding error bands and error ellipses in the mt̃1– cos θt̃ plane. The
resulting errors on the stop mass and mixing angle are: ∆mt̃1 = 2.2 GeV, ∆ cos θt̃ = 0.02
(∆mt̃1 = 1.1 GeV, ∆ cos θt̃ = 0.01 ) for L = 100 fb−1 (L = 500 fb−1). If in addition the e+

beam is 60% polarized these values can be improved by ∼ 25%.
For the determination of the mixing angle, one can also make use of the left–right

asymmetry ALR ≡ [σ(−|P−|, |P+|)− σ(|P−|,−|P+|)]/[σ(−|P−|, |P+|)+ σ(|P−|,−|P+|)]. We
get ALR(e+e− → t̃1

¯̃t1) = 0.2496 for mt̃1 = 200 GeV, cos θt̃ = −0.66,
√

s = 500 GeV,
P− = 0.9, and P+ = 0. Taking into account experimental errors as determined in [50],
a theoretical uncertainty of 1%, and ∆P/P = 10−2 we get ∆ALR = 2.92% (1.16%) for
L = 100 fb−1 (500 fb−1). This corresponds to ∆ cos θt̃ = 0.0031 (0.0012). This is most likely
the most precise method to determine the stop mixing angle. The corresponding error
bands are shown in Fig. 7 b.
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2.3.2 Polarisation effects in the gaugino/higgsino sector
still under work

2.3.3 CP asymmetries in neutralino production and decay
Particularly interesting in supersymmetry is the study of new additional CP violating
sources. In the following we show a suitable observable for verifying CP violation in the
gaugino/higgsino sector.

In the neutralino sector of the Minimal Supersymmetric Standard Model (MSSM) [33],
the gaugino mass parameter M1, the higgsino mass parameter µ, and the trilinear cou-
pling parameter Aτ in the stau sector, can be complex. The physical phases ϕM1

, ϕµ and
ϕAτ of these parameters can cause large CP-violating effects already at tree level. In the
following we focus on the effects of a complex U(1) gaugino mass parameter M1 and
higgsino mass parameter µ in neutralino production and decay.

In neutralino production

e− + e+ → χ̃0
i + χ̃0

j (2)

and the subsequent leptonic two-body decays

χ̃0
i → ˜̀+ `1, and ˜̀→ χ̃0

1 + `2; `1,2 = e, µ, τ, (3)

as well as the subsequent leptonic three-body decays

χ̃0
2 −→ χ̃0

1 + l− + l+, where l = e, µ, (4)

the neutralino spin correlations lead to several CP-odd asymmetries.
With the triple product T = (~pe−×~p`2) ·~p`1, we define the T-odd asymmetry of the cross

section σ for the processes (2)-(4):

AT =
σ(T > 0)− σ(T < 0)

σ(T > 0) + σ(T < 0)
. (5)

If absorbtive phases are neglected,AT is CP-odd due to CPT invariance. The dependence
of AT on ϕM1

and ϕµ was analyzed in [35–37].
In case the neutralino decays into a τ -lepton, χ̃0

i → τ̃±
k τ∓, k = 1, 2, the T-odd transverse

τ− and τ+ polarizations P2 and P̄2, respectively, give rise to the CP-odd observable

ACP =
1

2
(P2 − P̄2), (6)

which is also sensitive to ϕAτ . For various MSSM scenarios, ACP was discussed in [38].
For measuring the asymmetries, it is crucial to have both large asymmetries and large
cross sections. In this note we study the impact of longitudinally polarized e+ and e−

beams of a future linear collider in the 500 GeV range on the asymmetries AT, ACP and
on the cross sections σ.
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Figure 8: Contour lines of AT and σ for ϕM1
= 0.2π, ϕµ = 0, |µ| = 240 GeV, M2 = 400 GeV,

tanβ = 10 and m0 = 100 GeV.

Numerical results for the two-body decay
We present numerical results for e+e− → χ̃0

1χ̃
0
2 with the subsequent leptonic decay of χ̃0

2

for a linear collider with
√

s = 500 GeV. For AT, Eq. (5), we study the neutralino decay
into the right selectron and right smuon, χ̃0

2 → ˜̀
R`1, ` = e, µ and for ACP, Eq. (6), that into

the lightest scalar tau, χ̃0
2 → τ̃1τ . We study the dependence of the asymmetries and the

cross sections on the beam polarizations Pe− and Pe+ for fixed parameters µ = |µ| ei ϕµ ,
M1 = |M1| ei ϕM1 , Aτ = |Aτ | ei ϕAτ , M2 and tanβ. We assume |M1| = 5/3M2 tan2 θW and
use the renormalization group equations [39] for the selectron and smuon masses, m2

˜̀
R

=

m2
0 + 0.23M2

2 − m2
Z cos 2β sin2 θW with m0 = 100 GeV. The interaction Lagrangians and

details on stau mixing can be found in [37].
In Fig. 8a we show the dependence of AT on the beam polarization for ϕM1

= 0.2 π
and ϕAτ = ϕµ = 0. A small value of ϕµ is suggested by constraints on electron and
neutron electric dipole moments (EDMs) [40] for a typical SUSY scale of the order of a
few 100 GeV. It is remarkable that in our scenario the asymmetry can be close to 10%
even for the small value of ϕM1

= 0.2 π and for ϕµ = 0. The cross section σ = σ(e+e− →
χ̃0

1χ̃
0
2)×BR(χ̃0

2 → ˜̀
R`1)×BR(˜̀R → χ̃0

1`2) is shown in Fig. 8b. For our scenario with |Aτ | =
250 GeV and ϕAτ = 0, the neutralino branching ratio is BR(χ̃0

2 → ˜̀
R`1) = 0.63 (summed

over both signs of charge) and BR( ˜̀R → χ̃0
1`2) = 1. Note that the asymmetry AT and the

cross section σ are both considerably enhanced for negative positron and positive electron
beam polarization. This choice of polarization enhances the contributions of the right
slepton exchange in the neutralino production, Eq. (2), and reduces that of left slepton
exchange [41, 42]. While the contributions of right and left slepton exchange enter σ with
the same sign, they enter AT with opposite sign, which accounts for the sign change of
AT.

In Fig. 9a we show the contour lines of the τ polarization asymmetry ACP, Eq. (6), for
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Figure 9: Contour lines of ACP and σ for ϕAτ = 0.5π, |Aτ | = 1500 GeV, ϕM1
= ϕµ = 0,

|µ| = 250 GeV, M2 = 200 GeV, tanβ = 5 and m0 = 100 GeV.

ϕAτ = 0.5π and ϕM1
= ϕµ = 0 in the Pe−-Pe+ plane. We have chosen a large value of

|Aτ | = 1500 GeV because ACP increases with increasing |Aτ | � |µ| tanβ [38]. For unpo-
larized beams the asymmetry is 1%. However, it reaches values of more than ±13% if
the e+ and e− beams are polarized with the opposite sign. If at least one of the beams is
polarized (e.g. Pe− = 0.8, Pe+ = 0.6), the asymmetries are somewhat smaller (∼ 10%). The
reason for this dependence is again the enhancement of either the right or the left selec-
tron exchange contributions in the production process. The cross section σ = σ(e+e− →
χ̃0

1χ̃
0
2) × BR(χ̃0

2 → τ̃+
1 τ−) is shown in Fig. 9b with BR(χ̃0

2 → τ̃+
1 τ−) = 0.22. Also σ is very

sensitive to variations of the beam polarization and varies between 1 fb and 30 fb.
Since the asymmetry ACP is also very sensitive to the phases ϕM1

and ϕµ we show for
ϕM1

= 0.2π and ϕµ = ϕAτ = 0, the dependence ofACP and σ = σ(e+e− → χ̃0
1χ̃

0
2)×BR(χ̃0

2 →
τ̃+
1 τ−) on the beam polarization in Figs. 10a, b, respectively. The neutralino branching

ratio is BR(χ̃0
2 → τ̃+

1 τ−) = 0.19 for our scenario. Despite the small phases, ACP reaches
values up to −12% for negative e− and positive e+ beam polarizations.

Analytical and numerical results for the three-body decay
The amplitude squared of the combined processes of production, eq. (2), and decay,
eq. (4), can be written as

|T |2 = PD + Σa
P Σa

D, (7)

where P and D describe production and decay without spin correlation and Σa
P and

Σa
D (a = 1, 2, 3) are the terms with spin correlation [45]. In Σa

P and Σa
D products like

iεµνρσpµ
i pν

j p
ρ
kp

σ
l appear. This leads to CP-violating effects already at tree level.

We introduce the triple product ~pl+(~pe− × ~pl−), where ~pe−, ~pl− and ~pl+ are the momenta
of initial e− beam and the two final leptons l− and l+, respectively. We define a CP asym-
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|M1| M2 |µ| tanβ mẽL
mẽR

mχ̃0
1

mχ̃0
2

A 99.1 192.7 352.4 10 267.6 224.4 97.4 176.3
B 100.1 210 250 5 277.4 227.7 96 166.7

Table 2.4: Parameters |M1|, M2, |µ|, tanβ, mẽL
and mẽR

in the scenarios A and B and the
corresponding masses of mχ̃0

1,2
. All masses are given in [GeV].

metry as

AT =

∫
sign{(~pl+(~pe− × ~pl−)}|T |2dlips∫

|T |2dlips
, (8)

assuming that final state interactions and finite-widths effects can be neglected. AT is
proportional to the difference of the number of events with the final lepton l+ above and
below the plane spanned by ~pe− and ~pl− . The analogous asymmetry for neutralino two-
body decays has been studied in [46].

We analyse numerically the influence of longitudinal beam polarization on the CP
asymmetry AT in the scenarios defined in Tab.1. Scenario A is inspired by the SPS1a
scenario [29], whereas in scenario B the mixing between gaugino and higgsino compo-
nents is larger. We fix the center of mass energy

√
s = 500 GeV and take the phases of

the complex parameters M1 = |M1|eiφM1 and µ = |µ|eiφµ as φM1
= π

2
and φµ = 0. In

Fig.11a and b we show the CP asymmetry AT , eq.(8), as a function of the e− beam polar-
ization Pe− for different e+ beam polarizations Pe+ , in the ranges −0.9 ≤ Pe− ≤ +0.9 and
−0.6 ≤ Pe+ ≤ +0.6, for the scenarios A and B . In both scenarios the highest CP asymme-
try is reached for Pe− = −0.9 and Pe+ = +0.6. For these polarizations the ẽL contributions
to the spin density matrix dominate. With opposite signs of the beam polarizations the ẽR

contributions are dominating. For scenario A (Fig.11a) one gets a CP asymmetry of about
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Figure 11: a,b CP asymmetry AT , eq.(4), for e+e− −→ χ̃0
1χ̃

0
2 with subsequent leptonic

three-body decay χ̃0
2 → χ̃0

1l
+l−, and c,d production cross section σ(e+e− −→ χ̃0

1χ̃
0
2), as

a function of the e− beam polarization Pe− for different e+ beam polarizations Pe+, for√
s = 500 GeV, φM1

= π
2

and φµ = 0 for the scenarios A and B defined in Tab.1.

14%(−2%) for the polarizations Pe− = −0.9(+0.9) and Pe+ = +0.6(−0.6). In scenario B
(Fig.11b) the CP asymmetry is about 3% in the unpolarized case whereas it is 5%(−3%)
with polarizations Pe− = −0.9(+0.9) and Pe+ = +0.6(−0.6). Fig.11c and d show the cor-
responding production cross sections σ as a function of the beam polarizations for the
same parameters as in Fig.11a and b. In scenario A(B) the cross section and hence the
expected rate necessary to measure AT is enhanced by e− beam polarization Pe− = −0.9
by a factor 1.8(1.6) compared to the unpolarized case. In addition, a polarized e+ beam
with Pe+ = +0.6 would further enhance the cross section by a factor 1.5(1.6).

Summary and conclusion
Within the MSSM we have analyzed the dependence on the beam polarization of CP-odd
asymmetries in e+e− → χ̃0

1χ̃
0
2 and the subsequent leptonic two-body decay and three-
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body decay of χ̃0
2. For the decay process χ̃0

2 → ˜̀
R`1, ˜̀

R → χ̃0
1`2 with `1,2 = e, µ, we have

found that the asymmetry AT of the triple product (~pe− × ~p`2) · ~p`1 , which is sensitive to
ϕM1

and ϕµ, can be twice as large if polarized beams are used, with e.g. Pe− = 0.8 and
Pe+ = −0.6. Also for these polarizations the cross section can be enhanced up to a factor
of 2. For the neutralino decay, χ̃0

2 → τ̃∓
1 τ±, we have given numerical examples for the

beam polarization dependence of the CP-odd τ polarization asymmetry ACP, which is
also sensitive to ϕAτ . Both ACP and the cross section depend sensitively on the beam po-
larizations and can be enhanced by a factor between 2 and 3. We have also analysed the
dependence on longitudinal beam polarizations of the CP asymmetry AT in neutralino
production with subsequent leptonic three-body decay. We obtain the highest cross sec-
tion and CP asymmetry with beam polarizations Pe− = −0.9 and Pe+ = +0.6. Then in
scenario A(B) the CP asymmetry is enhanced by a factor 1.1(1.5) and the cross section is
enhanced by a factor 2.9(2.4) compared to the unpolarized case.
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2.3.4 Polarisation Effects in extended MSSM models

Production of Singlino-dominated Neutralinos
Nonminimal extensions of the Minimal Supersymmetric Standard Model (MSSM) are
characterized by an additional singlet superfield with vacuum expectation value x. The
singlino character of these singlino-dominated neutralinos crucially depend on the pa-
rameter x. In the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [19–22]
or an E6 inspired model with one extra neutral gauge boson Z ′ and one additional sin-
glet superfield [23] neutralinos with a dominant singlet higgsino (singlino) component
exist for large values x & 1 TeV. Beam polarisation may be crucial either for a) observing
singlino dominated neutralino poduction and b) for distinguishing between the MSSM
and the extended model.

a) Production of singlino-dominated neutralinos
Since the singlino component does not couple to gauge bosons, gauginos, (scalar) leptons
and (scalar) quarks, cross sections for the production of the exotic neutralinos are gen-
erally small [24–27]. However, they may be produced at a high luminosity e+e− linear
collider with cross sections sufficient for detection, which can even be enhanced by the
use of one or both beams polarized. We analyze the regions of x where the associated pro-
duction of the singlino-dominated neutralino yields detectable cross sections for different
beam polarisations in scenarios where the MSSM-like neutralinos have similar masses
and mixing character as in the ‘typical mSUGRA’ SPS 1a scenario for the MSSM [28, 29].

In the NMSSM the parameters (for details see [19]) M1 = 99 GeV, M2 = 193 GeV,
tanβ = 10, the effective µ parameter µeff = λx = 352 GeV and the selectron masses
mẽR

= 143 GeV and mẽL
= 202 GeV are chosen according to the scenario SPS 1a. For large

x � |M2| a singlino-dominated neutralino χ̃0
S with mass ≈ 2κx in zeroth approximation

decouples in the neutralino mixing matrix while the other four neutralinos χ̃0
1,...,4 have

MSSM character as in SPS 1a with masses 96 GeV, 177 GeV, 359 GeV and 378 GeV.
Further we consider an E6 inspired model with one extra neutral gauge boson Z ′ and

one additional singlet superfield which contains six neutralinos [23]. Again the MSSM
parameters and masses of the MSSM-like neutralinos are fixed according to the scenario
SPS 1a, while a nearly pure light singlino-like neutralino χ̃0

S with mass ≈ 0.18 x2/|M ′| in
zeroth approximation exists for very large values |M ′| � x [30]. The sign of M ′ is fixed
by requiring relative sign +1 between the mass eigenvalues of χ̃0

S and χ̃0
1 [24].

In Fig. 12 we show the associated production of the singlino-dominated χ̃0
S together

with the lightest MSSM-like neutralino χ̃0
1 for unpolarized beams and beam polarizations

P− = +0.8, P+ = 0 and P− = +0.8, P+ = −0.6 for two masses 70 and 120 GeV of χ̃0
S , where

the singlino-dominated neutralino is the LSP and NLSP, respectively. Electron beam po-
larisation P− = +0.8 enhances the cross section by a factor 1.5 to 1.8, while additional
positron beam polarisation P+ = −0.6 gives a further enhancement factor of about 1.6.
The cross sections are decreasing in good approximation as 1/x2 governed by the gaugino
content of χ̃0

S [24,25]. If we assume a cross section of 1 fb to be sufficient for discovery, the
singlino-dominated neutralino can be detected with unpolarized beams for x < 7.4 TeV
(9.7 TeV) in the NMSSM with mχ̃0

S
= 70 GeV (120 GeV) and for x < 8.5 TeV (6.4 TeV) in

the E6 model. For polarized electron beam the reach in x is enhanced to x < 10.0 TeV
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x reach NMSSM E6
(σ ≥ 1fb) mS̃ = 70 GeV mS̃ = 120 GeV mS̃ = 70 GeV mS̃ = 120 GeV

unpolarised beams < 7.4 TeV < 9.7 TeV < 8.5 TeV < 6.4 TeV
Pe− = +80%, unpol. e+ < 10.0 TeV < 12.3 TeV < 11.4 TeV < 7.9 TeV

Pe− = +80%, Pe− = −60% < 12.6 TeV < 15.5 TeV < 14.4 TeV < 10.0 TeV

Table 2.5: Range of accessible region of the singlet vacuum expectation value x under the
discovery assumption of σ(e+e− → S̃χ̃0

i ) ≥ 1 fb.

(12.3 TeV) in the NMSSM and x < 11.4 TeV (7.9 TeV) in the E6 model, whereas for both
beams polarized to x < 12.6 TeV (15.5 TeV) in the NMSSM and x < 14.4 TeV (10.0 TeV)
in the E6 model, see Table 2.5. Direct experimental evidence of a fifth neutralino would
be an explicit proof for an extended SUSY model and is also crucial to apply sum rules in
order to test the closure of the neutralino system [31].

b) Distinction between MSSM and NMSSM
Sitges/Paris example: under work

Conclusion
We have studied the production of singlino-dominated neutralinos in the NMSSM and
an E6 inspired model at a linear collider with polarized beams. With both beams polar-
ized the cross sections are enhanced by a factor 2.4 – 2.9 in comparison to unpolarized
beams, depending on the scenario. This enhances the reach for the singlino-dominated
neutralinos to singlet vevs as large as 15 TeV.
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Figure 12: Cross sections for the production of a singlino-dominated neutralino χ̃0
S via

e+e− → χ̃0
Sχ̃0

1 for
√

s = 500 GeV in the SPS 1a inspired scenarios in the NMSSM and
E6 model with M1 = 99 GeV, M2 = 193 GeV, tanβ = 10 and µeff = λx = 352 GeV
with unpolarized beams (solid) and beam polarizations P− = +0.8, P+ = 0 (dotted) and
P− = +0.8, P+ = −0.6 (dashed). The mass of χ̃0

S is fixed at 70 GeV and 120 GeV by the
parameters κ (NMSSM) and M ′ (E6 model).
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Figure 13: SUSY – Sneutrino production in R–parity violating model: Resonance pro-
duction of e+e− → ν̃ interfering with Bhabha scattering for different configurations of
beam polarization: unpolarized case (solid), Pe− = −80% and Pe+ = +60% (hatched),
Pe− = −80% and Pe+ = −60% (dotted) [32].

2.3.5 Polarization effects in R–parity violating SUSY
In R–parity violating SUSY, processes can occur which prefer the extraordinary (LL) or
(RR) polarization configurations. An interesting example is e+e− → ν̃ → e+e−. The main
background to this process is Bhabha scattering. Polarizing both electrons and positrons
can strongly enhance the signal. A study [32] was made for mν̃ = 650 GeV, Γν̃ = 1 GeV,
with an angle cut of 450 ≤ Θ ≤ 1350 and a lepton–number violating coupling λ131 = 0.05
in the R–parity violating Langrangian L 6R ∼

∑
i,j,k λijkLiLjEk. Here Li,j denotes the left–

handed lepton and squark superfield and Ek the corresponding right–handed field [32].
The resonance curve for the process, including the complete SM–background is given

in Figure 13. The event rates at the peak are given in Table 2.6. Electron polarization
with (−80, 0) enhances the signal only slightly by about 2%, whereas the simultaneous
polarization of both beams with (−80,−60) produces a further increase by about 20%.
The background changes only slightly due to the t–channel (LL) contributions from γ
and Z exchange.

This configuration of beam polarizations, which strongly suppresses pure SM pro-
cesses, allows one to perform fast diagnostics for this R–parity violating process. For
example the process e+e− → Z ′ could lead to a similar resonance peak, but with different
polarization dependence. Here only the ‘normal’ configurations LR and RL play a role
and this process will be strongly suppressed by LL. Therefore such a resonance curve,
Figure 13, with different beam polarizations would uniquely identify an an R–parity vio-
lating SUSY process.
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Table 2.6: SUSY – Sneutrino production in R–parity violating SUSY:
Cross sections of e+e− → ν̃ → e+e− for unpolarized beams, Pe− =
−80% and unpolarized positrons and Pe− = −80%, Pe+ = −60%. The
study was made for mν̃ = 650 GeV, Γν̃ = 1 GeV, an angle cut of
450 ≤ θ ≤ 1350 and the R–parity violating coupling λ131 = 0.05 [32].

σ(e+e− → e+e−) with Bhabha–background
σ(e+e− → ν̃ → e+e−)

unpolarized 7.17 pb 4.50 pb
Pe− = −80% 7.32 pb 4.63 pb
Pe− = −80%, Pe+ = −60% 8.66 pb 4.69 pb
Pe− = −80%, Pe+ = +60% 5.97 pb 4.58 pb
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Figure 14: Cross section of heavy Higgs production with σ(e+e− → HA) > 0.5 fb (black
region), > 0.2 fb (right dashed) and > 0.1 fb (left dashed) for unpolarised beams (left) and
with both beams polarised, Pe− = −80%, Pe+ = +60% (right) at

√
s = 500 GeV and with

an integrated luminosity of L = 2 ab−1.

2.3.6 Production of heavy Higgs bosons in weak boson fusion
The possibility to enhance cross sections by using beam polarization can be very impor-
tant for detecting processes with a very low rate. In Ref. [18] the production of the heavy
neutral CP-even Higgs boson H of the MSSM was studied. Since for large values of the
CP-odd Higgs boson mass MA the heavy Higgs bosons A and H are approximately mass
degenerate, MA ≈ MH , the pair production channel e+e− → HA is limited by kinematics
to the region MH <

√
s/2. The kinematic limit of the LC can in principle be extended by

single Higgs production in the process e+e− → νν̄H . However, due to the decoupling
properties of the heavy Higgs bosons for MA � MZ the V V H coupling (V = W±, Z) is
very small, so that the process e+e− → νν̄H has only a very low rate.

In Ref. [18] it was shown that higher-order contributions to this Higgs-boson produc-
tion process can remedy this situation, making the process potentially accessible at the
LC. This requires a high integrated luminosity and polarized beams. The cross section
becomes enhanced for left-handedly polarized electrons and right-handedly polarized
positrons. While an 80% polarization of the electron beam alone results in a cross section
that is enhanced by a factor 1.8, the polarization of both beams, i.e. 80% polarization for
electrons and 60% polarization for positrons, would yield roughly an enhancement by a
factor of 2.9. With an anticipated integrated luminosity of the LC running at its highest
energy ofO(2ab−1) the enhancement in the cross section due to the beam polarization can
extend the kinematic reach of the LC by roughly 100 GeV, see Fig. 14 (right) compared to
the case of unpolarized beams, Fig. 14 (left).
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2.4 New physics searches in fermion pair production

2.4.1 Model-independent contact-interaction analysis
Although the production of SM fermion-pairs is not primarily devoted to the search for
new phenomena, it guarantees – due to its clear signature of the final states in the detector
and high statistics – a good sensitivity to deviations from the SM expectations. Physics
beyond the SM could so be found at a LC operating far below the production threshold
of new particles.

Generally, contact interactions (CI) represent an effective expression of a non-standard
dynamics characterized by one (or more) new and very large mass scale exchanges, valid
in quark and lepton reactions at the “low” energies

√
s � Λ attainable by current and

future accelerators. In this case, the new interactions and dynamical mass scales can
manifest themselves only indirectly, through deviations of the measured cross sections
from the Standard Model (SM) predictions that, being dimensionally suppressed by some
power of

√
s/Λ, are expected to be quite small.

We study fermion pair production proces

e+ + e− → f + f̄ , (9)

with f 6= t, at an electron-positron Linear Collider (LC) with c.m. energy
√

s = 0.5TeV
and polarized electron and positron beams, and to the general, SU(3)×SU(2)×U(1) sym-
metric eeff dimension D = 6 contact-interaction Lagrangian, with helicity-conserving
and flavor-diagonal fermion currents [54]:

LCI =
1

1 + δef

∑

i,j

g2
eff εij (ēiγµei)

(
f̄jγ

µfj

)
. (10)

In Eq. (10): i, j = L, R denote left- or right-handed helicities, generation and color indices
have been suppressed, and the CI coupling constants are parameterized in terms of cor-
responding mass scales as εij = ηij/Λ2

ij with ηij = ±1, 0 depending on the chiral structure
of the individual interactions. Also, conventionally g2

eff = 4π, as a reminder that, in the
case of compositeness, the new interaction would become strong at

√
s of the order of

Λij. Obviously, deviations from the SM and upper bounds or exclusion ranges for the CI
couplings can be equivalently expressed as lower bounds and exclusion ranges for the
corresponding mass scales Λij.

For a given final fermion flavor, apart from the ± signs, Eq. (10) envisages four in-
dividual, and independent, CI couplings in the case f 6= e and three couplings in the
elastic f = e case. Correspondingly, the most general (and model-independent) analy-
sis of the process (9) must account for the complicated situation where the full Eq. (10)
is included in the expression for the cross section, and all CI couplings can appear there
simultaneously as free, non-vanishing, parameters.

A simplifying procedure is to assume non-zero values for only one of the couplings (or
one specific combination of them) at a time with all others set to zero, which would avoid
problems associated with negative interference, and leads to tests of specific CI models
only.

On the other hand, it should be highly desirable to apply a more general kind of ex-
perimental data analysis that simultaneously includes all terms of Eq. (10) as independent
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free parameters and, at the same time, allows the derivation of separate constraints (or ex-
clusion regions) on the individual coupling constants. A strong possibility in this regard
is offered by the availability of initial electron and positron longitudinal beam polariza-
tions, that enable to extract from the measured data the individual helicity cross sections
σij through the definition of particular, and optimal, polarized integrated cross sections
and, consequently, to disentangle the constraints on the corresponding CI coupling con-
stants εij [55–57]. Accordingly, a model-independent approach, in the sense stated above,
is obtained. Also, it is a well-known fact that, when both the electron and positron beams
are polarized, the total annihilation cross section into fermion-antifermion pairs will be
increased by a factor [58, 59] and, in principle, one could expect a corresponding increase
in sensitivity to the new parameters. Taking into account only the statistical errors the
sensitivity for these dimension d=6 operators scales with

mX

gX
∼

√
∆statσ ∼ (Lint · s)1/4 (11)

Polarized observables for contact interactions
The analysis of contact-interactions of Ref. [55], that we are briefly summarizing here,
is limited to the cases f 6= e, t where the SM is determined by only s-channel γ and
Z exchanges and external fermion masses are negligible, and uses as basic observables,
to be determined from angular integration of differential rates of events observed with
longitudinally polarized beams, the (unpolarized) total cross section σunpol and forward-
backward asymmetry AFB, the left-right asymmetry ALR and left-right forward-backward
asymmetry ALR,FB. These are defined, in the notation of Ref. [60], as:

σunpol =
1

4
[σLL + σLR + σRR + σRL] , (12)

AFB =
3

4

σLL − σLR + σRR − σRL

σLL + σLR + σRR + σRL
, (13)

ALR =
σLL + σLR − σRR − σRL

σLL + σLR + σRR + σRL

, (14)

and
ALR,FB =

3

4

σLL − σRR + σRL − σLR

σLL + σRR + σRL + σLR
. (15)

The deviations of these observables from the SM predictions are easily expressed in terms
of SM couplings and the CI ones, εij , of Eq. (10).

The correlation among uncertainties on the four basic observables can be taken into
account via the method of the covariance matrix [61, 62].

As numerical inputs, we assume as reference values the identification efficiencies [63]:
60% and 35% for the channels for bb̄ and cc̄, respectively. To assess the relative roles of
statistical and systematic uncertainties, we vary the time-integrated luminosity Lint from
50 to 500 fb−1 with uncertainty δLint/Lint = 0.5%, and a fiducial experimental angular
range | cos θ| ≤ 0.99. Regarding electron and positron degrees of polarization, we consider
the values: |Pe| = 0.8; |Pē| = 0.0, and 0.6, with the uncertainties δPe/Pe = δPē/Pē = 0.5 %.
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Figure 15: Contact-interaction scale Λ vs. integrated luminosity, Lint, for b and c quarks,
and for the four helicity combinations. Thin curves: Pe = 0.8, Pē = 0, heavy curves:
Pe = 0.8, Pē = 0.6.

The model-independent bounds on the mass scales Λij at the 95% C.L. allowed by the
experimental uncertainties reported above are shown in Fig. 15 for the considered anni-
hilation channels, respectively. In the figure, heavy curves correspond to |Pe| = 0.8, |Pē| =
0.6 while thin curves correspond to |Pe| = 0.8, |Pē| = 0.0.

As one can see from Eqs. (12) and (13), without simplifying assumptions in the unpo-
larized case the CI couplings could not be individually constrained within finite ranges,
but only mutual correlations could be derived. With initial longitudinal beam polariza-
tion, the two additional available physical observables (14) and (15) are essential to obtain
finite, model-independent, bounds. In principle, electron beam polarization would be
sufficient to achieve this result but, depending on the luminosity and the final f f̄ chan-
nel, a significant increase on the sensitivity to CI couplings can arise from the additional
availability of positron polarization. This increase is due to two effects of having both
beams simultaneously polarised:

a) increase of the effective polarisation from e.g. 80% (Pe− = 80%) to Peff = 95%
(Pe− = ±80%, Pe+ = ∓60%), cf. section 1.3;

b) error reduction of Peff (cf. also section 1.3) followed by the higher accuracy of the
ALR measurement:

∆ALR =
√

(∆statALR)2 + (∆sysALR)2 =

√
1− P 2

effA
2
LR

NP 2
eff

+ A2
LR(

∆Peff

Peff
)2 (16)

As one can see from eq. (16) the systematic error can be substantially reduced with positron
polarisation. We show in Figs. 16 the expected sensitivity for different contact inter-
actions in e+e− → bb̄, cc̄ including systematic (∆sys = 0%, 0.5%, 1.0%), luminosity
(∆L = 0.2%, 0.5%) and polarisation uncertainties (∆P/P = 0%, 0.5%) and it can clearly
be seen that the reduction of systematic errors will be decisive. The study was done for√

s = 800 GeV [16].
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Figure 16: Left: Limits on contact interactions from e+e− → bb and e+e− → cc̄ without
positron polarization and with 40% polarization including different uncertainty scenarios
[16].

2.4.2 Sensitivity to neutral extra gauge bosons
Extra neutral gauge bosons Z’ can also be probed by its virtual effects on cross sections
and asymmetries. Below a Z’ resonance measurements of fermion-pair production are
sensitive only to the ratio of Z’ couplings and Z’ mass. Therefore, limits on the Z’ mass can
be obtained only in dependence on a model with given Z’ couplings. For the well-known
E6 and LR models, e.g., mass sensitivities between 4 · √s and 14 · √s are reached. Thus,
a LC operating at

√
s = 800 GeV may exceed the sensitivity of the LHC (which is about

4-5 TeV) to a potential Z’ in some models. If a Z’ will be detected at LHC its origin can
be found by determining the Z’ couplings, see Fig. 17a [17]. Positron beam polarisation
improves only slightly the resolution power for Z’ models in case of leptonic final states,
but it will be quite important for the measurement of the Z’ couplings to fermions. The
crucial point in the analyses are the systematic errors, which can be significantly reduced
with the use of both beams polarised [16, 17].

2.4.3 CI analysis in Bhabha scattering
With δef = 1 the four-fermion contact interaction Lagrangian of Eq. (10) is relevant to the
Bhabha scattering process

e+ + e− → e+ + e−. (17)

Different from the annihilation processes considered in Sect. 2.4.1, in the case of pro-
cesses (17), apart from the ± signs, there are only three (not four) independent CI cou-
plings: εLL, εRR and εLR = εRL (same ε’s for the two processes). The other principal
difference, that complicates the procedure to disentangle the constraints on individual
couplings, is that Bhabha scattering is determined, in the SM, by γ and Z exchanges in
both the s- and t-channels. We assume that the polarization of each beam can be changed
on a pulse by pulse basis, which allows the separate measurements of the polarized differ-
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Figure 17: Left: 95% CL contours for (a′

b, v
′

b) for MZ′ = 1, 1.5 TeV in the χ model and
√

s =
500 GeV and L = 500 fb−1. The dash lines correspond to Pe+ = 0 [17]; Right: Expected
resolution power (95% CL) to reconstruct a Z’ (mZ′ = 5 TeV) realised in the χ model
without positron polarisation and with 40% polarisation based on the measurement of bb̄
final states. The Z’ mass is assumed to be unknown in this case [16].

ential cross sections dσ++, dσ+− and dσ−+, corresponding to the configurations of beam
polarizations (Pe, Pē) = (P1, P2), (P1,−P2) and (−P1, P2), respectively, with P1,2 > 0 [64].
They are related to combinations of helicity cross sections dσR, dσL and dσLR,t containing
the CI couplings and therefore representing the basic observables for the analysis, by a
system of linear equations [64]. It turns out that, while σLR,t (that is pure t-pole) depends
on a single contact interaction parameter (εLR), which therefore can be directly disentan-
gled from the other couplings, σR and σL simultaneously depend on pairs of parameters,
(εRR,εLR) and (εRR,εLR), respectively, and in this case (ellipsoidal) allowed areas in the
relevant planes can be obtained. This clearly shows that both electron and positron po-
larization are needed to perform a model-independent analysis of CI couplings in Bhabha
scattering. One can easily see that, without polarization (P1 = P2 = 0), in the general case
only correlations among couplings can be derived and, in particular, the contribution of
εLR is subject to partial cancellations.

To assess the sensitivity of Bhabha scattering to the compositeness scale, in Fig. 18
we depict as an example the 95% C.L. contours around εLL = εRR = εLR in the two-
dimensional planes (εRR,εLR) and (εRR,εLR), derived from a χ2 analysis of differential cross
sections, assuming that no deviation from the SM within the experimental uncertainty
(statistical and systematic) is measured in dσL, dσR and dσLR,t (Lint(e

+e−) = 50 fb−1, P1 =
0.8, P2 = 0.6, δLint/Lint = δP1/P1 = δP2/P2 = 0.5%). The crosses indicate the constraints
obtained by taking one non-zero parameter at a time instead of two simultaneously non-
zero and independent.

Comparison with Moeller scattering, [55], shows that only in case that Lint(e
−e−) is

not too low, Bhabha and Moeller scattering are complementary concerning the sensitivity
to individual couplings in a model-independent data analysis.
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Figure 18: Allowed areas at 95% C.L. in the planes (εLR, εRR) and (εLR, εLL) obtained from
σR and σL in e+e− → e+e− at

√
s = 0.5 TeV, Lint(e

+e−) = 50 fb−1, |Pe| = 0.8, |Pē| = 0.6.
Vertical dashed lines indicate the range allowed to εLR by σLR,t.

2.4.4 Identification of graviton exchange effects
Effects from large extra dimensions in the ADD scenario [65] can also be probed by virtual
effects in the framework of contact interactions, by the effective Lagrangian [67]

L = i
4λ

M4
H

TµνT
µν, (18)

where Tµν is the energy-momentum tensor and λ is a sign factor (λ = ±1). The only
difference that remains would be that, compared to the previous contact-interaction La-
grangian (10), being induced by a dimension D = 8 operator the KK graviton exchange
is suppressed by the much higher power (

√
s/MH)4, so that a lower reach on MH can be

expected in comparison to the constraints obtainable, at the same c.m. energy, on the Λ’s.
The scaling law for the reach scales correspondingly as

mH ∼ [s(d−5)Lint]
1/(2d−8) = (s3 · Lint)

1/8. (19)

Due to the different angular dependence [16] of deviations produced by the exchange
of the spin-2 particle and those from the interactions represented by (10), a particularly
suitable observable is represented by the generalized centre-edge asymmetry among in-
tegrated differential distributions [68]:

ACE =
σCE

σ
, σCE =

[∫ z∗

−z∗
−

(∫ −z∗

−1

+

∫ 1

z∗

)]
dσ

dz
dz, σ =

∫ 1

−1

dσ

dz
dz (20)

and 0 < z∗ < 1 (z = cos θ with θ the angle between electron and outgoing fermion
in the c.m.). The asymmetry (20) projects out the “conventional” contact interactions and
provides a clear signature for graviton exchange. In Table 2.7 (left) we list some values for
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the 5σ identification reach on the mass scale MH , summing over the channels f = µ, τ, b, c,
that can be obtained at the LC by a χ2 analysis assuming that no deviation ∆ACE is seen.

Longitudinal beam polarization appears to increase the sensitivity to graviton ex-
change, although the impact on MH is less dramatic in this case due to the suppression
(
√

s/MH)4 of the graviton coupling. Instead, initial polarization can be seen to play a key
role in distinguishing graviton exchange from competing effects, see next section [68,69].
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2.4.5 Use of transversely polarized beams
In this section we concentrate on the unique distinction between effects of graviton ex-
change and ’conventional’ contact interaction sources. One elegant tool which becomes
only available at the LC provided both the e− and e+ beams are transversely polarized
beams. As we will see below, transverse polarization (TP) [105,106] allows for new asym-
metries to be constructed which are associated with the azimuthal angle formed by the
directions of the e± polarization and the plane of the momenta of the outgoing fermions
in the e+e− → f f̄ process. We are interested in using the associated TP asymmetries
to uniquely probe for the s-channel exchange of spin-2 fields in e+e− collisions which
we normally associate with the Kaluza-Klein graviton towers of the Arkani-Hamed, Di-
mopoulos and Dvali(ADD) [100] or Randall-Sundrum(RS) [101] scenarios. In what fol-
lows we will always assume that we are below the threshold for the production of these
resonances otherwise the spin-2 nature of the new exchange would be easily identified
through an examination of the resonances themselves.

Transverse Polarization Asymmetries
Consider the process e+e− → f f̄ with the both electron and positron beams polarized. We
will denote the linear and transverse components of the e−(e+) polarizations by PL,T (P ′

L,T )
and for simplicity assume that the two transverse polarization vectors are parallel up to
a sign. In this case, the spin-averaged matrix element for this process can be written as

|M̄|2 =
1

4
(1− PLP ′

L)(|T+|2 + |T−|2) + (PL − P ′
L)(|T+|2 − |T−|2)

+ (2PT P ′
T )[cos 2φ Re(T+T ∗

−)− sin 2φ Im(T+T ∗
−)] , (21)

where φ is the azimuthal angle defined on an event-by-event basis described above. The
φ−dependent pieces of |M̄|2 are sensitive to the relative phases between the two sets of
amplitudes. We note from eq. (21) that the φ-dependent pieces are only accessible if both
beams are simultaneously transversely polarized.

Let us first consider the simple case with massless fermions. Without scalar exchange
but allowing for the possibility of spin-2 the relevant helicity amplitudes for this process
are given by

T+−
+− = fLL(1 + z)− fg(z + 2z2 − 1)

T−+
+− = fLR(1− z)− fg(z − 2z2 + 1)

T+−
−+ = fRL(1− z)− fg(z − 2z2 + 1)

T−+
−+ = fRR(1 + z)− fg(z + 2z2 − 1) . (22)

where z = cos θ and fL,R are combinations of the vector and axial vector couplings of eZ.
Note that the spin-2 exchange merely augments the amplitudes which are already present
in the SM(though with different cos θ dependencies), i.e., no new helicity amplitudes are
generated by spin-2. fg is a model-dependent quantity; in the usual ADD model, employ-
ing the convention of Hewett [98], one finds

fg =
λs2

4παM4
H

. (23)
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where MH represents the cutoff scale in the KK graviton tower sum and λ = ±1. In the
RS model the corresponding expression can be obtained through the replacement

λ

M4
H

→ −1

8Λ2
π

∑

n

1

s−m2
n + imnΓn

. (24)

where Λπ is of order a few TeV and mn(Γn) are the masses(widths) of the TeV scale gravi-
ton KK excitations. We will also assume that their widths can be neglected in cross section
calculations.

In the case of massive final state fermions, such as tops, the helicity amplitudes given
above are slightly altered and new amplitudes T±±

+− and T±±
−+ are also present. They will

be included in the analysis in the case of top quark pair production.
Both of these φ-dependent terms are always proportional to 1−z2 in the SM, as shown

in [105, 106] and will remain so even if new gauge boson exchanges are present. Due to
the more complex z-dependence of the spin-2 contributions to the helicity amplitudes
significant modifications occur when gravitons are exchanged: interference between SM
and spin-2 exchange amplitudes produce both even and odd−z terms with the latter
proportional to ∼ z(1 − z2) whereas the smaller pure gravity terms are instead found to
be even in z and proportional to z2−(2z2−1)2. The general difference in the z-dependence
of the of the φ sensitive terms and, in particular, the existence of the odd-z contributions
is clearly a signal for spin-2 exchange.

We define a differential azimuthal asymmetry distribution by

1

N

dA

dz
=

[∫
+

dσ
dzdφ
−

∫
−

dσ
dzdφ∫

dσ

]
, (25)

where
∫
±

are integrations over regions where cos 2φ takes on ± values; integration over
the full ranges of z and φ occurs in the denominator. The differential asymmetry to takes
on rather small numerical values since it is normalized to the total cross section and not
to the differential cross section at the same value of z as is usually done. We show the
asymmetry for both the SM and in the ADD scenario in Fig. 19 at a 500 GeV LC for the
final states f = µ or τ, c and b. Note that from here on we will combine results for the
f = µ and τ final states to get added statistics. We have for concreteness assumed that the
spin rotators are 100% efficient [107] so that PT = 0.8 and P ′

T = 0.6. As we can see from
Fig. 19 the spin-2 effects cause a strong asymmetric behaviour under z → −z exchange.

To access the odd-z terms one can take the differential azimuthal asymmetry defined
above, separately integrate it over positive and negative values of z, and form a forward-
backward asymmetry using N−1dA/dz:

AFB =
1

N

[∫

z≥0

dz
dA

dz
−

∫

z≤0

dz
dA

dz

]
. (26)

In the SM and in any new physics scenario with s-channel Z ′ exchanges one has AFB =
0. This is also true in the usual four-fermion contact interaction scenario [109] which
involves only vector and axial-vector couplings. Due to the nature of spin-0 exchange
AFB would remain zero in this case as well.
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Figure 19: Differential azimuthal asymmetry distribution for e+e− → f f̄ , i.e. cc̄ (left) and
bb̄ (right), at a 500 GeV LC assuming a luminosity of 500 fb−1. The histograms are the SM
predictions while the data points assume the ADD model with MH = 1.5 TeV. PT = 0.8
and P ′

T = 0.6 are assumed.

5 σ reach Lint/fb−1

in MH/TeV 100 300 500
unpolarised beams 2.3 2.6 2.9

Pe− = +0.8 2.5 2.8 3.05
Pe− = +0.8, Pe+ = −0.6 2.45 3.0 3.25

5 σ reach Lint/fb−1

in MH/TeV 100 300 500 1000√
s = 0.5 TeV 1.6 1.9 2.0 2.2√
s = 0.8 TeV 2.4 2.6 2.8 3.1√
s = 1.0 TeV 2.8 3.2 3.4 3.8

Table 2.7: Left: 5σ reach on the mass scale MH vs. integrated luminosity from the process
e+e− → f f̄ , with f summed over µ, τ, b, c, and for the energy 0.5 TeV [68] (cf. also [16],
where the 95% CL sensitivy for MH in e+e− → µµ̄, cc̄, bb̄ has been simulated); Right: 5σ
identification reach in MH vs. integrated luminosity using AFB as a function of the inte-
grated luminosity from the process e+e− → f f̄ , with f summed over µ, τ, b, c and t. Here
PT = 0.8 and P ′

T = 0.6 are assumed. [113]

Analysis
In what follows we concentrate on the ADD model; (almost) all limits obtained there can
be immediately translated to the case of the RS scenario. From Fig.19 it is apparent that
modest values of MH cause quite sizeable distortions in the N−1dA/dz distribution. How-
ever, as we will see this sensitivity is somewhat diluted if we are only asking whether or
not, e.g. AFB is non-zero. To determine the 5σ identification reach, given in Table 2.7 (right),
we will assume that the individual polarizations are known rather well, δP/P = 0.003,
that the efficiencies of identifying the final state fermions is rather high: 100% for f = µ, τ ,
60% for f = c, t, and 80% for f = b with no associated systematic uncertainties and in-
clude the effects of initial state radiation. In obtaining these results we have combined all
of the various final states above into a single fit. In all cases a small angle cut of 100 mrad
around the beam pipe has been employed.

It can be stated that the identification reach in either case alone, MH ∼ (3.5− 4)
√

s, is
not as good as what can be obtained employing longitudinal polarization [16, 68, 108].

Since in the SM and all Z ′ models and in the case of conventional four-fermion contact
interactions the azimuthal asymmetry always takes the form N−1dA/dz ∼ (1−z2), we can
study up to what value of the cutoff scale, MH , can we differentiate the effects of gravity

42



– a change in the shape of these distributions – from a simple overall change in the nor-
malization of distributions for the various final states. This allows us to set a limit on the
value of MH below which graviton exchange can be distinguished from Z ′ exchange or
four-fermion contact interactions. We fix MH and fit the N−1dA/dz distributions for µ, τ ,
c and b final states assuming a SM shape but allowing the normalization to float indepen-
dently for each final state. For luminosities above 100−200 fb−1 the errors are completely
dominated by systematics and we find the results shown in Table 2.8 (left), 2nd column.
Here we see that for MH ≤ (10 − 11)

√
s the effects of spin-2 graviton exchange can be

distinguished from a Z ′ or any form of the four-fermion contact interactions. This identi-
fication reach is numerically similar to the 95% CL discovery reach for graviton exchange
obtained using only singly longitudinally polarized beams [108, 110, 111] for the same
process, see Table 2.7.

ECM (GeV) Id. reach (TeV) 95% CL (TeV)
500 5.4 10.2
800 8.8 17.0

1000 11.1 21.5
1200 13.3 26.0
1500 16.7 32.7

5 σ reach Lint/fb−1

in MH/TeV 100 300 500 1000√
s = 0.5 TeV 1.2 1.3 1.4 1.6√
s = 0.8 TeV 1.8 2.0 2.2 2.4√
s = 1.0 TeV 2.2 2.4 2.6 2.8

Table 2.8: Left: Identification reach for MH in the ADD model assuming the distribution
N−1dA/dz ∼ 1 − z2 for fixed MH and varying the individual normalizations for the final
states f = µ, τ , f = b and f = c for LC of different center of mass energies; the 95% CL
discovery reach: varying MH up to the CL level; Right: 5σ reach for the discovery of a
nonzero value of the azimuthal asymmetry N−1dAi/dz distribution as a function of the
integrated luminosity at a LC for δ = 3. MH = MD is assumed throughout as is PT = 0.8
and P ′

T = 0.6.

In order to transform the results above into the 95% CL discovery reach for MH we
assume that the N−1dA/dz distributions for each final state fermion are given by their SM
values and evaluate at what value of MH the corresponding ones with graviton exchange
become indistinguishable from these. Since the errors are completely dominated by sys-
tematics we expect our results to again be on the high side of what would be obtained in
a more detailed detector study. These results are shown in Table 2.8 (left), 3rd column,
where we see that the values are even in the range MH ≥ 20

√
s, cf. also [111].

In the following we concentrate on distinguishing the ADD from the RS model sce-
narios below KK production threshold with TP. In the RS model, if we are away from
the Z and graviton KK poles the imaginary part of amplitude which enters the term pro-
portional to sin 2φ becomes vanishingly small. However, as was recently pointed out
by [112], the exchange of an essentially continuous spectrum of ADD gravitons leads to
a finite, cutoff-independent imaginary part of the amplitude, which grows rapidly with
increasing

√
s and depends quite sensitively upon the number of extra dimensions, one

now finds that fg has an imaginary part, depending strongly on the number of extra di-
mensions.

To proceed [113] we can form a new asymmetry in analogy to the above:

1

N

dAi

dz
=

[∫
+

dσ
dzdφ
−

∫
−

dσ
dzdφ∫

dσ

]
, (27)
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Figure 20: The N−1dAi/dz distributions at a 500 GeV collider assuming MH = MD = 1.5
TeV and δ = 3 with an integrated luminosity of 500 fb−1. The plotted points from top to
bottom in the center of the plot correspond to f = b, µ plus τ and c, respectively.

where now the
∫
±

are integrations over regions where sin 2φ takes on ± values and we
integrate over all z and φ in the denominator as before. All terms proportional to cos 2φ are
found to cancel implying that there is no cross contamination from this other asymmetry
source. Of course this new distribution is identically zero in both the SM as well as the RS
model away from the Z and RS KK graviton poles. Thus, observing any non-zero value
for this quantity is a signal for the ADD model. Table 2.8 (right) shows the 5σ discovery
reach for these new asymmetry distributions at a 500 GeV LC assuming as before that
PT = 0.8 and P ′

T = 0.6 and taking δ = 3 for purposes of demonstration. Throughout
the analysis we have assumed MH = MD. In case that MH << MD this would lead to a
serious modification in the sensitivity to this observable.

We list in Table 2.8 (right) the resulting reaches at the 5σ level (for δ = 3) where the RS
and the ADD model could be separated up to MH ∼ (2.5−3)

√
s. Although this number is

not large in comparison to those we’ve obtained in the other analyses above they provide
the first indication that these two scenarios can be distinguished at a collider via indirect
measurements.

In the process e+e− → W+W− the asymmetry is not symmetric in z in the SM so we
can’t use our shape fitting trick here as we did for fermions.

Summary and Conclusion
The results of our analysis are as follows: (i) Interference of SM and spin-2 graviton KK
exchanges leads to contributions to the azimuthal asymmetry distributions which are odd
in cos θ. Such odd terms do not contribute in the case of other new physics such as a Z ′,
contact interactions, gauge boson KK excitations or the exchange of new scalars. (ii) It is
possible to differentiate KK graviton/spin-2 exchanges from all other new physics contri-
butions to contact interactions at the 5σ level up to ADD cutoff scales of MH ∼ (3.5−4)

√
s.

(iii) Fitting to the shape of the full differential distribution itself increased the 5σ identi-
fication reach substantially to MH = (10 − 11)

√
s, about a factor two improvement over

what we obtained in the case of longitudinal polarization. (iv) In the ADD model, an
additional imaginary piece of the amplitude is present in comparison to the RS model be-
low KK production threshold. Applying a new asymmetry, produced through transverse
polarization, allows RS and ADD model separation at 5σ up to masses MH = (2.5− 3)

√
s.
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2.5 Seach for CP sensitive observables within the SM par-
ticle sector

2.5.1 Triple gauge boson couplings
An important feature of the electroweak Standard Model (SM) is the non-Abelian nature
of its gauge group, which gives rise to gauge boson self-interactions, in particular to the
triple gauge couplings (TGCs) γWW and ZWW . The most general vertices contain alto-
gether 14 complex parameters [72], six of them CP violating. The SM predicts only four
CP conserving real couplings to be non-zero at tree level.

The triple gauge boson vertex WWV (V=Z or γ) can be described in a most general
form by an effective Lagrangian [72]

LWWV

igWWV

= gV
1 V µ

(
W−

µνW
+ν −W+

µνW
−ν

)
+ κV W−

µ W+
ν V µν +

λV

M2
W

V µνW+ρ
µ W−

ρν

− igV
4 W−

µ W+
ν (∂µV ν + ∂νV µ)

+ igV
5 εµνρσ

[
(∂ρW−

µ )W+
ν −W−

µ (∂ρW+
ν )

]
Vσ

+
κ̃V

2
W−

µ W+
ν εµνρσVρσ +

λ̃V

2M2
W

W−
ρµW+µ

νε
νραβVαβ, (28)

which is parametrised by seven real couplings for each vertex. Their behavior under
charge (C) and parity (P ) conjugation can be used to divide them into four groups. The
three couplings gV

1 ,κV and λV conserve C and P , while gV
5 violates C and P but conserves

CP . The couplings gV
4 ,κ̃V and λ̃V violate CP , but gV

4 conserves P , while κ̃V and λ̃V con-
serve C. In the SM at tree level the couplings are gV

1 =κV =1, while all other are set to zero.
For convenience we introduce ∆gγ

1 = gγ
1 −1, ∆gZ

1 = gZ
1 −1, ∆κγ = κγ−1 and ∆κZ = κZ−1

thus we are only considering deviations from the standard model values.
Electro-magnetic gauge invariance requires gγ

1 =1 and reduces the number of C and P
conserving couplings to 5. SU(2)L ×U(1)Y gauge invariance introduces

∆κZ = ∆κγ tan θW + ∆gZ
1

λZ = λγ (29)

for the C and P conserving couplings, where θW is the Weinberg angle, thus reducing the
number of free couplings further.

A precision measurement of the TGCs at high energies will be a crucial test of the
validity of the SM, given that a variety of new physics effects can manifest itself by de-
viations from the SM predictions (for references see e.g. [73]). Though no deviation from
the SM has been found for the TGCs from LEP data [74], the bounds obtained are com-
paratively weak. The tightest bounds on the anomalous couplings, i.e. on the differences
between a coupling and its SM value, are of order 0.05 for ∆gZ

1 and λγ , of order 0.1 for
∆κγ and of order 0.1 to 0.6 for the real and imaginary parts of C and/or P violating cou-
plings. These numbers correspond to fits where all anomalous couplings except one are
set to zero. Moreover, many couplings, e.g. the imaginary parts of C and P conserving
couplings, have been excluded from the analyses so far.

At a future linear e+e− collider one will be able to study these couplings with unprece-
dented accuracy. A process particularly suitable for this is W pair production where both
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Table 2.9: 1σ statistical errors in units of 10−3 on the real parts of CP conserving TGCs in
the presence of all anomalous couplings at

√
s = 500 GeV, with unpolarised beams and

with different beam polarisations.

Re ∆g
γ
1 Re ∆gZ

1 Re ∆κγ Re ∆κZ Re λγ Re λZ Re g
γ
5 Re gZ

5

no polarisation 6.5 5.2 1.3 1.4 2.3 1.8 4.4 3.3
(P−

l , P+

l ) = (∓80%, 0) 3.2 2.6 0.61 0.58 1.1 0.86 2.2 1.7
(P−

l , P+

l ) = (∓80%,±60%) 1.9 1.6 0.40 0.36 0.62 0.50 1.4 1.1
(P−

t , P+
t ) = (80%, 60%) 2.8 2.4 0.69 0.82 0.69 0.55 2.5 1.9

the γWW and the ZWW couplings can be measured at the scale given by the c.m. en-
ergy

√
s.

Study of TGC with optimal observables
In [73] the prospects to measure the full set of 28 (real) TGCs is systematically investi-
gated for unpolarised beams as well as for longitudinal beam polarisation using optimal
observables. They are constructed to give the smallest possible statistical errors for a
given event distribution [80]. In addition, they take advantage of the discrete symmetries
of the differential cross section. In W pair production the covariance matrix of these ob-
servables consists of four blocks that correspond to CP even or CP odd TGCs and to their
real or imaginary parts. Within each block all correlations between couplings are taken
into account.

Table 2.9 shows the errors on the real parts of CP conserving TGCs at
√

s = 500 GeV
with unpolarised beams and with different beam polarisations, assuming an integrated
luminosity of 500 fb−1. Here, only those events are considered where one W boson de-
cays into a quark-antiquark pair and the other one into eν and µν. It is further assumed
that the two jets of the hadronic W decay cannot be identified as originating from the
up- and down-type (anti)quark. In the case of longitudinal polarisation the luminosity
is distributed equally on both directions of the polarisation vectors and the results are
then combined. The errors with unpolarised beams are between 10−3 and 10−2 in the
parameterisation using photon and Z couplings.

At 800 GeV all errors (with or without polarisation) are smaller, notably for Re ∆κγ .
For both c.m. energies the errors on the couplings in the γ-Z-parameterisation decrease
by about a factor 2 when going from unpolarised beams to longitudinal e− polarisation
and an unpolarised e+ beam. Going from unpolarised beams to polarised e− and e+ this
factor is between 3 and 4 for all couplings, except for Re ∆κZ at 800 GeV where it is 4.7.

It has been emphasized [80] that the following linear combinations [72] can be mea-
sured with much smaller correlations than the γ-Z couplings:

gL
1 = 4 sin2 θW gγ

1 + (2− 4 sin2θW ) ξ gZ
1 ,

gR
1 = 4 sin2 θW gγ

1 − 4 sin2θW ξ gZ
1 , (30)

where ξ = s/(s − m2
Z), and similarly for the other couplings. The L- and R-couplings

respectively appear in the amplitudes for left- and right-handed initial e−. Therefore this
parameterisation seems to be more “natural” in the presence of beam polarisation than
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Table 2.10: Same as Table 2.9, but for the imaginary parts and with the L-R-
parameterisation.

Im gL
1 Im κL Im λL Im gL

5 h̃− h̃+ Im λR Im gR
5

no polarisation 2.7 1.7 0.48 2.5 11 — 3.1 17
(P−

l , P+

l ) = (∓80%, 0) 2.6 1.2 0.45 2.0 4.5 — 1.4 4.3
(P−

l , P+

l ) = (∓80%,±60%) 2.1 0.95 0.37 1.6 2.5 — 0.75 2.3
(P−

t , P+
t ) = (80%, 60%) 2.6 1.2 0.46 2.0 3.7 3.2 0.98 4.4

the conventional one. For detailed plots showing the sensitivity to the TGCs as a function
of the degree of longitudinal polarisation we refer to [73]. There an extended optimal-
observable method [81] has been used where correlations between TGCs are eliminated
through appropriate energy- and polarisation-dependent reparameterisations.

For the imaginary parts of the CP conserving couplings, see Table 2.10, we further use
the linear combinations h̃± = Im(gR

1 ± κR)/
√

2 instead of Im gR
1 and Im κR.

Sensitivity to TGCs at the LC in a true simulation
For comparison with a simulation of determining the charged current triple gauge cou-
plings via a fit [82]. For the simulation we assume a luminosity of 500 fb−1 at a center-
of-mass energy of 500 GeV, which is the expected amount of data after one or two years
of running. For 800 GeV this corresponds to a luminosity of 1000 fb−1. At both energies
we expect roughly 4 millions W-pair events. This huge amount of events give us the
possibility to do high precision measurements of the TGCs.

The semileptonic decay channel (WW → qq̄`ν̄`) is used, because of the high branching
ration of 43 % and the good event reconstruction.

There is only one ambiguity in the hadronic decay angles. From LEP analysis [75] we
know that the background is very small. The background samples were generated by
PYTHIA [116] also including ISR and beamstrahlung.

For the simulation of the proposed detector design we use the fast simulation program
SIMDET (version 3.02 [76]), which is based on the proposed detector design, described in
the TESLA CDR [77]. It includes a tracking and calorimeter simulation and a reconstruc-
tion of energy-flow objects. Concerning more details about data selection see [82].

We use a simple χ2 fit and apply as input variables the normalized cos θW -distribution
and the elements of the spin density matrix of W +W− pair. The total cross section is not
used. In the case of unpolarized beams we expect a luminosity of 500 fb−1 at a center-
of-mass energy of 500 GeV and 1000 fb−1 at 800 GeV in one or two years of running. We
consider radiative corrections like initial state radiation (ISR) and beamstrahlung and
uncertainties in other measurement like the W-mass and the beam energy, which might
have an impact on this measurement.

In the case of polarised beams the total luminosity for one center-of-mass energy is
split up equally on both polarizations. In the case of electron polarization this is for an
energy of 500 GeV 250 fb−1 on left-handed (L) and 250 fb−1 on right-handed (R) electrons
with a polarization of 80 %. In the case of additional polarized positrons the absolute
value is 60 % with opposite polarization with respect to the electron polarization.
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To get the maximal sensitivity for this measurement the data taken at both polarization
combinations are fitted at the same time. Only this ensures that we can disentangle the
WWZ- from the WWγ- couplings. To estimate the systematic error in the TGC measure-
ment from the uncertainty in the polarization measurement the polarization is changed
by ∆P = ±1 %. We obtain that at an energy of 500 GeV all measurements are dominated
by the polarization error. This error is 5 − 10 times greater than the statistical error. At
the higher energy the behavior is more mixed. Some couplings are almost not affected by
the polarization error but others are. This is more pronounced in the case of electron and
positron polarization. From this observations a polarization error of ∆P = 0.1− 0.2 % is
needed for a measurement which is not dominated by this polarization error. This trans-
late into the following relative errors for electron polarization ∆P−/P− = 0.1− 0.2 % and
positron polarization ∆P+/P+ = 0.2− 0.3 %. One sees from Table 2.11 that the simulated
results are in the same range as before.

∆gZ
1 ∆κγ λγ ∆κZ λZ gZ

4 gZ
5 κ̃Z λ̃Z

500 GeV 38.1 4.8 12.1 8.7 11.5 85.8 27.7 64.9 11.4
800 GeV 39.0 2.6 5.2 4.9 5.1 41.8 28.5 29.6 4.9

∆gZ
1 ∆κγ λγ ∆κZ λZ gZ

4 gZ
5 κ̃Z λ̃Z

500 GeV 24.8 4.1 8.2 5.0 8.9 79.9 22.8 50.6 10.3
800 GeV 21.9 2.2 5.0 2.9 4.7 31.8 24.3 24.1 4.4

∆gZ
1 ∆κγ λγ ∆κZ λZ gZ

4 gZ
5 κ̃Z λ̃Z

500 GeV 15.5 3.3 5.9 3.2 6.7 45.9 16.5 39.0 7.5
800 GeV 12.6 1.9 3.3 1.9 3.0 18.3 14.4 14.3 3.0

Table 2.11: Expected sensitivity (×10−4) for different couplings at a center-of-mass energy
of 500 and 800 GeV and a luminosity of 500 fb−1 and 1000 fb−1. In the case of polarized
beams the luminosity is split up equally on both combinations.

2.5.2 Use of transversely polarised beams for TGC’s
In [106] it has been pointed out that the use of transversely polarised beams may be an im-
portant tool for studying TGC and longitudinal WL, in particular for measuring relative
phases of the helicity amplitudes in WW production.

In [79] TGC were studied with optimal observables using transversely polarised beams,
see Table 2.9. If both beams have transverse polarisation, the errors on most couplings are
approximately of the same size as in the situation where only the e− beam has longitudi-
nal polarisation. This resuls is confirmed by [78], where a first true simulation was done
for studying TGC’s in WW production and semileptonic decay with transversely po-
larised beams for the TESLA design using

√
s = 500 GeV, L = 500 fb−1 and |Pe−| = 80%,

|Pe+| = 60% and including also ISR and beamstrahlung. For this simulation the program
WHIZARD has been used. However, for one interesting coupling combination the use
of transversely polarised beams is useful. The errors for Re λγ , ReλZ , Re λ̃γ and Re λ̃Z

are they smaller with transversely polarised beams, viz. they are of the same size as with
both beams longitudinally polarised. This is true for both energies.
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If electron as well as positron polarisation is available we thus conclude that, regard-
ing the 1σ-standard deviations on the TGCs (without assuming any coupling to be zero)
longitudinal polarisation is the preferable choice, apart from one exception (see below).
Note that we are better with longitudinal polarisation also for all CP violating couplings.

It has been shown in [73] that h̃+ is not measurable from the normalised event dis-
tribution, neither with unpolarised beams nor with longitudinal polarisation. One can
however measure this coupling with transverse beam polarisation with good sensitivity.
In the γ-Z-parameterisation this means that the four couplings Im gγ

1 , Im gZ
1 , Im κγ and

Im κZ are not simultaneously measurable without transverse polarisation.
Although for most couplings longitudinal polarisation of both beams is the advanta-

geous choice, measurement of the full parameter space requires to spend part of the total
luminosity of the collider on the transverse polarisation mode.
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2.5.3 CP Violation in Jet Decays of the Z Boson at GigaZ
An interesting topic is the test of the CP symmetry in Z decays. Here a flavor-diagonal
Z decay where CP-violating effects within the Standard Model (SM) are estimated to be
very small [83] is studied. Thus, looking for CP violation in such Z decays means look-
ing for new physics beyond the SM. Of particular interest are Z decays involving heavy
leptons or quarks. Thus, the process Z→ bb̄G, which is sensitive to effective CP-violating
couplings in the Zbb̄G vertex, has been analysed theoretically in [84] and experimentally
in [85]. No significant deviation from the SM has been found.

If CP-violating couplings are introduced in the Zbb̄G vertex, they will, because of
gauge invariance of QCD, appear in the Zbb̄GG vertex as well. But the Zbb̄GG vertex
could in principle contain new coupling parameters. The analysis of the 4 jet decays of
the Z boson involving b quarks looks into both, 4- and 5-point vertices. This has been in-
vestigated theoretically in [86] and experimentally in [87]. Also in this case no significant
deviation from the SM has been found.

In the GigaZ scenario [88, 110], these measurements which were performed at the
electron-positron collider experiments at LEP could be redone with increased precision.
In the following, the results of the calculations of the processes Z→ 3 jets and Z→ 4 jets
including CP-violating couplings, with at least two of the jets originating from a b or b̄
quark, for the GigaZ scenario assuming longitudinal beam polarization for electrons and
positrons [89] are reviewed. All details of the calculation for unpolarized e+, e− beams
can be found in [84, 86].

For a model independent study of CP violation in 3 jet and 4 jet decays of the Z boson
the effective Lagrangian approach as explained in [83] can be used. One could add to the
SM Lagrangian LSM a CP-violating term LCP

LCP (x) =[ hV b b̄(x) T a γν b(x) + hAb b̄(x) T a γν γ5 b(x) ] Zµ(x) Ga
µν(x) , (31)

where b(x) denotes the b quark field, Zµ(x) and Ga
µν(x) represent the field of the Z boson

and the field strength tensor of the gluon, respectively, and T a = λa/2 are the generators
of SU(3)C . In (31) hV b and hAb are real CP-violating vector and axial vector chirality
conserving coupling constants. Dimensionless coupling constants ĥV b,Ab using the Z mass
as the scale parameter can be defined by hV b,Ab = e gs

sin ϑW cos ϑW m2
Z

ĥV b,Ab .
Chirality conserving CP-violating interactions as introduced (31) can arise at one loop

level in multi-Higgs extensions of the Standard Model [90]. They can also possibly be
generated in models with excited quarks which is further investigated here. Excitations
of quarks would be natural in a scenario where quarks have substructure and participate
in a new type of strong interaction. This type of models and effects from excited quarks at
hadron colliders have for instance been discussed in [91]. In particular, here it is assumed
that b quarks have excited partners b′ of spin 1

2
and mass mb′ . Due to higher order dimen-

sional operators in composite models chirality-conserving Zb′b couplings at the scale of
GigaZ energies are a priori possible (see e.g. [92]). Because of colour gauge invariance the
b′bG couplings can be expected to be chirality-flipping dipole couplings. Then, couplings
ĥV b,Ab as introduced in (31) can be generated by the following effective interactions of b′

and b quarks, Z bosons and gluons:

L′(x) = − e

2 sin ϑW cos ϑW

Zµ(x) b̄′(x) γµ (g′
V − g′

Aγ5) b(x)

50



− i
gs

2mb′
d̂c b̄′(x) σµν γ5 T a b(x) Ga

µν(x) + h.c. (32)

Here g′
V , g′

A and d̂c are complex parameters, which can be expected to be of order one if
the underlying dynamics is strongly interacting. In this model for mb′ � mZ one derives
for the couplings [90] ĥV b =

m2
Z

m2

b′
Re(d̂c g′∗

A) and ĥAb = −m2
Z

m2

b′
Re(d̂c g′∗

V )

In this study it is assumed that one is able to flavor-tag the b quarks and to measure
their momenta. This is justified due to the extremely good b-tagging capabilities foreseen
at TESLA [110]. Then, the CP-violating couplings are analysed using CP-odd observables
constructed from the momentum directions of the b and b̄ quarks, k̂b = kb/|kb| and k̂b̄ =
kb̄/|kb̄| (see [83, 84]):

T33 = (k̂b̄ − k̂b)3 (k̂b̄ × k̂b)3 , (33)

Vi = (k̂b̄ × k̂b)3 . (34)

The observable T33 transforms as tensor component, V3 as vector component.
The expectation values of the observables (33), (34) have been calculated for different

JADE cuts, as function of ĥb = ĥAbgV b − ĥV bgAb and h̃b = ĥV bgV b − ĥAbgAb.
For unpolarised e+e− beams a non-zero value <O> 6= 0 for one of the CP-odd observ-

ables above is an unambiguous indicator of CP violation. For longitudinally polarised
beams this holds if possible chirality flipping interactions at the e+e−Z vertex — which
do not exist in the SM — are neglected. In very good approximation, it was found for
Z→ 3 jets and Z→ 4 jets that the tensor observables are only sensitive to ĥb and the vec-
tor observables only to h̃b [84, 86].

Numerical results
The sensitivities 1/δĥb, 1/δh̃b to ĥb, h̃b for the tensor (33), vector (34) observables have
been calculated varying the jet resolution parameter ycut. A total number of Ntot = 109

Z decays for unpolarized beams was assumed, following the GigaZ scenario [88, 110]. A
measurement of ĥb , h̃b has to produce a mean value larger than δĥb, δh̃b to be able to claim
a non-zero effect at the 1 s. d. level. Comparing with optimal observables it was found
for unpolarized beams [84, 86] that these simple observables (33,34) reach nearly optimal
sensitivities. Therefore optimal observables are not considered in the following.

The inverse sensitivities ĥb, h̃b are shown in Fig. 21 (left) for Z→ 3 jets for different
longitudinal beam polarizations. The results for Z→ 4 jets can be found in [89]. The
sensitivity decreases with increasing ycut for all observables due to the decrease in number
of events available.

Because the expectation value of the tensor observable does not depend on longitu-
dinal polarization, the differences in δĥb for different polarization choices reflect only the
change in statistics. For P+ = 0.6 and P− = −0.8 the enhancement of the Z production rate
is largest. The differences in δh̃b reflect both the change in statistics and the modification
of the expectation value due to polarization. For P+ = 0.6 and P− = −0.8 the sensitiv-
ity increases by more than a factor of six compared to unpolarized beams. A convenient
choice of the polarizations can even lead to a better sensitivity of the vector observable
to h̃b than of the tensor observable to ĥb. The improvement in sensitivity due to positron
polarization in addition to electron polarization is relative small.
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Figure 21: Left: The inverse sensitivities of tensor T33 and vector V3 observables to ĥb and
h̃b. Right: Lower limits on the excited quark mass mb′ at the 1 s. d. level which can be
derived from a measurement of those observables (couplings for the b′ as discussed in the
text are assumed). The results for Z→ 3 jets are shown as function of the jet resolution
parameter ycut for different longitudinal polarizations of the e+ and e− beams.

If a measurement of ĥb , h̃b produces a mean value lower than δĥb, δh̃b a non-zero ef-
fect at the 1 s. d. level cannot be claimed and therefore an upper limit on these couplings
can be derived. As discussed above this can be translated into lower bounds on the ex-
cited quark mass mb′ . Assuming Re(d̂c g′∗

A) = Re(d̂c g′∗
V ) = 1 these bounds are shown in

Fig. 21 (right) for Z→ 3 jets for different longitudinal beam polarizations. The results for
Z→ 4 jets can be found in [89].

Conclusions
If flavor tagging of b and b̄ jets is available then, with a total number of 109 Z decays and
choosing a cut parameter∗ ycut = 0.02, the anomalous coupling constant ĥb can be deter-
mined with an accuracy of order 0.004 (Z→ 3 jets) and 0.008 (Z→ 4 jets) at 1 s. d. level
using the tensor observable T33 (33) for the measurement. Here, b − b̄ distinction is not
necessary. These accuracies are close to the ones which already can be obtained with un-
polarized beams. If in a measurement a non-zero effect at the 1 s. d. level is not observed
excited quark masses mb′ lower than 1.4 TeV (Z→ 3 jets) and 0.94 TeV (Z→ 4 jets) can be
excluded if appropriate couplings are of a size characteristic of a strong interaction.

∗This value of ycut is, in fact, a relatively large number for a selection of events Z→ 4 jets. So the numbers
given in the following are conservative for this channel.
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If b − b̄ distinction is experimentally realizable, which should be the case at a future
linear collider, the coupling constant h̃b can be measured with an accuracy of order 0.0015
(Z→ 3 jets) and 0.003 (Z→ 4 jets) using the vector observable V3 (34) and choosing P+ =
0.6 and P− = −0.8 as longitudinal polarizations of positron and electron, respectively. In
case of a non-observation of an effect at the 1 s. d. level excited quark masses mb′ lower
than 2.2 TeV (Z→ 3 jets) and 1.5 TeV (Z→ 4 jets) can be excluded if the relevant couplings
are of a size characteristic of a strong interaction.

Comparing 3 and 4 jet analyses [89] one finds that the sensitivity to the anomalous
coupling ĥb is roughly constant as function of the cut parameter ycut for ycut < 0.1 in the
3 jet case. For the 4 jet case the sensitivity is found to increase as ycut decreases. For
ycut ≈ 0.01 the 4 jet sensitivity is found to become equal to that from 3 jets. Of course in an
experimental analysis one should try to make both 3 and 4 jet analyses in order to extract
the maximal possible information from the data.

In these theoretical investigations always 100% efficiencies are assumed and only the
statistical errors are considered. Assuming systematic errors to be of the same size as
the statistical ones, the accuracies in the determinations of ĥb, h̃b discussed above should
indeed be better by more than one order of magnitude than those derived from LEP.
As shown in [90] this will, for instance, give valuable information on the scalar sector
in multi-Higgs extensions of the Standard Model. Moreover interesting information on
models with excited quarks can be derived.
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2.5.4 CP violation in tt̄ production
Grzadkowski,Hioki,hep-ph/0004223
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2.5.5 Searches for CP violation with transversely polarised beams

Overview
This is a précis of a recent preprint [70]. Transverse polarization (TP) enables novel CP
violation search in the inclusive process e+e− → A + X . When the spin of A is unob-
served and me is neglected, only (pseudo-)scalar or tensor currents associated with a
new-physics scale Λ can lead to CP-odd observables at leading order in the couplings
from interference with γ and Z in the presence of TP.

In order to test CP violation, one needs more than the momenta of particles to be
measured in e+e− → f f̄ . The presence of TP provides such a vector, without observing
final state polarization. This leads, e.g., to gain in statistics. CP violation due to beyond
the standard model interactions may be parametrized in terms of contact interactions
in a model independent manner. When me is neglected, with only TP interactions that
transform as V and A cannot interfere at leading order in the new interactions with the
standard model interactions to yield CP odd correlations, which can be inferred from
general results of [71]. The tensor and (pseudo-)scalar interactions are accessible only
at a higher order of perturbation theory without TP, even if longitudinal polarization is
available.

In our application example we have evaluated the contributions to the differential
cross-section due to (pseudo)-scalar and tensor contact interactions at leading order in
the interaction strengths for the process e+e− → tt̄. This is used to construct an effective
up-down asymmetry and a polar angle integrated version of the same. By assuming that
the coefficients of the effective interaction that is suppressed by the second power of the
new-physics scale Λ, to be of order unity, we show that at

√
s = 500 GeV and with an

integrated luminosity
∫

dtL = 500 fb−1, we find that at the 90% confidence level, the scale
Λ can be bounded at about 10 TeV, with perfect TP.

Theoretical framework
The Lagrangian we will use for our calculations is:

L = LSM +
1

Λ2

∑

i

( αiOi + h.c. ), (35)

where αi are the coefficients which parameterize non-standard interactions, Oi are the
effective dimension-six operators, and Λ is the scale of new physics.

After Fierz transformation the part of lagrangian containing the above four-Fermi op-
erators can be rewritten as

L4F =
∑

i,j=L,R

[
Sij(ēPie)(t̄Pjt) + Vij(ēγµPie)(t̄γ

µPjt) + Tij(ē
σµν√

2
Pie)(t̄

σµν

√
2
Pjt)

]
, (36)

where

SRR = S∗
LL, SLR = SRL = 0, and Vij = V ∗

ij, and TRR = T ∗
LL, TLR = TRL = 0.

The z axis is chosen along the direction of the e−. The differential cross sections for
e+e− → tt, with the superscripts denoting the respective signs of the e− and e+ TP, are

dσ±±

dΩ
=

dσ±±
SM

dΩ
∓ 3αβ2

4π

mt

√
s

s−m2
Z

(
ct
V ce

AReS
)
sin θ cos φ, (37)
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dσ±∓

dΩ
=

dσ±∓
SM

dΩ
± 3αβ2

4π

mt

√
s

s−m2
Z

(
ct
V ce

AImS
)
sin θ sin φ, (38)

where

dσ+±
SM

dΩ
=

dσ−∓
SM

dΩ
=

3α2β

4s

[
4

9

{
1 + cos2 θ +

4m2
t

s
sin2 θ ± β2 sin2 θ cos 2φ

}

− s

s−m2
Z

4

3

{
ce
V ct

V (1 + cos2 θ+
4m2

t

s
sin2 θ ± β2 sin2 θ cos 2φ)

+ 2 ce
Act

Aβ cos θ
}

+
s2

(s−m2
Z)2

{
(ce 2

V + ce 2
A )

×
[
(ct 2

V + ct 2
A )β2(1 + cos2 θ) + ct 2

V

8m2
t

s

]
+ 8ce

V ce
Act

V ct
Aβ cos θ

± (ce 2
V − ce 2

A )(ct 2
V + ct 2

A )β2 sin2 θcos 2φ
}]

(39)

The quantities sin θ sin Φ and sin θ cos Φ are CP-odd and CP-even. Here β =
√

1− 4m2
t /s,

and we have defined
S ≡ SRR +

2ct
Ace

V

ct
V ce

A

TRR, (40)

where ci
V , ci

A are the couplings of Z to e−e+ and tt, and where we have retained the new
couplings to linear order only. In (40) the contribution of the tensor term relative to the
scalar term is suppressed by a factor 2ct

Ace
V /ct

V ce
A ≈ 0.36. In what follows, we will consider

only the combination S, and not SRR and TRR separately.

CP-odd asymmetries and numerical results
We construct the CP-odd asymmetry, which we call the up-down asymmetry as

A(θ) =

∫ π

0

dσ+−

dΩ
dφ−

∫ 2π

π

dσ+−

dΩ
dφ

∫ π

0

dσ+−

dΩ
dφ +

∫ 2π

π

dσ+−

dΩ
dφ

(41)

and also the θ-integrated version,

A(θ0) =

∫ cos θ0

− cos θ0

∫ π

0

dσ+−

dΩ
d cos θdφ−

∫ cos θ0

− cos θ0

∫ 2π

π

dσ+−

dΩ
d cos θdφ

∫ cos θ0

− cos θ0

∫ π

0

dσ+−

dΩ
d cos θdφ +

∫ cos θ0

− cos θ0

∫ 2π

π

dσ+−

dΩ
d cos θdφ

(42)

In the latter, a cut-off θ0 angle has been introduced.
In a numerical study we put limits on the parameters using the integrated asymmetry

A(θ0). The figures are presented for
√

s = 500 GeV and the ideal condition of 100% beam
polarizations for e− as well as e+. We will comment later on about the result for more
realistic polarizations. As we can see from Fig. 22, the value of A(θ0) increases with the
cut-off, because the SM cross section in the denominator of eq. (42) decreases with cut-off
faster than the numerator.
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Fig. 23 shows the 90% confidence level (C.L.) limits that could be placed on ImS for
an integrated luminosity of L = 500 fb−1. The limit is the value of Im S which would
give rise to an asymmetry Alim = 1.64/

√
L∆σ, where ∆σ is the SM cross section. This

limit translates to a value of Λ of the order of 8 TeV, assuming that the coefficients αi in
(35) are of order 1. The corresponding limit for

√
s of 800 GeV with the same integrated

luminosity is ∼ 9.5 TeV.
Using realistic polarisation degrees of 80% and 60% for TP, the up-down asymmetry

A(θ) or A(θ0) gets multiplied by a factor 1
2
(P1 − P2) for e− and e+ beams respectively. For

P1 = 0.8 and P2 = −0.6, this means a reduction of the asymmetry by a factor of 0.7. Since
the SM cross section does not change, this also means that the limit on the parameter Im S
goes up by a factor of 1/0.7 ≈ 1.4, and the limit on Λ goes down by a factor of

√
0.7 ≈ 0.84,

to about 6.7 TeV. If the positron beam is unpolarized, however, the sensitivity goes down
further.

In summary, TP can be used to study CP-violating asymmetry arising from the in-
terference of new-physics scalar and tensor interactions with the SM interactions. These
interference terms cannot be seen with longitudinally polarized or unpolarized beams.
Moreover, such an asymmetry would not be sensitive to new vector and axial-vector in-
teractions (as for example, from an extra Z ′ neutral boson), or even electric or “weak”
dipole interactions of heavy particles, since the asymmetry vanishes if me ∼ 0.
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2.6 Precision measurements of the electroweak theory at
GigaZ

2.6.1 Measurement of sin2 θeff – Application of the Blondel Scheme
The option GigaZ refers to running the LC at the Z resonance with to about 109 Z events
and makes possible the most sensitive test of the SM ever made.

In the SM the left–right asymmetry ALR depends only on the effective leptonic weak
mixing angle:

ALR =
2(1− 4 sin2 Θl

eff)

1 + (1− 4 sin2 Θl
eff)

2
. (43)

The statistical power of the data sample can be fully exploited only when δ(ALR(pol)) <
δ(ALR(stat)). For 108− 109 Z’s this occurs when δ(Peff) < 0.1%. In this limit δ(sin2 θeff) ∼
10−5, which is an order–of–magnitude smaller than the present value of this error. Thus
it will be crucial to minimize the error in the determination of the polarization. Although
the improvements in Compton polarimetry achieving a precision < 0.1% may be difficult.
The desired precision should, nevertheless, be attainable with the Blondel Scheme, where
it is not necessary to know the beam polarization with such extreme accuracy, since ALR

can be directly expressed via cross sections for producing Z’s with longitudinally polar-
ized beams:

σ = σunpol[1− Pe−Pe+ + ALR(Pe+ − Pe−)], (44)

ALR =

√
(σRR + σRL − σLR − σLL)(−σRR + σRL − σLR + σLL)

(σRR + σRL + σLR + σLL)(−σRR + σRL + σLR − σLL)
. (45)

In this formula the absolute polarisation values of the left- and the right-handed states
are assumed to be the same. Corrections have to be determined experimentally by means
of polarimetry techniques; however, only relative measurements are needed, so that the
absolute calibration of the polarimeter cancels [4].

As can be seen from (45) the Blondel scheme also requires some luminosity for the
less favoured combinations (LL, RR). However only about 10% of running time will be
needed for these combinations to reach the desired accuracy for these high precision mea-
surements. Fig. 24 shows the statistical error on ALR as a function of the positron polarisa-
tion for Pe− = 80%. Already with 20% positron polarisation the goal of δ sin2 θeff ∼ 10−5

can be reached. The comparison of different beam polarisation configurations and the
gain for the ALR Measurements see also [5].

As an example of the potential of the GigaZ sin2θeff measurement Fig. 25 compares
the present experimental accuracy on sin2θeff and MW from LEP/SLD/Tevatron and the
prospective accuracy from the LHC and from a LC without GigaZ option with the pre-
dictions of the SM and the MSSM. With GigaZ a very sensitive test of the theory will be
possible.
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Figure 24: Test of Electroweak Theory: The statistical error on the left–right asymmetry
ALR of e+e− → Z → `¯̀at GigaZ as a function of the positron polarization P (e+) for fixed
electron polarization Pe− = ±80% [4].
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Figure 25: Test of Electroweak Theory: A high-precision measurement at GigaZ of the
left–right asymmetry ALR and consequently of sin2 Θl

eff allows to test the electroweak
theory at an unprecedented level. The allowed parameter space of the SM and the MSSM
in the sin2 Θl

eff –MW plane is shown together with the experimental accuracy reachable
at GigaZ. For comparison, the present experimental accuracy (LEP/SLD/Tevatron) and
the prospective accuracy at the LHC and a LC without GigaZ option (LHC/LC) are also
shown [6, 7].

59



2.6.2 Higgsmass versus electroweak mixing angle
The precise measurement of the effective leptonic weak mixing angle at the Z-boson res-
onance, sin2 θeff , at GigaZ will allow a very sensitive test of the electroweak theory [7].
With both beams polarized, i.e. 80% polarization for electrons and 60% polarization for
positrons, an accuracy of ∆ sin2 θeff = ±1.3 × 10−5 can be achieved [8]. If only electron
polarization were available, this would result in an accuracy of only about ∆ sin2 θeff =
±9.5× 10−5 [9].
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Figure 26: The predictions for sin2 θeff in the SM and the MSSM as a function of Mh,
which corresponds to the Higgs-boson mass in the SM and the mass of the lightest CP-
even Higgs boson in the MSSM. The exclusion bound on the SM Higgs mass of Mh >
114.4 GeV [10] is indicated in the plot. The SM prediction is given for mt = 175±0.1 GeV,
while in the MSSM the SUSY parameters have been scanned. The theory predictions are
compared with the experimental accuracies obtainable at GigaZ with an 80% polarized
electron beam only and with the case of simultaneous polarization of both beams.

The impact of the more precise measurement for testing the electroweak theory is indi-
cated in Fig. 26, where the experimental accuracy (using the current experimental central
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value of sin2 θeff [11]) is compared with the predictions in the SM and the MSSM. The the-
oretical predictions are shown as a function of Mh, which corresponds to the Higgs-boson
mass in the SM and the mass of the lightest CP-even Higgs boson in the MSSM. In the
region where both models overlap, Mh <∼ 135 GeV [12], the SM prediction corresponds to
the MSSM result in the limit where all SUSY partners are heavy. The area corresponding
to the MSSM prediction was obtained by varying all relevant SUSY parameters inde-
pendently, taking into account the constraints from the direct search for SUSY particles
and the LEP Higgs search. The MSSM predictions are based on the results described in
Ref. [13], and the Higgs mass predictions have been obtained with FeynHiggs2.0 [14].

Within the SM, the precision in sin2 θeff achievable with both beams polarized con-
strains the Higgs-boson mass to an interval of few GeV (neglecting the uncertainties from
unknown higher-order corrections), while the precision corresponding to electron polar-
ization leaves an uncertainty of about ±25 GeV in Mh. Within the MSSM the parameter
space in the Mh–sin2 θeff plane is reduced by about a factor 7 with the sin2 θeff measurement
based on simultaneous polarization of both beams as compared to the case with electron
polarization only. This puts sensitive constraints on the possible values of the underlying
SUSY parameters. Combined with direct information on the SUSY spectrum the precise
measurement of sin2 θeff will allow a very stringent consistency test of the MSSM.
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2.7 Tools: Monte Carlo Event Generators and Beam Polar-
ization

The use of numerical programs based on Monte Carlo (MC) techniques has become essen-
tial in performing any detailed experimental analysis in collider physics. In this section
we will briefly recall the key features of these programs and discuss the inclusion of beam
polarization effects. We will limit ourselves to the so-called event generators. These pro-
grams must be interfaced to both detector simulations and beam energy spectra to give a
complete picture of the actual physics process.

In general the MC event generation process can be split into a number of phases.

• The hard process where the particles in the hard collision and their momenta are
generated, usually according to the leading-order scattering matrix element (ME).

• The parton-shower (PS) phase where the coloured particles in the event are per-
turbatively evolved from the hard scale of the collision to the infrared cut-off. The
emission of electromagnetic radiation from charged particles can be handled in a
similar way.

• Those particles which decay before hadronization, e.g. the top quark, are decayed
usually according to a calculated branching ratio with a ME to give the momenta
of the decay products. Any coloured particles produced in these decays are then
evolved by the PS algorithm.

• A hadronization phase in which the partons left after the perturbative evolution are
formed into the observed hadrons.

Most MC event generators fall into one of two classes: general-purpose (or multi-purpose)
event generators which aim to perform the full simulation of the event starting with the
initial-state collider beams, proceeding through the hard scattering process and finishing
with the final-state hadrons; the second class of programs (hereafter, parton-level event
generators) typically performs the hard scattering part of the simulation only, perhaps
including decays, and relies on one of the general-purpose generators for the rest of the
simulation.

During the LEP-era the experiments relied on the general-purpose event generators
for the description of hadronic final states together with more accurate parton-level pro-
grams interfaced to the former ones for specific processes, e.g. two- and four-fermion pro-
duction. At a future linear collider (LC), as one wishes to study final states with higher
multiplicities, for example six or even eight particles, this mixed approach will become
more important as these final states cannot be described by the general-purpose event
generators.

2.7.1 General-purpose Event Generators
Historically the main general-purpose event generators have been HERWIG [114], ISAJET [115]
and PYTHIA [116]. While the general philosophy of these programs is similar, they use
different phenomenological models and approximations. In general, at least for e+e−

collisions, the range of hard scattering processes implemented is very similar. All these
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generators have a wide range of Standard Model (SM) processes available, reactions pre-
dicted by the Minimal Supersymmetric Standard Model (MSSM) as well as various selec-
tions of channels from other models too (e.g. extra gauge-bosons).

The major differences between the programs are in the approximations used in the
PS evolution and the hadronization stage. While ISAJET still adopts the original PS al-
gorithm which only re-sums collinear logarithms, both HERWIG and PYTHIA include
the effects of soft logarithms via either an angular-ordered PS in the case of HERWIG,
or an angular veto in the case of PYTHIA. For the hadronization process HERWIG uses
the cluster model, ISAJET the independent fragmentation model and PYTHIA the Lund
string model.

There are also major differences between the generators in the treatment of spin cor-
relation and polarization effects. Both ISAJET and HERWIG include longitudinal po-
larization effects in both SM and Supersymmetric (SUSY) production processes, while
PYTHIA includes both longitudinal and transverse polarizations in many processes. An-
other important difference is in the treatment of the subsequent decay of any heavy par-
ticle produced in the hard process. While HERWIG includes the full correlations in any
subsequent decays using the method described in [117] both ISAJET and PYTHIA only
include these effects in some processes, e.g. W pair production. To extend the method
used in [117] to include transverse polarization also in the HERWIG production stage is
certainly possible.

While these codes will continue to be used in the near future a major programme is
underway to produce a new generation of general-purpose event generators in C++. The
main aim of it is to provide the tools needed for the Large Hadron Collider (LHC). How-
ever, these tools will be used also for the next generation of LCs. The only program cur-
rently available in C++ which is capable of generating physics results is SHERPA (based
on the APACIC++ [118] PS). Work is however underway to rewrite both PYTHIA [119]
and HERWIG [120] in C++. These programs should be available in the next few years
and we expect them to be the major tools for event generator at a future LC. Given the
new design and structure of these programs the treatment of both spin correlation and
polarization effects should be much better than in the current FORTRAN programs. For
example HERWIG++, should include full polarization and correlation effects in the per-
turbative phase of the event using the method of [117].

2.7.2 Parton-Level Event Generators
There are a large number of programs available which calculate an individual hard pro-
cess, or some set of hard processes, and are interfaced to one of the general-purpose gen-
erators, most often PYTHIA, to perform the PS and hadronization. It is impossible to
review all such programs here. As many of the two- [121] and four-fermion [122] gener-
ators were used by the LEP collaborations, we refer to the report of the LEP-II MC work-
shop for their detailed discussion. Some programs, e.g., LUSIFER [123], SIXFAP [124],
EETT6F [125] and SIXPHACT [126], have been written specifically for six fermion pro-
cesses. Many of these codes use helicity amplitude techniques to calculate the MEs and
therefore either already include polarization effects or could easily be modified to do so.

Given the vast physics programme of future LCs, it is likely that one will also regularly
resort to programs which are capable of calculating and integrating the MEs for large
numbers of final-state particles automatically. There are a number of such codes available.
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– AMEGIC++ [127] makes use of helicity amplitude techniques to evaluate the ME
together with efficient multi-channel phase space integration to calculate the cross section.
This package is part of SHERPA.

– COMPHEP [128] is an automatic program for calculation of cross sections for processes
with up to eight external particles†. It uses the traditional trace techniques to evaluate the
ME together with a modified adaptive integrator to compute the cross section, so it is at
present not suitable for studies intended to investigate polarization/spin effects. How-
ever, the conversion to the use of helicity amplitudes techniques is currently planned.

– GRACE [129] (with the accompanying packages BASES and SPRING) combines the
calculation of MEs via helicity amplitude techniques with adaptive integration.

– HELAC/PHEGAS uses the approach of [130] which is based on the Dyson-Schwinger
equation together with multi-channel integration [131] to calculate the cross section.

– MADGRAPH/MADEVENT [132] uses helicity amplitude techniques for the ME together
with an efficient multi-channel phase space integrator to compute the cross section. These
packages are based on the HELAS [133] subroutines.

– WHIZARD [134] is a multi-channel integration package which can use either COMPHEP,
MADGRAPH or O’MEGA‡ [136] to calculate the MEs.

All of these codes apart from HELAC/PHEGAS§ are publicly available. In order to sim-
ulate events these programs need to be interfaced to the general-purpose event gener-
ators. Most use ad hoc interfaces to one of the major general-purpose event generators
with the details varying from one package to another. Recently, generic (i.e., program-
independent) FORTRAN common blocks have been proposed for the transfer of event
configurations from parton level programs to showering and hadronization event gener-
ators [137].

The implementation of polarization and correlation effects differs between these pro-
grams. In general, apart from COMPHEP (as noted), these programs are all based on he-
licity amplitude techniques at some point in the calculation and therefore the inclusion
of both transverse and longitudinal beam polarization is possible even where it is not
currently implemented.

2.7.3 SUSY
Polarization and spin correlation effects are particularly important in studying SUSY sce-
narios, in order to measure the fundamental parameters of the underlying model. Thus,
it is worth commenting in more detail on the inclusion of these effects in SUSY processes
(hereafter, we assume the particle content of the MSSM).

HERWIG, PYTHIA and ISAJET all include longitudinal polarization effects in SUSY
production processes. There is also a parton-level program SUSYGEN [138], interfaced to
PYTHIA, which includes these effects.

All these programs also differ in the inclusion of the correlations in the subsequent
decays of the particles. While SUSYGEN includes these correlations using helicity am-
plitude techniques and HERWIG uses the method of [117], these effects are generally not
included in either PYTHIA or ISAJET.

†COMPHEP can have up to six final-state particles for scattering processes and seven for decays.
‡O’MEGA uses the approach of [135] to evaluate the ME but does not include yet any QCD processes.
§Contact: papadopo@alice.nuclear.demokritos.gr.
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Among the parton-level programs, at present only COMPHEP and GRACE include SUSY
processes, although both MADGRAPH and AMEGIC++ can be extended to add the addi-
tional interactions which are needed.
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2.8 Summary of the Physics Cases
We agreed in the POWER meeting that we should provide a table (like table 1 in GMP,
Steiner, hep-ph/0106155) summarising (also quantitatively) the effects of having P (e+) in
addition to P (e−).

*** still under work ***
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Chapter 3

Machine Issues

3.1 Polarised Electrons for Linear Colliders
The SLC established that reliable electron beams with a polarization at high energy ap-
proaching 80% can be provided over periods of years. However, the beam structures
planned for future colliders present new demands, and in addition higher polarization is
desirable. The prospect for meeting these needs is outlined below. The electron beam for
JLC/NLC is required to have a 270 ns macropulse at the IP consisting of 192 micropulses
spaced 1.4 ns apart. At the IP each micropulse should have a charge of 0.75×1010 e−. If
a conventional dc-biased polarized electron gun based on GaAs-type photocathodes is
used, it is assumed the gun must produce 1.5×1010 e− for each micropulse, or a total of
2.9×1012 e− in a single macropulse, which is over an order of magnitude more charge
than produced for SLC. The problem is that as the current density in the macropulse
increases beyond the SLC level, a dynamic barrier due to photoexcited electrons tem-
porarily trapped in surface states limits the charge that can be extracted from the cath-
ode. A satisfactory solution has been found that works well for conventional dc-biased
guns: a very high dopant density at the GaAs surface promotes the tunneling of holes
to the surface where efficient recombination rapidly disposes of the trapped electrons.
Using this technique, macropulses (no micropulse structure) with current densities in ex-
cess of JLC/NLC requirements have recently been demonstrated. Although the charge
in a single micropulse for TESLA is roughly twice that of JLC/NLC, the spacing between
micropulses is 337 ns, which precludes a surface charge limit problem.

Highly polarized electrons are obtained from GaAs (or its tertiary and quaternary
analogues) by directing a circularly-polarized laser beam tuned to the band-gap edge to
a thin (typically 100 nm), strained epilayer of p-doped GaAs. Only a small fraction of
the photons are absorbed in the epilayer. Electrons with zero momentum are promoted
from the valence band maximum (VBM) to the conduction band minimum (CBM) upon
the absorption of laser photons. A biaxial compressive strain produced by a lattice mis-
match with the substrate or by the quantum confinement associated with short-period
superlattice structures breaks the degeneracy of the heavy-hole (hh) and light-hole (lh)
bands at the VBM. Hh-lh separations of 80 meV are readily achieved, which in carefully
grown structures is sufficient to allow the selection of electrons from the hh band only.
Because of angular momentum selection rules, this results in CB electrons of exclusively
one spin state. A thin epilayer is chosen to minimize strain relaxation away from the
heterojunction. As the CB electrons diffuse to the surface, they undergo some depolar-
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ization, primarily by interaction with holes. This effect can be considerably reduced by
decreasing the dopant density (everywhere but the last few nanometers near the surface,
often called ‘gradient doping’). Near the surface, the energy levels for pdoped GaAs bend
downwards. Most of the electrons reaching the surface are confined to this band-bending
region (BBR) for a finite time until they are emitted to vacuum or lose sufficient energy to
be trapped in surface states. The BBR is depleted of holes. However, the confined but still
mobile electrons in the BBR lose energy by scattering from optical phonons, as a result of
which the amplitude and phase of the spin precession vector is continuously reoriented,
leading to a significant depolarization. The probability for electrons to escape to vacuum
can be as high as 20% if the surface is properly activated with cesium and an oxide to
create a negative electron affinity (NEA). Energy dispersion studies show that most of
these electrons have energies below that of the CBM in the bulk, while time-resolved po-
larization measurements demonstrate that the polarization of the emitted electrons drops
continuously with time, consistent with the depolarization mechanism in the BBR de-
scribed above.

The maximum polarization of the SLC beam was 78% at the source, produced us-
ing a 100 nm thick GaAsP/GaAs strained-layer photocathode. By decreasing the dopant
density in the bulk, the polarization of this type of cathode was slightly improved for
the initial run of a PV experiment (E158-I) at SLAC that required beam parameters sim-
ilar to those for JLC/NLC. Higher polarization is an ongoing R&D endeavor. Several
laboratories have demonstrated electron beams with polarization of 90% or even higher.
The problem is that such high values are universally achieved only with a cathode sur-
face having a relatively low quantum efficiency (QE), defined as number of photoemitted
electrons per incident photon. Recent improvements in polarization while maintaining
a high QE have been achieved with strained GaAsP/GaAs superlattice structures. Each
layer of the superlattice (typically 4 nm) is considerably thinner than the critical thickness
( 10 nm) for the onset of strain relaxation, while the transport efficiency for electrons in
the conduction band still can be high. In addition the effective band gap for such su-
perlattices is larger than for GaAs alone, which improves the maximum NEA value and
thus the surface escape probability. Today, 100 nm thick, gradient-doped GaAsP/GaAs
superlattice photocathodes routinely yield at least 85% polarization at low energy with
a maximized QE of 1%. This type of cathode was successfully used during the summer
2003 dedicated run at SLAC of E158-III, for which the polarization at high energy, mea-
sured by a Moller polarimeter, was (905% except for short periods following refreshment
of the cathode QE (accomplished every few days by adding a small amount of Cs to the
surface). This experience points to the possibility of a constant 90% polarization if a tech-
nique to control the minimum surface barrier can be developed without reintroducing
the surface charge limit effect. Data for 2 SL photocathodes are compared with that for
the strain-layer cathode in Table 1. The absolute accuracy of the polarimeters is on the
order of 5%

The NLC ZDR describes a dc-biased polarized electron gun operating at 120 kV, i.e.,
very similar to that of the SLC polarized electron source. For JLC/NLC, because of space-
charge effects, such a gun would have to produce first a 270 ns dc pulse. Before acceler-
ation, the microstructure of the electron macropulse would then be generated by rf sub-
harmonic bunchers, which will increase the rms normalized transverse emittance of the
beam to the order of 10-4 m. Two alternatives are currently being investigated that would
allow the micropulse structure to be generated by the laser itself: very high dc-bias and an
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Table 3.1: Comparison of the data for a 2 SL photocathodes and for the strain layer cath-
ode .

rf gun. Advances in the technology of dc-guns may allow electric fields at the cathode as
high as 20 MV/m or more, which is an order of magnitude higher than the SLC polarized
electron source. The extracted beam should have a low transverse emittance, but since
the energy is still quite low, the energy spread will be large so that after some acceleration
the microbunches may need to be compressed. An rf gun offers the potential of a very
low emittance beam (on the order of 10-6 m) at energies of several MeV so that additional
bunch compression is not necessary. With either option the transport and accelerator cap-
ture efficiency will be improved so that the charge required for each micropulse would be
significantly reduced. A low emittance beam will reduce damping ring requirements. It
has not yet been demonstrated that the necessary surface properties of an activated GaAs
photocathode will survive for a reasonable time in an operating rf gun.

Because of the large micropulse separation, the TESLA microstructure must be pro-
duced by the laser. The required 3 MHz (later 6 MHz), 3 W average power (during the
1-ms macropulse) laser (assuming cathode QE of 1% and capture/acceleration efficiency
of 50%) with a repetition rate of only a few hertz can in principle be used with either a
low-voltage dc gun (each micropulse ¿0.5 ns), a high-voltage dc gun, or using a ¡100 ps
pulsewidth with an L-band rf gun. The JLC/NLC micropulse structure can be produced
by amplifying a shaped 300-ns string of 714 MHz oscillator micropulses to the level of
just over 200 W using, for example, a regenerative amplifier with multiple pumps. Nei-
ther laser system has been demonstrated, but both appear to be reasonably doable. The
SLC demonstrated that the longitudinally polarized electrons produced at the gun can
be transported to the IP with virtually no loss of polarization. Because the JLC/NLC
damping ring will operate at constant energy far from a resonance, the polarization of
the virtually monoenergetic electron beam, with the spin vector flipped to vertical, will
undergo no loss during damping. While there is also no loss of polarization during ac-
celeration in a linac, a loss of 1% is expected in the 180-degree turnaround into the main
linac at 8 GeV due to spin diffusion. In the SLC, the polarization vector in the linac had
a transverse component to accommodate control of the flat beam. The spin vector was
adjusted to longitudinal at the IP by use of spin bumps in the arcs that were independent
of the controls for the orientation of the flat beam.
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3.2 Positron Polarisation

3.2.1 Laser-Compton Based Polarized Positron Source

This chapter describes the design of a laser-Compton based polarized positron source
[139]. In this design, the Compton scattering of circularly polarized laser light off a rela-
tivistic electron beam is utilized. Polarized γ-rays are created in the scattering, and then
polarized positrons are produced in the subsequent pair-creation on a thin conversion tar-
get. Linear colliders usually require huge amount of positrons with multi-bunch/multi-
train timing structure, but details of timing structure depend on design of main linacs.
Here we assume the requirements of GLC design [140]. In order to meet this require-
ments, we employ 10 CO2 lasers, a high current and low emittance electron beam, and
multiple laser-electron collision points (see Fig. 1). The electron and laser beams have a
multi-bunch structure. As for the time structure of the beam of the main linac, the choice
in the polarized positron option is different from that in the standard GLC design, i.e. 96
bunches with a bunch spacing of 2.8 ns in a train. Therefore, the bunch spacings of the
electron and laser beams for the positron production, which must agree with that of the
main linac, are also 2.8 ns. The 2.8 ns bunch spacing is chosen in order to facilitate the ar-
rangement of the laser optics for the positron source. The number of positrons (electrons)
in a bunch for the main linac becomes 1.1 × 1010, instead of 0.75 × 1010 in the standard
GLC design.

RF-Gun

3 GeVLinac
3 GeVDR

BC 2. 8 GeVLinac
1. 98 GeVPre-DR 1. 98 GeVDR

1. 98 GeVLinac

BCCapturesection

electron beam 5. 8GeVhigh current and low emittance

CO2 lasers
Conversiontarget

γγγγ-rays
Collision points(Parabolic mirrors)

Figure 1: Configuration

A pair of off-axis parabolic mirrors located on the electron beam line is employed for
each laser-electron collision point. The first mirror changes the direction of laser propa-
gation, and focuses the laser beam as well, so that the laser beam and the electron beam
run on the same axis in opposite directions. The focal length of the mirror is 90 mm and
the rms spot size of the laser beam at the focal point is 17 µm. The laser beam collides
head-on with the electron beam at the focal point of the laser beam. After the collision,
the laser beam is extracted by the second mirror, as shown in Fig. 2. Each mirror has a
hole at the center along the electron beam axis. The electron beam and the back-scattered
γ-rays pass through these holes. The length of a mirror pair is approximately 200 mm.
This compactness allows us to put many pairs in the electron beam line to have multiple
collision points.

For multiple collisions of an electron beam at many collision points spread along the
beam line, the electron beam is required to have a very low emittance, which is necessary
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to create a tightly focused beam over a long distance. A 3 GeV multi-bunch electron
beam, which is delivered from a linac, is damped by the damping ring to achieve low
emittance: 1.25× 10−6 rad-m in both the horizontal and vertical directions. The damping
ring is operated in full horizontal-vertical coupling mode. Then, the electron beam is
accelerated again by another linac up to 5.8 GeV. Since the emittance of the electron beam
is small, a focus system with a large β value (β∗ = 3.6 m) can be employed. The spot size
of the electron beam at the waist is 20 µm in sigma, and the spot size remains 23 µm even
at 2.1 m away from the waist. We put 20 pairs of the parabolic mirrors in one section, in
which 20 collision points are available (see Fig. 2). A single laser provides laser bunches
in those 20 collision points through all 20 parabolic mirror pairs. The laser beam firstly
enters the pair located at the most downstream position of the electron beam, and travels
to the upstream pair. Thus, the laser beam goes from one pair to the next pair, and finally
reaches the 20-th pair, which is located at the most upstream position of the electron
beam. The number of electrons in a bunch is 5× 1010 and the laser bunch energy is 0.25 J.
A train of the electron beam contains 96 bunches, while a train of the laser beam contains
115 bunches. These extra laser bunches are necessary to realize collisions at all of the 20
collision points. Then, when the distance and laser path length between adjacent collision
points are properly arranged, it can be realized that all 96 bunches in the electron beam
collide 20 times at the 20 collision points.
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Figure 2: A collision section.

The number of γ-rays generated in the 20 collisions is not large enough to create the
required number of positrons. Therefore, the electron beam is refocused so as to make
another 20 collisions in the next section, to which another laser beam from another CO2

laser is delivered. Such refocusing of the electron beam is repeated 9 times. Thus, the
entire system has 200 collision points in 10 collision sections (Fig. 3).

The number of γ-rays generated in the 200 collisions is 8.3×1011/bunch (see Fig. 4(a)).
Out of them, 5.5 × 1011 γ-rays pass the collimators, which are located along the electron
beam line to protect mirrors against radiation damage, and reach the conversion target.
The electron-laser collision is simulated by using CAIN [141]. The thickness of the con-
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Figure 3: Entire collision region. There are 10 collision sections in total. Between adjacent collision
sections, there are refocusing magnets to maintain an electron beam size small in every collision
points. Many collimators (they are not written) are put in the electron beam line for mirror pro-
tection.

version target is 0.5 radiation length, and the target is made of tungsten. The number of
positrons created from γ-rays is 6.9×1010 in each bunch (see Fig. 4(b)). The energy deposit
on the target by a train (96 bunches) of γ-ray beam is about 10 J, and thermal stress caused
by this deposit is estimated to be within tolerable range. The continuous heat load on the
target is rather small, 1.5 kW.

A positron capture section consisting of an L-band accelerating structure with a 6 Tesla
solenoid magnet is equipped just after the conversion target. The linac, the pre-damping
ring, and the damping ring all having an energy of 1.98 GeV follow the capture section
(see Fig. 1), which can capture 18 % of pair-created positrons at the relatively high en-
ergy side of the spectrum. As a result, 1.2 × 1010 positrons/bunch are captured, and the
achieved magnitude of the polarization is 54 %.

A rough estimation shows that the total power consumption, including every com-
pornents shown in Fig. 1, of the positron source to be applroximately 22 MW.

At KEK, it has been pursued thta the development of advanced technologies for polar-
ized γ-ray generation using the 1.28 GeV electron beam of KEK-ATF and a Nd-YAG laser
beam [142]. It is remarked that recently the polarization of short pulse γ-rays has been
successfully measured [143], and we plan to take a further steps of to produce polarized
positrons and to measure of their polarization.
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Figure 4: (a) Energy distribution of the whole γ-rays generated by a simulation of 200 collisions
(SUM). Also, the γ-rays which pass all collimators and reach the target are indicated separately
for the left-handed ones (Lc), the right-hand ones (Rc), and the total (SUMc). Here we assume that
the initial laser beams have 100% right-handed polarization. (b) The energy distributions of the
positrons at the target exit. The vertical axis is the number of positrons per MeV/c normalized by
the total number of γ-rays on the target. Three lines show all positrons (SUM), positrons which
have left-hand (L) and right-hand (R) helicity, respectively.
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3.2.2 Undulator-based polarised positron source
contribution from John Sheppard
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Figure 5: Helical field generating circularly polarised photons

3.2.3 Helical undulator design at Daresbury
ASTeC is involved in designing a helical undulator for the TESLA project.

One of the greatest challenges for any of the proposed Next Linear Colliders is efficient
positron production. One of the possible schemes involves using radiation created by
the main electron passing through a very long (100m) undulator. This radiation hits a
special target in which electron and positron pairs are produced. The positrons can then
be captured and accelerated down the main positron linac.

To create a polarised positron beam circularly polarised light from a helical undulator
is needed. The transverse magnetic field of a helical undulator means that an electron
would follow a helical trajectory through the device - emitting circularly polarised pho-
tons. (shown in Figure)

As the energy of the radiation increases so does the rate of electron positron produc-
tion in the target - up to an energy of 20MeV. To create the highest radiation flux the
period of the undulator needs to be as small as possible so that there are as many periods
as possible in the available space ( 100m). These parameters along with the 250 GeV en-
ergy of the TESLA beam mean that for a particular undulator period the required on-axis
field is easily defined. The shorter the period the higher the field required.

Required on axis field as a function of undulator period to produce 20MeV circularly
polarised radiation with a 250 GeV electron beam.

After looking at many different designs including pure permanent magnet planar he-
lical device and other novel magnetic arrangements two different solutions have been
recommended.

The first is a super-conducting bi-filar wire. Here two s-c wires are wrapped in a
double helix around the vacuum vessel. When current is passed through the wires the
longitudinal components of the magnetic field cancel leaving only the rotating (helical)
field required on axis.

Schematic of wires wrapped in helix around a former showing different current direc-
tions.

The second option is based on permanent magnet technology. Here a dipole field
is create by a ring of permanent magnet blocks, with each blocks magnetisation vector
rotated around the ring. Many rings are then stacked together so that along a period the
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Figure 6: On-axis-B-field versus undulator period

Figure 7: Schematic of wires wrapped in helix around a former showing different current
directions.

Figure 8: SC prototype
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Figure 9: PPM design

Period On-Axis Field Magnet Aperture Material Current density Length Full Module
14 mm 0.85 T 6 mm NbTi 1000 A/mm2 30 cm 1-2 m

Table 3.2: SC helical undulator design at Daresbury

dipole field is rotated by 360 degrees. This type of arrangement is called a HALBACH
helical undulator.

Dipole field created by many blocks arranged in a ring. Many rings are stacked to-
gether to create the helical field

The work done has shown that devices with a period of 14mm look feasible for both
different types of technology. It is hoped that over the next year construction of pro-
totypes of both different technologies will commence in order to provide a better under-
standing of the pros and cons of each design. Each prototype will be around ten or twenty
periods long. They are to be used to measure the quality of the magnetic field on axis and
to give an initial assessment of the engineering difficulties in constructing such devices,
which have not widely been built. The following basic parameters for each device are to
be used for the prototypes.

It has been decided that for the prototypes both devices will have a period of 14mm
to allow for a good comparison between the two. As can be seen from the numbers mod-
elling of the permanent magnet device suggests that it can produce a higher on axis field
than is required so possibly the period could be reduced. However magnet inhomogeni-
eties, magnetisation vector misalignments and engineering tolerances will mean that the
measured on axis field will be less. How much is less is one of the reasons for building a
prototype.

For the super-conducting device use of Niobium-Tin as a material could increase the
on axis magnetic field and so allow for the period to be reduced. This material is relatively

Period On-Axis Field Magnet Aperture Material Length Full Module
14 mm 0.83 T 4 mm NbFeB (1.3 T) 15 cm 5 m

Table 3.3: PPM helical undulator design at Daresbury
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new and difficult to work with and so has not been considered for the prototype. The use
of iron poles to increase the flux density on-axis is also being considered - although this
makes fabrication of the former more difficult.

There are still a number of technical issues that need to be solved and effects that
are dependant on the beam properties of the machine that need to be calculated. It is
hoped that in the near future a fully working proto-type module will be built. This will
further test the engineering difficulties of the design and look at the emitted radiation
characteristics.
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3.3 Transverse Polarisation
Contribution from John Sheppard
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Chapter 4

Polarisation Measurement

4.1 Polarisation Measurement at the NLC
The primary polarimeter measurement at the NLC will be performed by a Compton po-
larimeter located in the extraction line approximately 60 meters downstream from the
Interaction Point [144]. An accuracy of (∆Pe−/Pe−) = 0.25% should be achievable [145].
The location in the extraction line is shown in Figure 1. It is at a secondary focus in the
middle of a chicane with 20 mm dispersion, but with no net bend angle with respect to
the primary IP. At the middle of the chicane the Compton scattering will occur and the
scattered electron is confined to a cone having a half-angle of θ = 2 rad and is effectively
collinear with the initial electron direction. This extraction line geometry is feasible in the
NLC design due to the non-zero crossing angle at the IP; beam losses in the extraction line
are acceptable, both for machine protection [146,147] and for detector backgrounds. A lo-
cation downstream of the IP is chosen so that beam-beam depolarization effects [148,149]
can be measured directly by comparing beams in and out of collision. Also, spin preces-
sion effects due to the final focus optics and beam-beam deflections can be studied by
correlating the polarization and IP BPM measurements.

Compton polarimetry is chosen as the primary polarimetry technique for several rea-
sons:

• The physics of the scattering process is well understood QED, with radiative correc-
tions less than 0.1% [150];

• Detector backgrounds are easy to measure and correct for by using laser off pulses;

• Polarimetry data can be taken parasitic to physics data;

• The Compton scattering rate is high and small statistical errors can be achieved in a
short amount of time (sub-1% precision in a few minutes is feasible);

• The laser helicity can be selected on a pulse-by-pulse basis;

• The laser polarization is readily determined with 0.1% accuracy.

A frequency doubled Nd:YAG laser will be used with a wavelength of 532 nm (2.33
eV). The laser will fire on every 7th pulse train, but every 10 seconds will fire instead on
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the 6th pulse train; this gives an average repetition frequency of 17 Hz. The laser pulse
energy will be 200 mJ. The duration of the Q-switched laser pulse is 6 nano-seconds
(if desired, this can be sliced to achieve a narrower pulse). The kinematic endpoint for
Compton electrons scattered from a 250 GeV beam occurs at 25.1 GeV with an analyzing
power of 98%. Figure 2 shows the resulting Jz = 3/2 and Jz = 1/2 Compton cross sections
and analyzing power. The laser rms spot size at the Compton interaction point will be
100 m. Comparison of the electron and laser beam sizes at the Compton IP is shown in
Figure 3 (need to update).

A segmented electron detector sampling the flux of scattered electrons near the kine-
matic endpoint will provide a good polarization measurement with high analyzing power.
The counting rate is high with xxx Compton electrons per GeV at the endpoint energy
of 25.1 GeV. We plan to use a threshold Cerenkov detector, similar to that employed in
the SLD Compton polarimeter [151]. Using propane with an index of refraction of 1.0011
gives the threshold energy as 11 MeV. Figure 4 shows the y-distribution of the Compton
scattered electrons at the Cerenkov detector located 21 meters downstream of the Comp-
ton interaction point. The Compton-edge electrons peak at 18 cm while the tails of the
electron beam extend out only a few centimeters. There is good separation between the
Compton edge electrons and the disrupted beam as seen in Figure 4.

The analyzing power for a power asymmetry measurement by an integrating Comp-
ton photon detector is much lower at x.x%. A photon detector [152] interferes with the
large beam stay clear needed in this region to accommodate the beamstrahlung photons.
An invasive measurement with an insertable photon detector and the beams out of colli-
sion can be useful, however, as a systematic cross check of the polarization scale. Ideally,
detectors should allow for measurements of both backscattered electrons and photons,
and possibly to compare single and multi-Compton counting. These independent tech-
niques can be extremely useful for evaluating systematic errors.

The luminosity-weighted beam polarization will differ from the measured polariza-
tion due to disruption and radiation in the beam-beam collision process. There are also ef-
fects from polarization spread and spin transport to the IP. At the NLC, the largest source
of polarization spread before the IP is expected to result from the 180-degree turnaround
after the pre-Linac, where the beam energy is 8 GeV. The 0.25% energy spread there re-
sults in a spin diffusion of 1% rms. The polarization spread for different bunches along
the bunch train is expected to be small; we plan to measure the polarization for different
bunches by varying the timing of the laser pulse. The polarization spread at the IP will
have some correlation with the energy, E, and z (longitudinal position of electrons within
a bunch) of the particle distributions at the IP. Because the luminosity may depend on
E and z, this can lead to the ∆P = P lumi−wt − P polarimeter being non-zero. Spin preces-
sion and spin diffusion from the final focus magnets are additional sources of ∆P . Also,
the detector solenoid and the crossing angle result in a transverse B-field component that
causes a small amount of spin precession between the IP and the Polarimeter. Beambeam
effects contribute to ∆P due to the disruption and deflection angles and due to spinflip
beamstrahlung radiation [148, 149] The estimated systematic uncertainties for the mea-
surement of polarization asymmetries is summarized in Table 1, together with the results
achieved for the SLD Experiment.
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Figure 1: Beta-functions and dispersion in the extraction line as a function of distance
from the IP. The Compton IP wll be located at the secondary focus 59.32 meters down-
stream.
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Item SLD Result NLC-500
Laser Polarisation 0.1% 0.1%
Detector Linearity 0.2% 0.1 %
Analysing Power 0.4% 0.2%
Electronic Noise 0.2% 0.05 %

Lumi-weighting corrections 0.1% 0.1 %
TOTAL 0.5% 0.27%

Table 4.1: Systematic Uncertainties in Polarization Measurement, achieved at SLD and
expected at NLC Item SLD Result NLC-500 Laser

Figure 2: Compton cross section for scattering of 532 nm photons with a 250-GeV electron
beam. The J=3/2 (1/2) cross section for electron and photon spins aligned (anti-aligned)
is shown in red (green).
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Figure 3: Electron distributions (a. and b.) with energy spread and beam disruption
effects included; c) Laser beam size. All are at the Compton IP at mid-chicane.

Figure 4: Beam electron (a. and c.) and Compton-edge electron (b. and d.) distributions
at the detector located 21 meters downstream of the Compton collision point. The dis-
tributions on the left are for colliding beams and include disruption effects. The plots on
the right are for e+e- beams out of collision.
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4.2 Polarisation Measurement at TESLA
Contribution from Peter Schueler
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4.3 Polarisation Measurements with Annihilation Data
Polarisation measurements with polarimeters are limited to a total precision around 0.25%.
In addition polarimeters measure either the polarisation of the incoming beam that has
not been depolarised by the beam-beam interaction or the one of the outgoing beam
which has been depolarised three to four time as much as the interacting particles. On
the other hand there are several processes at a linear collider whose polarisation struc-
ture is known and which might be used to measure the polarisation directly from data.
The large luminosity of the linear collider offers the possibility to reach a precision much
better then the polarimeters.

One example is the sin2 θeff measurement with the Blondel scheme at GigaZ (see sec.
2.6) where the relevant observables can be extracted directly from the data without the use
of polarimeters. One has, however, to take into account that all methods using annihila-
tion data involve some physics assumptions that have to be considered in the framework
of the model in which the data are analysed. The data driven methods also cannot replace
completely the polarimeters. The data methods need a large luminosity to get to a precise
result while polarimeters are completely systematics limited and statistics is no problem.
In any case polarimeters are thus needed for a fast machine tuning. In addition there are
some assumptions in the data-methods that have to be verified or corrected with the po-
larimeters. In all cases the data methods need the assumption that the absolute values of
the polarisations of the left and right handed states are the same. If electron and positron
polarisation is available the effective polarisations, explained in sec. 1.3 and the formu-
lae to obtain the polarisation involve linear and quadratic terms of the polarisations. For
these reasons any correlations between the two beam polarisations need to be known
from beam-beam simulations and polarimeters.

4.3.1 Measurements with Electron Polarisation only
If only electron polarisation is available not only the Lorenz structure of the used process
is needed but the exact helicity structure needs to be known. The only process fulfilling
this requirement is the V-A structure of the W-fermion couplings. This coupling can be
utilised in two processes at a linear collider, single W production and W-pair production.
As can be seen from figure 5 both processes have a cross section of several pb so that a
few million events are expected.

W-pair production proceeds through the Feynman diagrams shown in figure 6. In
general the process is a complicated mixture of the neutrino t-channel exchange, only
determined by the W-fermion couplings, and the γ and Z s-channel exchange that in-
volve also anomalous gauge couplings. However, as shown in figure 7, the forward pole
is completely determined by the neutrino exchange and insensitive to the anomalous
couplings. For this reason it is possible to extract the polarisation and the triple gauge
couplings [153] simultaneously from the W-pair data sample. The expected precision is
∆Pe−/Pe− = 0.1% for a luminosity of 500 fb−1 at

√
s = 340 GeV. The correlation with

the anomalous gauge couplings is negligible and the only assumption involved is that no
right-handed W-fermion couplings appear. Experimental details of the analysis can be
found in [154].

If electron and positron polarisation is available, both can be measured simultaneously
from the W-pair sample. With equal luminosity at all four helicity combinations and
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Figure 6: Feynman graphs for the production of W-pairs in e+e−-annihilation.

Pe− = 0.8, Pe+ = 0.6 one gets ∆Pe−/Pe− ≈ 0.1% and ∆Pe+/Pe+ ≈ 0.2% and negligible
correlations between the polarisations and between the polarisation and the couplings. If
only 10% of the luminosity is spent on the equal helicities the polarisation errors increase
by roughly a factor two with −50% correlation.

Single W production is dominated by the Feynman diagram shown in figure 8. Since
this process involves the V-A coupling of the W to fermions a W− can only be produced
from a left-handed electron and a W + from a right-handed positron. Measuring the W-
charge the polarisation can thus be measured for electrons and positrons separately. The
outgoing electron usually disappears in the beampipe so that the W charge has to be re-
constructed from the W decay products. This means that only leptonic W-decays can be
used for the analysis. No detailed simulation study exists yet. The experimental signa-
ture is a single lepton in the detector which can be measured with high efficiency and
small background. Because of the usually small W energy also the interference with W-
pair production should be very small. Assuming

√
s = 500 GeV, L = 1ab−1 and 100%

efficiency for W− → e−, µ− an error of ∆Pe−/Pe− ∼ 0.15% is expected.
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4.3.2 The Blondel scheme
If a process e+e− → f f is mediated by pure s-channel vector-particle exchange the cross
section for the different polarisation states with electron and positron polarisation avail-
able can be written as

σ = σu [1− Pe+Pe− + ALR(Pe+ − Pe−)] , (1)

where Pe+ and Pe− are the longitudinal polarisations of the positrons and electrons mea-
sured in the direction of the particle’s velocity. σu denotes the unpolarised cross section
and ALR the left-right asymmetry. If the signs of the two polarisations can be switched
independently four cross sections can be measured for four unknowns. From these cross
sections the polarisations can be obtained, if ALR 6= 0:

Pe± =

√
(σ+− + σ−+ − σ++ − σ−−)(∓σ+− ± σ−+ − σ++ + σ−−)

(σ+− + σ−+ + σ++ + σ−−)(∓σ+− ± σ−+ + σ++ − σ−−)

where in σij i denotes the sign of the positron- and j the sign of the electron-polarisation.
As a drawback of this method some luminosity needs to be spent with the same helicities
for both beams which is not very interesting for most physics processes.

To measure the polarisation with this scheme two processes have been considered,

• e+e− → f f with
√

s′ ≈ √s;

88



• radiative return events (e+e− → Zγ → f fγ).

The cross section and left right asymmetry for the two processes at
√

s = 350 and 500 GeV
is given in table 4.2. Both cross sections scale approximately with 1/s. The high energy

√
s σRR ALR(RR) σHE ALR(HE)

340 GeV 17 pb 0.19 5 pb 0.50
500 GeV 7 pb 0.19 2 pb 0.50

Table 4.2: Cross section and asymmetry for high energy and radiative return f f events.

events can be measured with high efficiency and almost no background. However the
analysis relies on the assumption of s-channel vector-exchange, so for analyses like the
search for R-parity violating sneutrinos the results cannot be used.

On the contrary radiative return events contain on-shell Z-decays which are well un-
derstood from LEP1 and SLD. In about 90% of the events the high-energy photon is lost
in the beampipe. These events can be reconstructed kinematically and most backgrounds
can be rejected. However, at TESLA energies the cross section for the fusion process
e+e− → Ze+e− is of the same order as the signal. In those events one electron has almost
the beam energy and stays at low angle while the other is extremely soft and also often
lost in the beampipe resulting in a∼ 30% background of Zee events in the radiative return
sample. The only way Zee events can be rejected is to require a photon above 7◦ where
photons and electrons can be separated by the tracking detectors. Applying some addi-
tional event selection cuts on the hadronic mass and the balance of the event about 9% of
the radiative return events are accepted with only a small Zee background. However in
these events the slow electron is seen in the detector, so that they can easily be rejected by
vetoing on an isolated electron.

Assuming Pe− = 80%, Pe+ = 60%, an integrated luminosity of 500 fb−1 at
√

s =
340 GeV and 50% or 10% of the luminosity spent with both beam polarisations with the
same sign table 4.3 shows the obtainable errors on the two polarisations and their corre-
lation. Due to the scaling of the cross sections the errors are about a factor

√
2 larger at

500 GeV. It should be noted that the relative errors scale approximately with the product
of the polarisations.

L±±/L = 0.5 L±±/L = 0.1
HE rr WW HE rr WW

∆Pe−/Pe− [%] 0.10 0.51 0.07 0.21 1.11 0.11
∆Pe+/Pe+ [%] 0.12 0.53 0.11 0.15 1.13 0.21

corr −0.49 −0.91 0 −0.56 −0.93 −0.52

Table 4.3: Relative polarisation error using the Blondel scheme for
√

s = 340 GeV, L =
500 fb−1, Pe− = 0.8, Pe+ = 0.6 (HE = High energy events, rr = radiative return, WW =
W-pair production).

Radiative corrections to the form of equation (1) have been checked with the KK Mon-
teCarlo [155]. For the high energy events and for the radiative return events with a seen
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photon they are negligible. For the radiative return events where the photon is lost in the
beampipe, which are not used in this analysis, the corrections are on the percent level.

Because of the high losses in the selection of the radiative return events the errors on
the single polarisations seem rather large. However the large negative correlation reduces
the error substantially for the effective polarisations needed in the analysis. Table 4.4
compares the errors on the effective polarisations for the setups shown in table 4.3 and for
polarimeter measurements assuming 0 or 50% correlation between the two polarimeters.

The effective polarisations considered are:

• Peff =
Pe−+Pe+

1+Pe−Pe+
, relevant for ALR with s-channel vector exchange;

• Pe−Pe+ , relevant for the cross section suppression/enhancement with s-channel vec-
tor exchange;

• Pe− + Pe+ − Pe−Pe+ , relevant for the cross section suppression/enhancement for
t-channel W-pair production.

Due to the high anti-correlation even the results from the radiative return analysis with
one tenth of the luminosity at the low cross sections are competitive to polarimetry with
an optimistic 0.5% error.

value Rel. error [%]
L±±/L = 0.5 L±±/L = 0.1 Polarimeter

HE rr WW HE rr WW ρ=0 ρ=0.5
(Pe−+Pe+)/(1+Pe−Pe+) 0.95 0.02 0.08 0.02 0.05 0.17 0.02 0.13 0.16

Pe−Pe+ 0.48 0.11 0.22 0.13 0.18 0.42 0.18 0.71 0.87
Pe−+Pe+−Pe−Pe+ 0.92 0.03 0.12 0.03 0.06 0.25 0.03 0.19 0.21

Table 4.4: Relative error on the effective polarisations for the discussed setups and√
s = 340 GeV, L = 500 fb−1, Pe− = 0.8, Pe+ = 0.6. For the polarimeter a total error of

0.5% has been assumed. (HE = High energy events, rr = radiative return, WW = W-pair
production).

4.3.3 Experimental Aspects
Although the methods presented here measure in the luminosity weighted polarisation
directly from the annihilation data some experimental assumptions are involved. In all
cases it is assumed that the absolute values of the polarisation of the left- and right-
handed state are the same and possible corrections have to be obtained from polarimeters.
If the polarisation is written as P = ±〈|P|〉 + δP The shift in the measured polarisation
using Ws in the case of electron polarisation only is given by ∆P/P = δP

Using the Blondel scheme with electron and positron polarisation the corresponding
errors are

∆Pe− = 1.0δPe− + 0.6δPe+

∆Pe+ = −0.5δPe− − 0.7δPe+
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for the high energy events and

∆Pe− = 2.4δPe− + 2.1δPe+

∆Pe+ = −1.7δPe− − 1.7δPe+

for the radiative return sample.
The corresponding corrections have to be obtained from polarimeters. This is possible

in a Compton polarimeter where the laser polarisation can be flipped easily. To assure
that the electron-laser luminosity does not depend on the laser polarisation, or to correct
for such effects, one should have a multichannel polarimeter with a large lever arm in the
analysing power.

If electron and positron polarisation is available, in the formulae for the effective po-
larisations and for the Blondel scheme products of the two polarisations appear so that
one has to understand the correlations between the electron and positron polarisation.
In principle there can be a correlation due to the depolarisation in the bunch. Studies
with CAIN [156], however, indicate that these correlations are small. Another source of
correlation can come from time dependencies or spatial correlations due to the beam de-
livery system. If half of the luminosity is taken with a polarisation 5% higher and the
other half 5% lower than average the polarisations obtained with the Blondel scheme are
off by around 0.25% affecting the effective polarisation by the same amount. Measur-
ing the polarisation with polarimeters would only result in a 0.16% error in the effective
polarisation.

Time correlations have to be tracked with polarimeters. Spacial correlations due to
the beam delivery system have to be obtained from simulations and should be minimised
already in the design.
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Chapter 5

Summary and Outlook

Le grand F I N A L E

92



Acknowledgements

93



Bibliography

[1] B. C. Allanach et al., in Proc. of the APS/DPF/DPB Summer Study on the Future of Particle
Physics (Snowmass 2001) ed. N. Graf, Eur. Phys. J. C 25 (2002) 113 [eConf C010630
(2001) P125] [hep-ph/0202233].

[2] C. Blochinger, H. Fraas, G. Moortgat-Pick and W. Porod, Eur. Phys. J. C 24 (2002) 297
[hep-ph/0201282].

[3] D.J. Summers, Phys. Lett. D 274, 1992, 209

[4] R. Hawkings and K. Moenig, EPJdirect C 8 (1999) 1.

[5] G. Alexander and E. Reinherz-Aronis,The Gain to Polarimetry and A(LR) Measurements
from a Polarised Positron Beam in TESLA, LC-PHSM-2003-032.

[6] S. Heinemeyer, Th. Mannel, G. Weiglein, hep-ph/9909538, LC Workshop, Sitges
1999; S. Heinemeyer, G. Weiglein, hep-ph/0012364, LCWS 2000, Chicago, Ocober
2000.

[7] J. Erler, S. Heinemeyer, W. Hollik, G. Weiglein and P. M. Zerwas, Phys. Lett. B 486
(2000) 125 [arXiv:hep-ph/0005024].

[8] R. Hawkings and K. Mönig, Eur. Phys. J. directC 1 (1999) 8 [arXiv:hep-ex/9910022].

[9] K. Mönig, private communication.

[10] [The LEP Higgs Working Group], Phys. Lett. B 565 (2003) 61 [arXiv:hep-ex/0306033].

[11] P. Wells, talk presented at HEP2003 Europhysics Conference, Aachen, July 2003.

[12] S. Heinemeyer, W. Hollik and G. Weiglein, Eur. Phys. J. C 9 (1999) 343 [arXiv:hep-
ph/9812472];
G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Eur. Phys. J. C 28
(2003) 133 [arXiv:hep-ph/0212020].

[13] S. Heinemeyer and G. Weiglein, JHEP 0210 (2002) 072 [arXiv:hep-ph/0209305].

[14] S. Heinemeyer, W. Hollik and G. Weiglein, Comput. Phys. Commun. 124 (2000) 76
[arXiv:hep-ph/9812320];
T. Hahn, S. Heinemeyer, W. Hollik and G. Weiglein, in preparation;
The code is obtainable at www.feynhiggs.de.

[15] T. Omori, KEK-PREPRINT-98-237 Presented at the 1st ACFA Workshop on Physics De-
tector at the Linear Collider, Beijing, China, 26-28 Nov 1998.

94



[16] S. Riemann, Fermion-Pair Production at a Linear Collider - A Sensitive Tool for New
Physics Searches, TESLA note LC-TH-2001-007.

[17] R. Casalbuoni et al., Z’ indication from new APV data in Cesium and searches at linear
colliders, TESLA note LC-TH-2000-006.

[18] T. Hahn, S. Heinemeyer and G. Weiglein, Nucl. Phys. B 652 (2003) 229 [arXiv:hep-
ph/0211204]; Nucl. Phys. Proc. Suppl. 116 (2003) 336 [arXiv:hep-ph/0211384].

[19] F. Franke and H. Fraas, Standard Model,” Int. J. Mod. Phys. A 12 (1997) 479
[arXiv:hep-ph/9512366] and references therein.

[20] F. Franke, H. Fraas and A. Bartl, Phys. Lett. B 336 (1994) 415 [arXiv:hep-ph/9408217].

[21] F. Franke and H. Fraas, Z. Phys. C 72 (1996) 309 [arXiv:hep-ph/9511275].

[22] U. Ellwanger and C. Hugonie, Eur. Phys. J. C 5 (1998) 723 [arXiv:hep-ph/9712300].

[23] S. Hesselbach, F. Franke and H. Fraas, Eur. Phys. J. C 23 (2002) 149 [arXiv:hep-
ph/0107080] and references therein.

[24] F. Franke and S. Hesselbach, Phys. Lett. B 526 (2002) 370 [arXiv:hep-ph/0111285].

[25] S. Hesselbach and F. Franke, arXiv:hep-ph/0210363.

[26] G. Moortgat-Pick, S. Hesselbach, F. Franke and H. Fraas, arXiv:hep-ph/9909549.

[27] S. Hesselbach, F. Franke and H. Fraas, arXiv:hep-ph/0003272.

[28] N. Ghodbane and H. U. Martyn, arXiv:hep-ph/0201233.

[29] B. C. Allanach et al., Eur. Phys. J. C 25 (2002) 113 [eConf C010630 (2001) P125]
[arXiv:hep-ph/0202233].

[30] B. de Carlos and J. R. Espinosa, Phys. Lett. B 407 (1997) 12 [arXiv:hep-ph/9705315].

[31] S. Y. Choi, J. Kalinowski, G. Moortgat-Pick and P. M. Zerwas, Eur. Phys. J. C 22 (2001)
563 [Addendum-ibid. C 23 (2002) 769] [arXiv:hep-ph/0108117].

[32] M. Heyssler, R. Rückl, H. Spiesberger, Proceedings of the LC–Workshop, Sitges 1999
and private communication with H. Spiesberger.

[33] H. E. Haber an G. L. Kane, Phys. Rep. 117 (1985) 75.

[34] TESLA Technical Design Report, Part III, eds. R.-D. Heuer, D. Miller, F. Richard and
P. Zerwas, [arXiv:hep-ph/0106315].

[35] Y. Kizukuri and N. Oshimo, Phys. Lett. B 249 (1990) 449.

[36] S. Y. Choi, H. S. Song and W. Y. Song, Phys. Rev. D 61 (2000) 075004.

[37] A. Bartl, H. Fraas, O. Kittel and W. Majerotto, [arXiv:hep-ph/0308141]; A. Bartl,
H. Fraas, O. Kittel and W. Majerotto, [arXiv:hep-ph/0308143].

95



[38] A. Bartl, T. Kernreiter, O. Kittel, [arXiv:hep-ph/0309340].

[39] L. J. Hall and J. Polchinski, Phys. Lett. B 152 (1989) 335.

[40] I. S. Altarev et al., Phys. Lett. B 276 (1992) 242; I. S. Altarev et al., Phys. Atom. Nucl.59
(1996) 1152 and Yad. Fiz. 59 N 7; E. D. Commins, S. B. Ross, D. DeMille, B. C. Regan,
Phys. Rev. A 50 (1994) 2960.

[41] G. Moortgat-Pick, H. Fraas, A. Bartl and W. Majerotto, Eur. Phys. J. C 9 (1999) 521;
Erratum-ibid. C 9 (1999) 549.

[42] G. Moortgat-Pick, in Proc. of the APS/DPF/DPB Summer Study on the Future of Par-
ticle Physics (Snowmass 2001) ed. N. Graf, eConf C010630, E3008 (2001) [arXiv:hep-
ph/0202082]; G. Moortgat-Pick, A. Bartl, H. Fraas and W. Majerotto, Eur. Phys. J. C
18 (2000) 379.

[43] S. Y. Choi, H. S. Song and W. Y. Song, Phys. Rev. D 61 (2000) 075004 [arXiv:hep-
ph/9907474].

[44] Y. Kizukuri and N. Oshimo, Phys. Lett. B 249 (1990) 449.

[45] G. Moortgat-Pick, H. Fraas, A. Bartl and W. Majerotto, Eur. Phys. J. C 9, 521 (1999)
[Erratum-ibid. C 9, 549 (1999)] [arXiv:hep-ph/9903220].

[46] A. Bartl, H. Fraas, O. Kittel and W. Majerotto, arXiv:hep-ph/0308141.

[47] E. Boos, H. U. Martyn, G. Moortgat-Pick, M. Sachwitz, A. Sherstnev and P. M. Zer-
was, Eur. Phys. J. C 30 (2003) 395 [arXiv:hep-ph/0303110];

[48] A. Bartl et al., Eur. Phys. J. direct C 2 (2000) 6.

[49] A. Bartl et al., Z. Phys. C 76 (1997) 549; H. Eberl, A. Bartl and W. Majerotto, Nucl.
Phys. B 472 (1996) 481; H. Eberl, S. Kraml and W. Majerotto, JHEP 9905 (1999) 016;
S. Kraml, arXiv:hep-ph/9903257.

[50] M. Berggren et al., arXiv:hep-ph/9911345.

[51] T. Abe, S. Chen, B. Dobos, T. Dorland, J. Goodson, J. Gray, A. Han, A. Martinez, U.
Nauenberg, J. Proulx, Positron Polarization and Supersymmetry Measurements

[52] Graham Wilson, LC-PHSM-2001-010

[53] L. Vacavant, I. Hinchcliffe, ATL-PHYS-2000-016, hep-ex/0005033.

[54] E. Eichten, K. Lane and M. E. Peskin, Phys. Rev. Lett. 50 (1983) 811;
R. Rückl, Phys. Lett. B 129 (1983) 363.

[55] A. A. Babich, P. Osland, A. A. Pankov and N. Paver, Phys. Lett. B 518 (2001) 128
[hep-ph/0107159].

[56] A. A. Babich, P. Osland, A. A. Pankov and N. Paver, LC Note LC-TH-2001-021 (2001),
hep-ph/0101150.

96



[57] A. A. Babich, P. Osland, A. A. Pankov and N. Paver, Phys. Lett. B 481 (2000) 263
[hep-ph/0003253].

[58] K. Flottmann, DESY-95-064;

[59] K. Fujii and T. Omori, KEK-PREPRINT-95-127.

[60] B. Schrempp, F. Schrempp, N. Wermes and D. Zeppenfeld, Nucl. Phys. B 296 (1988)
1.

[61] W.T. Eadie, D. Drijard, F.E. James, M. Roos, B. Sadoulet, Statistical methods in experi-
mental physics (American Elsevier, 1971).

[62] F. Cuypers and P. Gambino, Phys. Lett. B 388 (1996) 211 [hep-ph/9606391];
F. Cuypers, hep-ph/9611336.

[63] C. J. S. Damerell, D.J. Jackson, in Proceedings of the 1996 DPF/DPB Summer Study
on New Directions for High Energy Physics (Snowmass 96), Edited by D.G. Cassel, L.
Trindle Gennari, R.H. Siemann (SLAC, 1997) p. 442.

[64] A. A. Pankov and N. Paver, [hep-ph/0209058], to appear in Eur. Phys. J. C.

[65] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429 (1998) 263 [hep-
ph/9803315].

[66] For a review see, e.g., J. Hewett and M. Spiropulu, Ann. Rev. Nucl. Part. Sci. 52 (2002)
397 [hep-ph/0205106].

[67] J. L. Hewett, Phys. Rev. Lett. 82 (1999) 4765 [hep-ph/9811356].

[68] P. Osland, A. A. Pankov and N. Paver, [hep-ph/0304123], to be published in Phys.
Rev. D.

[69] T. G. Rizzo, Phys. Rev. D 59 (1999) 113004 [hep-ph/9811440].

[70] B. Ananthanarayan and S. D. Rindani, arXiv:hep-ph/0309260.

[71] G. V. Dass and G. G. Ross, Phys. Lett. B 57 (1975) 173; G. V. Dass and G. G. Ross,
Nucl. Phys. B 118 (1977) 284.

[72] K. Hagiwara, R. D. Peccei, D. Zeppenfeld and K. Hikasa, Nucl. Phys. B 282 (1987)
253.

[73] M. Diehl, O. Nachtmann and F. Nagel, Eur. Phys. J. C 27 (2003) 375 [arXiv:hep-
ph/0209229].

[74] ALEPH Collaboration, Eur. Phys. J. C 21 (2001) 423 [arXiv:hep-ex/0104034];
DELPHI Collaboration, Phys. Lett. B 459 (1999) 382;
L3 Collaboration, Phys. Lett. B 467 (1999) 171 [arXiv:hep-ex/9910008];
L3 Collaboration, Phys. Lett. B 487 (2000) 229 [arXiv:hep-ex/0007005];

97



[75] G. Abbiendi et al. [ OPAL Collaboration, Eur. Phys. J. C 19 (2001) 1 [arXiv:hep-
ex/0009022];
OPAL Collaboration, Eur. Phys. J. C 19 (2001) 229 [arXiv:hep-ex/0009021].

[76] M. Pohl and H. J. Schreiber, DESY-99-030

[77] R. . (. Brinkmann, G. . (. Materlik, J. . (. Rossbach and A. . (. Wagner, DESY-97-048

[78] F. Franco-Sollova, LC note.

[79] M. Diehl, O. Nachtmann and F. Nagel, arXiv:hep-ph/0306247.

[80] M. Diehl and O. Nachtmann, Z. Phys. C 62 (1994) 397.

[81] M. Diehl and O. Nachtmann, Eur. Phys. J. C 1 (1998) 177 [arXiv:hep-ph/9702208].

[82] W. Menges, A Study of Charged Current Triple Gauge Couplings at TESLA, LC-PHSM-
2001-022.
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