QCD Phenomenology

Mike Seymour University of Manchester/CERN PH-TH YETI '05 January 6th 2005

Tools of the Trade

- Fixed-order perturbation theory
- All-order perturbation theory
- 'Best of both'
- Non-perturbative fits and models
- Analysis tools

QCD Phenomenology – Why?

YETI '05 – 3

QCD Phenomenology – Why?

QCD Phenomenology – Why?

- Testing QCD
 - Again???
- Measuring α_s
 - Again???
- Testing our understanding of QCD
 - Perturbative calculations
 - Non-perturbative models
 - Perturbative/non-perturbative interface
- QCD as a tool
 - Electroweak measurements
 - Searches for new physics

Tools of the Trade

- Fixed-order perturbation theory
 - LO state of the art for high parton multiplicity highly automated
 - NLO up to five partons partly automated
 - NNLO two partons ($\sigma(e^+e^-)$, DIS, Drell-Yan)
 - Valid for infrared safe observables
- All-order perturbation theory
- 'Best of both'
- Non-perturbative fits and models
- Analysis tools

Higher Order Perturbation Theory – Why?

- α_s not so small need several orders for ~ % accuracy
- Renormalization/Factorization scales ⇒ LO perturbation theory not predictive

$$\sigma(s) = \int dx_1 f_i(x_1, \mu_F) dx_2 f_j(x_2, \mu_F) \sigma_{ij}(x_1 x_2 s, \mu_F, \mu_R; \alpha_s(\mu_R))$$

- Higher orders can be enhanced by large coefficients
- 1 parton = 1 jet ⇔ no dependence on jet definition

QCD Phenomenology

Mike Seymour

Higher Order Calculations – Why So Hard?

1) Loop integrals for virtual matrix elements

- Get harder with increasing number of legs
- State of the art: one-loop pentagon, two-loop box

Some progress with automation?

Higher Order Calculations – Why So Hard?

2) Numerical cancellation of infrared poles

- Real and virtual emission each divergent in infrared
- \rightarrow Divergences must be extracted analytically
- Must be integrated over different phase spaces
- Observable arbitrarily complicated
- \rightarrow Must be integrated numerically

Monte Carlo Calculations of NLO QCD

Two separate divergent integrals:

$$\sigma_{NLO} = \int_{m+1} d\sigma^R + \int_m d\sigma^V$$

Must combine before numerical integration.

Jet definition could be arbitrarily complicated.

 $d\sigma^R = d\Pi_{m+1} |\mathcal{M}_{m+1}|^2 F^J_{m+1}(p_1, \dots, p_{m+1})$ How to combine without knowing F^J ?

Subtraction Method

• Seek to define an approximate cross section that matches all the real singularities

$$\sigma^{NLO} = \int_{m+1} \left[d\sigma^R - d\sigma^A \right] + \int_{m+1} d\sigma^A + \int_m d\sigma^V$$

• but is feasible to integrate analytically

$$\sigma^{NLO} = \int_{m+1} \left[\left(d\sigma^R \right)_{\epsilon=0} - \left(d\sigma^A \right)_{\epsilon=0} \right] + \int_m \left[d\sigma^V + \int_1 d\sigma^A \right]_{\epsilon=0}$$

• To avoid dependence on unknown F^J , approximate cross section must project event kinematics onto an m-parton configuration and calculate F^J from that.

$$\stackrel{\bullet}{\underset{\text{kin}}{\to}} m_{H} d\sigma^{A} = d\Pi_{m+1} |\mathcal{M}_{m+1}^{approx}|^{2} F_{m}^{J}(\tilde{p}_{1}, \dots, \tilde{p}_{m}).$$
^{erent}
urbitrarily large weights $\tilde{p}_{i} = \tilde{p}_{i}(p_{1}, \dots, p_{m+1})$

QCD Phenomenology

Mike Seymour

Implementations

- NLOJET++ (Zoltan Nagy) for pure jet processes
 - 1-, 2- and 3-jet production
- MCFM (John Campbell and Keith Ellis) for everything else
 - Monte Carlo for FeMtobarn processes

				-		42	
	a/ > . a/ >		nproc	$f(p_1) + f(p_2) \rightarrow \dots$	Order	43	
nproc	$f(p_1) + f(p_2) \rightarrow \dots$	Order	151	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b(p_6)) + e^-(p_7) + \bar{\nu}(p_8))$	LO	44	
61	$W^+(\to \nu(p_3) + e^+(p_4)) + W^-(\to e^-(p_5) + \bar{\nu}(p_6))$	NLO	152	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{b}(p_6)) + q(p_7) + \bar{q}(p_8))$	LO	45	
62	$W^+(\to \nu(p_3) + e^+(p_4)) + W^-(\to q(p_5) + \bar{q}(p_6))$	NLO	156	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + b(p_6)) + q(p_9)$	LO	48	
63	$W^+(\rightarrow q(p_3) + \bar{q}(p_4)) + W^-(\rightarrow e^-(p_5) + \bar{\nu}(p_6))$	NLO	157	$t\bar{t}$ [for total Xsect]	NLO	49	
64	$W^+(\rightarrow \nu(p_3) + e^+(p_4)) + W^-(\rightarrow e^-(p_5) + \bar{\nu}(p_6))$ [no pol]	NLO	158	$b\bar{b}$ [for total Xsect]	NLO	50	
71	$W^+(\rightarrow \nu(p_3) + \mu^+(p_4)) + Z^0(\rightarrow e^-(p_5) + e^+(p_6))$	NLO	159	cc [for total Xsect]	NLO	51	
72	$W^+(\rightarrow \nu(p_3) + \mu^+(p_4)) + Z^0(\rightarrow \nu_e(p_5) + \bar{\nu}_e(p_6))$	NLO	161	$t(\rightarrow \nu(p_2) + e^+(p_4) + b(p_5)) + q(p_6)$ [t-channel]	NLO	52	
73	$W^+(\rightarrow \nu(p_3) + \mu^+(p_4)) + Z^0(\rightarrow b(p_5) + \bar{b}(p_6))$	NLO	162	$t(-\nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)$ [decay]	NLO	53	
76	$W^{-}(\rightarrow \mu^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\rightarrow e^{-}(p_5) + e^{+}(p_6))$	NLO	166	$\bar{t}(\to e^-(p_2) + \bar{\nu}(p_4) + \bar{b}(p_5)) + q(p_6)$ [t-channel]	NLO	56	
77	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\rightarrow \nu(p_5) + \bar{\nu}(p_6))$	NLO	167	$\bar{t}(-e^{-}(p_2) + \bar{v}(p_4) + \bar{b}(p_5)) + q(p_6)$ [decay]	NLO		
78	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + Z^{0}(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO	171	$\frac{t(-\nu(p_3) + v(p_4) + v(p_5)) + \bar{t}(p_6)}{t(-\nu(p_3) + e^+(p_4) + b(p_6)) + \bar{b}(p_6))} $ [s-channe]]	NLO	nproc	f(p)
81	$Z^{0}(\rightarrow \mu^{-}(p_{3}) + \mu^{+}(p_{4})) + Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6}))$	NLO	172	$t(-\nu(p_3) + e^+(p_4) + b(p_5)) + \bar{b}(p_6))$ [decay]	NLO	261	Z ⁰ (
82	$Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4}))) + Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6}))$	NLO	176	$\bar{t}(\to e^-(p_2) + \bar{v}(p_4) + \bar{b}(p_5)) + b(p_6))$ [s-channel]	NLO	262	Z^0
83	$Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6})) + Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4}))$	NLO	177	$\bar{t}(\to e^-(p_2) + \bar{v}(p_4) + \bar{b}(p_6)) + b(p_6))$ [decay]	NLO	263	Z^0
84	$Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4}))) + Z^{0}(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO	180	$\frac{V(-1-(p_3)+V(p_4)+V(p_3))+V(p_6)}{W^-(\to e^-(p_3)+\bar{\nu}(p_4))+t(p_6)}$	LO	264	Z^0
86	$Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6})) + Z^{0}(\rightarrow \mu^{-}(p_{3}) + \mu^{+}(p_{4})) \text{ [no } \gamma^{*}]$	NLO	181	$W^{-}(\rightarrow e^{-}(p_{2}) + \bar{\nu}(p_{4})) + t(\nu(p_{5}) + e^{+}(p_{6}) + b(p_{7}))$	LO	266	Z^0
87	$Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6})) + Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4}))) \text{ [no } \gamma^{*}]$	NLO	185	$W^+(\rightarrow \nu(p_2) + e^+(p_4)) + \bar{t}(p_5) + \bar{v}(p_5) + \bar{v}(p_7))$	LO	267	Z^0
88	$Z^{0}(\rightarrow e^{-}(p_{5}) + e^{+}(p_{6})) + Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4})) \text{ [no } \gamma^{*}]$	NLO	186	$W^+(\rightarrow \nu(p_3) + e^+(p_4)) + \bar{t}(e^-(p_5) + \bar{\nu}(p_6) + \bar{b}(p_7))$	LO	271	H
89	$Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4}))) + Z^{0}(\rightarrow b(p_{5}) + \bar{b}(p_{6})) \text{ [no } \gamma^{*}]$	NLO	190	$t(p_3) + \bar{t}(p_4) + H(p_5)$	LO	272	$H(\cdot$
91	$W^+(\rightarrow \nu(p_3) + e^+(p_4)) + H(\rightarrow b(p_5) + b(p_6))$	NLO	191	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(p_9 + p_{10})$	LO	311	f(p
96	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + H(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO	196	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + Z(e^-(p_9), e^+(p_{10}))$	LO	316	f(p
101	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + H(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO	197	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + Z(b(p_9), \bar{b}(p_{10}))$	LO	321	f(p
102	$Z^{0}(\to 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4}))) + H(\to b(p_{5}) + \bar{b}(p_{6}))$	NLO	201	$H(\to b(p_3) + b(p_4)) + f(p_5)$ [full mt dep.]	LO	326	f(p
103	$Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4})) + H(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO	202	$H(\to \tau^{-}(p_{3}) + \tau^{+}(p_{4})) + f(p_{5})$ [full mt dep.]	LO	331	W^+
111	$H(\rightarrow b(p_3) + \bar{b}(p_4))$	NLO	203	$H(\to b(p_3) + \bar{b}(p_4)) + f(p_5)$	NLO	336	W^-
112	$H(\rightarrow \tau^-(p_3) + \tau^+(p_4))$	NLO	204	$H(\rightarrow \tau^{-}(p_3) + \tau^{+}(p_4)) + f(p_5)$	NLO	902	[C!
113	$H(\rightarrow W^+(\nu(p_3) + e^+(p_4)) + W^-(e^-(p_5) + \bar{\nu}(p_6)))$	NLO	206	$A(\rightarrow b(p_3) + \overline{b}(p_4)) + f(p_5)$ [full mt dep.]	LO	903	[C]
114	$H(\rightarrow Z^{0}(\mu^{-}(p_{3}) + \mu^{+}(p_{4})) + Z^{0}(e^{-}(p_{5}) + e^{+}(p_{6}))$	NLO	207	$A(\to \tau^{-}(p_3) + \tau^{+}(p_4)) + f(p_5)$ [full mt dep.]	LO	904	[C]
115	$H(\rightarrow Z^{0}(3 \times (\nu(p_{3}) + \bar{\nu}(p_{4}))) + Z^{0}(e^{-}(p_{5}) + e^{+}(p_{6}))$	NLO	211	$H(\to b(p_3) + \bar{b}(p_4)) + f(p_5) + f(p_6)$ [WBF]	NLO	905	[C!
116	$H(\rightarrow Z^{0}(\mu^{-}(p_{3}) + \mu^{+}(p_{4})) + Z^{0}(b(p_{5}) + \bar{b}(p_{6}))$	NLO	212	$H(\to \tau^{-}(p_3) + \tau^{+}(p_4)) + f(p_5) + f(p_6)$ [WBF]	NLO	906	[C]
141	$H(\rightarrow b(p_3) + \bar{b}(p_4)) + b(p_5)(+g(p_6))$	NLO	216	$H(\to b(p_3) + \bar{b}(p_4)) + f(p_5) + f(p_6) + f(p_7)$ [WBF+jet]	NLO	908	[C
142	$H(\rightarrow b(p_3) + \bar{b}(p_4)) + \bar{b}(p_5)(+b(p_6))$	NLO	217	$H(\to \tau^{-}(p_3) + \tau^{+}(p_4)) + f(p_5) + f(p_6) + f(p_7)$ [WBF+jet]	NLO	909	[C
143	$H(\rightarrow b(p_3) + \overline{b}(p_4)) + b(p_5) + \overline{b}(p_6)$ [both observed]	NLO	221	$\tau^-(\to e^-(p_3) + \bar{\nu}_e(p_4) + \nu_\tau(p_5)) + \tau^+(\to \bar{\nu}_\tau(p_6) + \nu_e(p_7) + e^+(p_8))$	LO	910	[C]

nproc $f(p_1) + f(p_2) \rightarrow$ Order NLO $W^+(\to \nu(p_3) + e^+(p_4))$ $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4))$ NLO $W^+(\to \nu(p_3) + e^+(p_4)) + f(p_5)$ 11 NLO 12 $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + \gamma(p_5)$ NLO 13 $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + \bar{c}(p_5)$ LO 14 $W^+(\to \nu(p_3) + e^+(p_4)) + \bar{c}(p_5)$ [massless] NLO 16 $W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + f(p_{5})$ NLO 17 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + \gamma(p_5)$ NLO $W^{-}(\to e^{-}(p_{3}) + \bar{\nu}(p_{4})) + c(p_{5})$ 18LO 19 $W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + c(p_5)$ [massless] NLO 20 $W^+(\to \nu(p_3) + e^+(p_4)) + b(p_5) + \bar{b}(p_6)$ [massive] LO 21 $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + b(p_5) + \bar{b}(p_6)$ NLO 22 $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + f(p_5) + f(p_6)$ NLO 23 $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + f(p_5) + f(p_6) + f(p_7)$ LO 24 $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + b(p_5) + \bar{b}(p_6) + f(p_7)$ LO $W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$ [massive] LO 25 $W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$ NLO $W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6)$ NLO $W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + f(p_{5}) + f(p_{6}) + f(p_{7})$ LO $W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + b(p_{5}) + \bar{b}(p_{6}) + f(p_{7})$ LO $Z^0(\to e^-(p_3) + e^+(p_4))$ NLO 39 $Z^0(\rightarrow 3 \times (\nu(p_3) + \overline{\nu}(p_4)))$ NLO $Z^0(\rightarrow b(p_3) + \overline{b}(p_4))$ 33 NLO $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + f(p_{5})$ 41 NLO NLO $Z_0(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4))) - [\text{sum over } 3 \nu] + f(p_5)$ NLO $Z^0(\rightarrow b(p_3) + \bar{b}(p_4)) + f(p_5)$ NLO $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + f(p_{5}) + f(p_{6})$ $Z^{0}(\to e^{-}(p_{3}) + e^{+}(p_{4})) + f(p_{5}) + f(p_{6}) + f(p_{7})$ LO $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5})$ NLO NLO $Z^{0}(\rightarrow 3 \times (\nu(p_3) + \overline{\nu}(p_4))) - [\text{sum over } 3 \nu] + \gamma(p_5)$ $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + b(p_{6})$ [massive] LO $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$ NLO $Z_0(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4))) + b(p_5) + \bar{b}(p_6)$ NLO NLO $Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$ $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + \overline{b}(p_{6}) + f(p_{7})$ LO p_1) + $f(p_2) \rightarrow ...$ Order $(\rightarrow e^{-}(p_3) + e^{+}(p_4)) + b(p_5)$ $(\rightarrow e^{-}(p_3) + e^{+}(p_4)) + c(p_5)$ NLO $(\rightarrow e^{-}(p_3) + e^{+}(p_4)) + \bar{b}(p_5) + b(p_6)$ [1 b-tag] NLO $(\rightarrow e^{-}(p_3) + e^{+}(p_4)) + \bar{c}(p_5) + c(p_6)$ [1 c-tag] NLO $(\rightarrow e^{-}(p_3) + e^{+}(p_4)) + b(p_5)(+\bar{b}(p_6))$ NLO NLO $\rightarrow e^{-}(p_3) + e^{+}(p_4)) + c(p_5)(+\bar{c}(p_6))$ $b(p_3) + \overline{b}(p_4)) + f(p_5) + f(p_6)$ [in heavy top limit] LO LO $(-(p_3) + \tau^+(p_4)) + f(p_5) + f(p_6)$ [in heavy top limit] $(10)^{+} b(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4)) + b(p_5) + f(p_6)$ LO $p_1) + b(p_2) \to W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + b(p_5) + f(p_6)$ LO $(p_1) + b(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4)) + c(p_5) + f(p_6)$ LO $(p_1) + b(p_2) \to W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + c(p_5) + f(p_6)$ LO $(\rightarrow \nu(p_3) + e^+(p_4)) + c(p_5) + f(p_6)$ [c-s interaction] LO $(\rightarrow e^-(p_3) + \overline{\nu}(p_4)) + c(p_5) + f(p_6)$ [c-s interaction] LO heck of Volume of 2 particle phase space heck of Volume of 3 particle phase space] heck of Volume of 4 particle phase space heck of Volume of 5 particle phase space heck of Volume of 6 particle phase space] heck of Volume of 8 particle phase space heck of Volume of 4 particle massive phase space heck of Volume of 3 particle (2 massive) phase space

QCD Phenomenology

Mike Seymour

Tools of the Trade

- Fixed-order perturbation theory
- All-order perturbation theory
 - Identification of large logarithmic terms at every order
 - Evolution (Altarelli–Parisi , BFKL)
 - Exponentiation and resummation (Sudakov)
 - Only possible for well-defined observables
 - Numerical resummation (parton showers)
- 'Best of both'
- Non-perturbative fits and models
- Analysis tools

All Orders Resummation

- For cross sections that force us close to phase space boundary, real–virtual cancellation spoiled → large logarithms
- Cross sections can be calculated by recurrence relations or evolution equations \rightarrow multiple emissions factorize
- Must ensure observable does not disturb factorization
- \rightarrow Possible only for limited set of observables
- Rule of thumb: $P(\text{no emission}) = \exp\{-P_0(\text{emission})\}\$ (Sudakov form factor) (exponentiation)

eg Thrust Distribution

- Thrust \rightarrow 1 \Rightarrow very two-jet-like events
- Suppression of radiation harder than 1–T
- Leading order probability of radiation harder than 1–T: $C_F \frac{\alpha_s}{2\pi} 2L^2$ ($L = \log 1 - T$)
- \Rightarrow all orders probability for thrust above T

$$e^{-C_F \frac{\alpha_s}{2\pi} 2L^2}$$

- State of the art:
 - next-to-leading log generalized exponentiation:

$$(1 + C\alpha_s)e^{-Lg_1(\alpha_s L) + g_2(\alpha_s L)}$$
Leading log: sums
terms like $\alpha_s^n L^{n+1}$
Next-to-leading log:
sums terms like $\alpha_s^n L^n$

QCD Phenomenology

Effect of resummation •

M. Dasgupta and G. Salam, J. Phys. G30 (2004) R143

• Resummation alone not enough to fit data also need non-perturbative power corrections (shape functions)

E. Gardi and J. Rathsman, Nucl. Phys. B609 (2001) 123

Event Shapes in hadron-hadron collisions

- In their early days
 - 'transverse thrust'

QCD Phenomenology

Mike Seymour

YETI '05 - 18

Tools of the Trade

- Fixed-order perturbation theory
- All-order perturbation theory
 - Identification of large logarithmic terms at every order
 - Evolution (Altarelli–Parisi, BFKL)
 - Exponentiation and resummation (Sudakov)
 - Only possible for well-defined observables
 - Numerical resummation (parton showers)
- 'Best of both'
 - Parton showers with matrix element matching
- Non-perturbative fits and models
- Analysis tools

Parton Showers

- Numerical attempt to calculate all exclusive final states \rightarrow all orders calculation for any observable
- Must introduce resolution criterion: large logs \rightarrow evolution driven by Sudakov form factor

Matrix element matching

- Parton shower accurate in soft and collinear limits model dependent extrapolation to hard emission
- Fixed order accurate for hard well separated partons divergent in soft and collinear regions
- \rightarrow need to combine

Tools of the Trade

- Fixed-order perturbation theory
- All-order perturbation theory
- 'Best of both'
- Non-perturbative fits and models
 - Parton distribution functions
 - Fragmentation functions
 - Hadronization models
 - Underlying event models
- Analysis tools

Parton Distribution Functions

Cross section for deep inelastic scattering:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[(1+(1-y)^2)F_2(x,Q^2) -y^2F_L(x,Q^2) \Big]$$

- Parton model: $F_2(x,Q^2) = \sum_{\alpha} e_q^2 x f_q(x)$
- Collinear factorization: Q^2 -dep.
- DGLAP evolution:

$$f_q(x,Q^2) = \frac{\alpha_s}{2\pi} \log \frac{Q^2}{Q_0^2} \int_x^1 \frac{dy}{y} f_q(y,Q_0^2) P_{qq}\left(\frac{x}{y}\right) + \alpha_s^2 \log^2 \int \int + \dots$$

 pdf at some x and Q² point depends on pdf at all lower Q² and higher x values

Parton Distribution Functions

Cross section for deep inelastic scattering:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[(1+(1-y)^2)F_2(x,Q^2) \\ -y^2F_L(x,Q^2) \Big]$$

- Parton model: $F_2(x,Q^2) = \sum_{q} e_q^2 x f_q(x)$
- Collinear factorization: Q^2 -dep.
- DGLAP evolution:

$$f_q(x,Q^2) = \frac{\alpha_s}{2\pi} \log \frac{Q^2}{Q_0^2} \int_x^1 \frac{dy}{y} f_q(y,Q_0^2) P_{qq}\left(\frac{x}{y}\right)$$
$$+ \alpha_s^2 \log^2 + \dots$$

 pdf at some x and Q² point depends on pdf at all lower Q² and higher x values

QCD Phenomenology

Mike Seymour

Global Fits

- State of the art: NLO cross sections with NLO evolution
 - Deep Inelastic Scattering (NNLO starting to be used)
 - electron/positron/neutrino/antineutrino
 - neutral current/charged current
 - proton/deuterium/nuclear targets
 - charm-tagged final states
 - Drell-Yan production (hh \rightarrow ll+X)
 - fixed target (virtual photon)
 - W/Z production and forward/backward asymmetry
 - Tevatron high– E_T jet data
 - rapidity-dependence crucial
 - cf previous high– E_T excess

Global Fits

- State of the art: NLO cross sections with NLO evolution
- Global fits are reperformed \sim once every two years
 - Martin, Roberts, Stirling and Thorne (MRST)
 - a Coordinated Theoretical and Experimental project for QCD (CTEQ)
- pdfs now come with uncertainties
 - propagated from experimental errors
 - uncertainties due to theoretical assumptions?

- Valence quarks very well known at intermediate x
- Gluons and sea quarks less so
- All poor at large x

Drell-Yan Production in p-p

- Global fits dominated by HERA data, but don't forget fixed target DIS and Drell–Yan
- Best way to measure sea quark distributions
- Separate d and u shapes
- Fermilab E866/NuSea experiment

QCD Phenomenology

Isospin Violation in Valence Distributions

• Isospin $\Rightarrow f_{u/p}(x,Q^2) = f_{d/n}(x,Q^2)$ etc

Variation of γ^2 with isospin violation parameters

- Models of explicit isospin violation at low $Q^2 \rightarrow small$
- Global fit (MRST) $\Rightarrow \sim 0.5\%$ violation in momentum sum

A.D.Martin, R.G.Roberts, W.J.Stirling and R.S.Thorne, hep-ph/0308087

Isospin Violation in Valence Distributions

- Isospin $\Rightarrow f_{u/p}(x,Q^2) = f_{d/n}(x,Q^2)$ etc
- Models of explicit isospin violation at low $Q^2 \rightarrow small$
- Global fit (MRST) $\Rightarrow \sim 0.5\%$ violation in momentum sum
- QED effects in evolution equation ⇒ u quarks evolve faster than d quarks
- Next MRST set will include $f_{\gamma/p}$ and hence this source of isospin violation...
- ⇒ Important to have data on deuterium (isoscalar) targets (see later...)

Strange–Antistrange Asymmetry

- Strange quark distribution best measured from CC charm production, eg v_{μ} +s $\rightarrow \mu^{-}$ +c (CCFR+NuTeV)
- CTEQ fits (Kretzer et al hep-ph/0312322) allow $s(x) \neq \bar{s}(x)$

Strange–Antistrange Asymmetry

- Strange quark distribution best measured from CC charm production, eg v_µ+s \rightarrow µ⁻+c (CCFR+NuTeV)
- CTEQ fits (Kretzer et al hep-ph/0312322) allow $s(x) \neq \bar{s}(x)$
- Results on x[s(x)-s(x)] stable >0
- \Rightarrow important to have sign-selected data

- NuTeV $sin^2\theta_w$ measurement (from charged/neutral current v DIS) relies on these effects being small
- $\sin^2\theta_w = (1 m_w^2 / m_z^2) \Rightarrow m_w$ measurement

Tools of the Trade

- Fixed-order perturbation theory
- All-order perturbation theory
- 'Best of both'
- Non-perturbative fits and models
 - Parton distribution functions
 - Fragmentation functions
 - Hadronization models
 - Underlying event models
- Analysis tools

What do we mean by the Underlying Event?

"Everything except the hard process"

but...

- initial state radiation
- factorization scale
- parton distribution functions
- parton evolution
- \rightarrow underlying event model integral part of event model

QCD Phenomenology

Mike Seymour

Why should we be interested?

 QCD
 Connection with: diffraction saturation confinement total cross section
 Can we predict/understand the properties of hadrons? 2. ExperimentsOccupancyPile-upBackgrounds

Why should we be interested?

2. ExperimentsOccupancyPile-upBackgrounds

3. Physics
Jet cross sections
Mass reconstruction
Rapidity gaps/jet vetoes
E_{miss} reconstruction
Photon/lepton isolation
.

"Don't worry, we will measure and subtract it" But... fluctuations and correlations crucial

Why should we be interested?

1. QCD

Connection with:

- diffraction
- saturation
- confinement
- total cross section
- Can we predict/understand the properties of hadrons?
- "Don't worry, we will measure and subtract it"
- But... fluctuations and correlations crucial

2. Experiesents
 Detectpasesections
 Missipeconstruction
 Bapitoitougaps/jet vetoes
 E_{miss} reconstruction
 Photon/lepton isolation

Fluctuations and correlations

Steep distribution ⇒ small sideways shift = large vertical

Rare fluctuations can have a huge influence

 \Rightarrow corrections depend on physics process

How do we Measure Underlying Event?

• "Transverse" region of two-jet events

http://www.phys.ufl.edu/~rfield/cdf/chgjet/chgjet_intro.html

QCD Phenomenology

Mike Seymour

HERWIG's Soft Underlying Event model

G.Marchesini & B.R.Webber, PRD38(1988)3419

Compare underlying event with 'minimum bias' collision

Parameterization of (UA5) data + model of energy-dependence

Multiparton Interactions

- Assume p–p collision \approx local instantaneous sampling of two disks of partons
- \rightarrow Can have several perturbative scatters within one event
- PYTHIA and Jimmy (add-on for HERWIG)
- Low p_t scatters \rightarrow underlying event

Proton Radius parameter within Jimmy

I.Borozan, PhD thesis, unpublished

- Increasing μ² to 2 GeV² (i.e. decreasing proton radius by 40%) with ptmin=3 GeV gives
- ~ perfect description of Tevatron data...

Tools of the Trade

- Fixed-order perturbation theory
- All-order perturbation theory
- 'Best of both'
- Non-perturbative fits and models
- Analysis tools
 - Event shapes
 - Jet algorithms
 - 'Event definitions'

Jet Algorithms

• Leading order: a parton is a jet

• Need an algorithmic jet definition

Mike Seymour

Jet Algorithms

Cone algorithm

Cluster algorithm

Depends on energy flow relative to cone radius R

Depends on separation of subjets relative to cutoff R

QCD Phenomenology

Mike Seymour

Jet Algorithms

- Cone vs cluster algorithm MHS, Z.Phys.C62(1994)127
- Top mass reconstruction as a test case

• Update in progress (Chris Tevlin, ATLAS student)

Summary

- Every measurement in a hadron collider involves doing QCD phenomenology!
- Most involve a long chain of corrections
 - higher orders
 - parton distribution functions
 - jet algorithm
 - hadronization
 - underlying event
 - to connect measurement to physics
- Always ask how well these corrections are known:
 - how much am I relying on QCD phenomenology?
 - how well understood is it?