Electroweak Precision Physics

Georg Weiglein

IPPP Durham

Durham, 01/2005

- 1. Introduction
- 2. Electroweak precision observables
- 3. Precision tests: Standard Model and Supersymmetry
- 4. Conclusions

1. Introduction

Electroweak precision measurements:

• • •

$M_{\rm W}[{ m GeV}]$	=	80.425 ± 0.034	0.04%
$\sin^2 \theta_{ m eff}^{ m lept}$	=	0.23150 ± 0.00016	0.07%
$\Gamma_{Z}[{\rm GeV}]$	=	2.4952 ± 0.0023	0.09%
$M_{\rm Z}[{ m GeV}]$	=	91.1875 ± 0.0021	0.002%
$G_{\mu}[\mathrm{GeV}^{-2}]$	—	$1.16637(1)10^{-5}$	0.0009%
$m_{ m t}[{ m GeV}]$	—	178.0 ± 4.3	2.4%

1. Introduction

Electroweak precision measurements:

$M_{\rm W}[{ m GeV}]$	=	80.425 ± 0.034	0.04%
$\sin^2 heta_{ m eff}^{ m lept}$	=	0.23150 ± 0.00016	0.07%
$\Gamma_{\rm Z}[{\rm GeV}]$	=	2.4952 ± 0.0023	0.09%
$M_{\rm Z}[{ m GeV}]$	=	91.1875 ± 0.0021	0.002%
$G_{\mu}[\mathrm{GeV}^{-2}]$	=	$1.16637(1)10^{-5}$	0.0009%
$m_{\rm t}[{ m GeV}]$	=	178.0 ± 4.3	2.4%

Quantum effects of the theory:

. . .

Loop corr. to "pseudo-observables" M_W , $\sin^2 \theta_{eff}$, ...: ~ $\mathcal{O}(1\%)$

1. Introduction

Electroweak precision measurements:

$M_{\rm W}[{ m GeV}]$	=	80.425 ± 0.034	0.04%
$\sin^2 heta_{ m eff}^{ m lept}$	=	0.23150 ± 0.00016	0.07%
$\Gamma_{\rm Z}[{\rm GeV}]$	=	2.4952 ± 0.0023	0.09%
$M_{\rm Z}[{ m GeV}]$	=	91.1875 ± 0.0021	0.002%
$G_{\mu}[\mathrm{GeV}^{-2}]$	=	$1.16637(1)10^{-5}$	0.0009%
$m_{ m t}[{ m GeV}]$	=	178.0 ± 4.3	2.4%

Quantum effects of the theory:

. . .

Loop corr. to "pseudo-observables" M_W , $\sin^2 \theta_{eff}$, ...: ~ $\mathcal{O}(1\%)$

 \Rightarrow EW prec. measurements test quantum effects of the theory

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.2

Comparison of electroweak precision data with theory predictions:

EW precision data: $M_{\rm Z}, M_{\rm W}, \sin^2 \theta_{\rm eff}^{\rm lept}, \dots$

Theory: SM, MSSM, ...

Test of theory at quantum level: sensitivity to loop corrections

Indirect det. of m_t from precision data: $m_t = 180.3^{+11.7}_{-9.2}$ GeV

Direct measurement: $m_{\rm t} = 178.0 \pm 4.3 \,\, {\rm GeV}$

Indirect det. of m_t from precision data: $m_t = 180.3^{+11.7}_{-9.2}$ GeV

Direct measurement: $m_{\rm t} = 178.0 \pm 4.3 \,\, {\rm GeV}$

Leading corrections to precision observables:

 $\sim m_{\rm t}^2$ $\sim \ln M_{\rm H}$

Indirect det. of m_t from precision data: $m_t = 180.3^{+11.7}_{-9.2}$ GeV

```
Direct measurement: m_{\rm t} = 178.0 \pm 4.3 \,\, {\rm GeV}
```

Leading corrections to precision observables:

 $\sim m_{\rm t}^2$ $\sim \ln M_{\rm H}$

Very high accuracy of measurements and theoretical predictions needed

Indirect det. of m_t from precision data: $m_t = 180.3^{+11.7}_{-9.2}$ GeV

```
Direct measurement: m_{\rm t} = 178.0 \pm 4.3 \,\, {\rm GeV}
```

Leading corrections to precision observables:

 $\sim m_{\rm t}^2$ $\sim \ln M_{\rm H}$

Very high accuracy of measurements and theoretical predictions needed

Theoretical uncertainties:

- unknown higher-order corrections
- experimental error of input parameters: m_t , $\Delta \alpha_{had}$, ...

Observables vs. "pseudo-observables":

Couplings, masses, mixing angles, etc. are not (directly) physical observables \Rightarrow "pseudo-observables"

Actual observables: σ , BRs, asymmetries, ...

Need deconvolution procedure (unfolding) to determine masses, partial widths, etc. from measured cross sections

⇒ pseudo-observables are not strictly model-independent

Observables vs. "pseudo-observables":

Couplings, masses, mixing angles, etc. are not (directly) physical observables \Rightarrow "pseudo-observables"

Actual observables: σ , BRs, asymmetries, ...

Need deconvolution procedure (unfolding) to determine masses, partial widths, etc. from measured cross sections

⇒ pseudo-observables are not strictly model-independent

What is a suitable definition of model parameters?

need some compromise between

- simple interpretation within given model
- model independence

Experimental determination of model parameters (masses, couplings, ...):

Particle masses: relatively small model dependence

Experimental determination of model parameters (masses, couplings, ...):

Particle masses: relatively small model dependence

⇒ The experimental value of M_Z (slightly) depends on the value of the SM Higgs mass $(\delta M_Z = \pm 0.2 \text{ MeV for } 100 \text{ GeV} \le M_H \le 1 \text{ TeV})$

Couplings, mixing angles, etc.: relatively large model dependence

Sensitivity of different (pseudo-)observables to the Higgs mass in the SM

 \Rightarrow highest sensitivity from $\sin^2 \theta_{\text{eff}}$ and M_{W}

Comparison of current and anticipated future experimental errors

Present errors vs. Run II of Tevatron, LHC, and ILC with and without low-energy running mode (GigaZ):

	now	Tevatron	LHC	ILC	GigaZ
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	16		14–20		1.3
$\delta M_{ m W}$ [MeV]	34	20	15	10	7
$\delta m_{ m t}$ [GeV]	4.3	2.5	1–2	0.1	0.1
$\delta m_{ m h}$ [MeV]			200	50	50

 \Rightarrow Large improvement at next generation of colliders

2. Electroweak precision observables

Sensitivity to quantum effects (loop corrections) of new physics:

• Precision measurements resolve %-level loop effects: $M_{\rm W}, \sin^2 \theta_{\rm eff}, \Gamma_{\rm Z}, \ldots$

2. Electroweak precision observables

Sensitivity to quantum effects (loop corrections) of new physics:

- Precision measurements resolve %-level loop effects: $M_{\rm W}, \sin^2 \theta_{\rm eff}, \Gamma_{\rm Z}, \ldots$
- Loop-induced processes \Leftrightarrow new physics contribution doesn't compete with large SM lowest-order prediction: $(g-2)_{\mu}, b \rightarrow s\gamma, B_{\rm s} \rightarrow \mu^{+}\mu^{-}, {\rm EDMs}, \ldots$

2. Electroweak precision observables

Sensitivity to quantum effects (loop corrections) of new physics:

- Precision measurements resolve %-level loop effects: $M_{\rm W}, \sin^2 \theta_{\rm eff}, \Gamma_{\rm Z}, \ldots$
- Loop-induced processes ⇔ new physics contribution doesn't compete with large SM lowest-order prediction: $(g-2)_{\mu}, b → s\gamma, B_s → \mu^+ \mu^-, EDMs, ...$
- Future precision measurements, possibly very large loop effects: $m_{\rm h}$, other Higgs-sector observables

Theoretical predictions for $M_{ m W}$, $\sin^2 heta_{ m eff}$:

Comparison of prediction for muon decay with experiment (Fermi constant G_{μ})

 \Rightarrow Theo. prediction for $M_{\rm W}$ in terms of $M_{\rm Z}$, α , G_{μ} , $\Delta r(m_{\rm t}, M_{\rm H}, \ldots)$

Theoretical predictions for $M_{ m W}$, $\sin^2 heta_{ m eff}$:

Comparison of prediction for muon decay with experiment (Fermi constant G_{μ})

 \Rightarrow Theo. prediction for $M_{\rm W}$ in terms of $M_{\rm Z}$, α , G_{μ} , $\Delta r(m_{\rm t}, M_{\rm H}, \ldots)$

Effective couplings at the Z resonance:

$$\Rightarrow \quad \sin^2 \theta_{\text{eff}} = \frac{1}{4} \left(1 - \operatorname{Re} \frac{g_V}{g_A} \right) = \left(1 - \frac{M_W^2}{M_Z^2} \right) \operatorname{Re} \kappa_l (s = M_Z^2)$$

Theoretical predictions for $M_{ m W}$, $\sin^2 heta_{ m eff}$:

Current status in the SM: complete two-loop result known for M_W , fermionic two-loop corrections known for $\sin^2 \theta_{eff}$

Necessary diagrams for evaluation of 2-loop corrections to $\sin^2 \theta_{\rm eff}$:

• Renormalisation: $\delta M_W^2 = \operatorname{Re}\Sigma_{T(2)}^W(M_W^2) + \dots$

 \Rightarrow 2-loop self-energies with arbitrary momentum and masses

No analytical results available for general case

- \Rightarrow numerical integration
- Two-loop vertex diagrams:
 two classes:
 top, light fermions

Evaluation with different methods

Top-quark contributions: expansion in M_Z^2/m_t^2

 \Rightarrow expansion up to $(M_{\rm Z}^2/m_{\rm t}^2)^5$ yields intrinsic precision of 10^{-7}

Light fermion contributions:

depend on only one variable \Rightarrow reduction to master integrals using integration by parts and Lorentz invariance identities

[Chetyrkin, Tkachov '81] [Gehrmann, Remiddi '00] [Laporta '00]

Analytical results for master integrals via differential equations

SM prediction for M_W (complete 2-loop result) vs. experimental result

[M. Awramik, M. Czakon, A. Freitas, G.W. '04]

SM prediction for $\sin^2 \theta_{eff}$ (fermionic 2-loop result) vs. experimental result

SM prediction for $\sin^2 \theta_{\rm eff}$ (fermionic 2-loop result) vs. experimental result

However: experimental value for $\sin^2 \theta_{\text{eff}}$ contains average over $A_1 = 0.23098 \pm 0.00026$ (SLD) and $A_{\text{fb}}^{0,\text{b}} = 0.23210 \pm 0.00030$ (LEP) prospective accuracies at the LHC and a LC with low-energy option (GigaZ):

⇒ Highly sensitive test of electroweak theory: improved accuracy of observables and input parameters Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.15

The anomalous magnetic moment of the muon:

 $(g-2)_{\mu} \equiv 2a_{\mu}$

Coupling of muon to magnetic field: $\mu - \overline{\mu} - \gamma$ coupling

$$\bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i}{2m_{\mu}} \sigma^{\mu\nu} q_{\nu} F_2(q^2) \right] u(p) A_{\mu} \qquad F_2(0) = (g-2)_{\mu} \equiv 2a_{\mu}$$

a_{μ} : experimental result vs. SM prediction

$$a_{\mu}^{\exp} - a_{\mu}^{\text{theo}} = (25.2 \pm 9.2) \times 10^{-10} : 2.7 \sigma$$
.

Better agreement between theory and experiment possible in models of physics beyond the SM

Example: one-loop contributions of superpartners of fermions and gauge bosons

SUSY contributions to a_{μ}

One-loop SUSY contribution (dashed),

two-loop chargino/neutralino contributions (dash-dotted)

and the sum (full line)

for $\mu = M_2 = M_A \equiv M_{SUSY}$, $m_{\tilde{f}} = 1$ TeV, $\tan \beta = 50$: [S. Heinemeyer, D. Stöckinger, G. W. '04]

Precision Higgs physics

Large coupling of Higgs to top quark

One-loop correction $\sim G_{\mu}m_{\rm t}^4$

 $\Rightarrow M_{\rm H}$ depends sensitively on $m_{\rm t}$ in all models where $M_{\rm H}$ can be predicted (SM: $M_{\rm H}$ is free parameter)

Precision Higgs physics

Large coupling of Higgs to top quark

One-loop correction $\sim G_{\mu}m_{\rm t}^4$

 $\Rightarrow M_{\rm H}$ depends sensitively on $m_{\rm t}$ in all models where $M_{\rm H}$ can be predicted (SM: $M_{\rm H}$ is free parameter)

SUSY as an example: $\Delta m_{\rm t} \approx \pm 4 \text{ GeV} \Rightarrow \Delta m_{\rm h} \approx \pm 4 \text{ GeV}$

Precision Higgs physics

Large coupling of Higgs to top quark

One-loop correction $\sim G_{\mu}m_{\rm t}^4$

 $\Rightarrow M_{\rm H}$ depends sensitively on $m_{\rm t}$ in all models where $M_{\rm H}$ can be predicted (SM: $M_{\rm H}$ is free parameter)

SUSY as an example: $\Delta m_{\rm t} \approx \pm 4 \text{ GeV} \Rightarrow \Delta m_{\rm h} \approx \pm 4 \text{ GeV}$

 \Rightarrow Precision Higgs physics needs precision top physics (ILC: $\Delta m_{\rm t} \lesssim 0.1$ GeV)

 \Rightarrow Prediction for $m_{\rm h}$, $m_{\rm H}$, ...

Tree-level result for $m_{\rm h}$, $m_{\rm H}$:

$$m_{\rm H,h}^2 = \frac{1}{2} \left[M_{\rm A}^2 + M_{\rm Z}^2 \pm \sqrt{(M_{\rm A}^2 + M_{\rm Z}^2)^2 - 4M_{\rm Z}^2 M_{\rm A}^2 \cos^2 2\beta} \right]$$

$\Rightarrow m_{\rm h} \leq M_{\rm Z}$ at tree level

MSSM tree-level bound (gauge sector): excluded by LEP!

Large radiative corrections (Yukawa sector, ...):

Yukawa couplings: $\frac{e m_t}{2M_W s_W}$, $\frac{e m_t^2}{M_W s_W}$, ...

 \Rightarrow Dominant one-loop corrections: $G_{\mu}m_{\rm t}^4 \ln\left(\frac{m_{\tilde{t}_1}m_{\tilde{t}_2}}{m_{\rm t}^2}\right), \quad \mathcal{O}(100\%) !$

Present status of $m_{\rm h}$ prediction in the MSSM:

Complete one-loop + "almost complete" two-loop result available

Present status of $m_{\rm h}$ prediction in the MSSM:

Complete one-loop + "almost complete" two-loop result available

Upper bound on $m_{\rm h}$:

'Unconstrained' MSSM: $M_{
m A}$, aneta, 5 param. in ${
m \widetilde{t}}$ - ${
m \widetilde{b}}$ sector, μ , $m_{
m \widetilde{g}}$, M_2

 $m_{\rm h} \lesssim 136 \,{\rm GeV}$

[S. Heinemeyer, W. Hollik, G. W. '99], [M. Frank, S. Heinemeyer, W. Hollik, G. W. '02] [G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. '02]

Present status of $m_{\rm h}$ prediction in the MSSM:

Complete one-loop + "almost complete" two-loop result available

Upper bound on $m_{\rm h}$:

'Unconstrained' MSSM: $M_{
m A}$, an eta, 5 param. in ${
m \widetilde{t}}$ - ${
m \widetilde{b}}$ sector, μ , $m_{
m \widetilde{g}}$, M_2

 $m_{\rm h} \lesssim 136 \,{\rm GeV}$

[S. Heinemeyer, W. Hollik, G. W. '99], [M. Frank, S. Heinemeyer, W. Hollik, G. W. '02] [G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. '02]

for $m_{\rm t} = 178 \,{\rm GeV}$, no theoretical uncertainties included

Remaining theoretical uncertainties in prediction for $m_{\rm h}$:

- [G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. '02]
- From unknown higher-order corrections: $\Rightarrow \Delta m_{\rm h} \approx \pm 3 \text{ GeV}$
- From input parameters: $\Delta m_{\rm t} \approx \pm 4 \text{ GeV} \Rightarrow \Delta m_{\rm h} \approx \pm 4 \text{ GeV}$

Remaining theoretical uncertainties in prediction for $m_{\rm h}$:

- [G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. '02]
- From unknown higher-order corrections: $\Rightarrow \Delta m_{\rm h} \approx \pm 3 \text{ GeV}$
- From input parameters: $\Delta m_{\rm t} \approx \pm 4 \text{ GeV} \Rightarrow \Delta m_{\rm h} \approx \pm 4 \text{ GeV}$

For 1- σ range of $m_{\rm t}$:

- \Rightarrow upper bound beyond $m_{
 m h} = 140~{
 m GeV}$
 - LEP does not exclude any $\tan\beta$ value!

3. Precision tests: Standard Model and Supersymmetry

- Global fit in the SM
- SM vs. MSSM
- Fit to precision observables in the constrained MSSM (mSUGRA) with dark matter constraints

Global fit to all data in the SM

[LEPEWWG '04]

Theoretical uncertainties:

– exp. error of input parameters:

 $m_{\rm t}$, $\Delta \alpha_{\rm had}$, . . .

- \Rightarrow large m_t - M_H correlation
- unknown higher-order corrections

 \Rightarrow "blue band"

Global fit to all data in the SM

[LEPEWWG '04]

Theoretical uncertainties:

- exp. error of input parameters:

$$m_{\rm t}$$
, $\Delta \alpha_{\rm had}$, . . .

- \Rightarrow large m_t - M_H correlation
- unknown higher-order corrections

 \Rightarrow "blue band"

New $m_{\rm t}$ value, $m_{\rm t} = 178.0 \pm 4.3$ GeV, new result for $\sin^2 \theta_{\rm eff}$ $\Rightarrow M_{\rm H} = 114^{+69}_{-45}$ GeV, $M_{\rm H} < 260$ GeV, 95% C.L.

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 - p.24

Correlation between $M_{\rm H}$ and $m_{\rm t}$ in the fit:

 \Rightarrow Precise knowledge of $m_{\rm t}$ crucial for constraining $M_{\rm H}$

[LEPEWWG '04]

Electroweak precision tests: SM vs. MSSM

Electroweak precision tests: SM vs. MSSM

Electroweak precision tests: SM vs. MSSM

Prediction for $M_{\rm W}$ in the SM and the MSSM:

Prediction for $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$ in SM and MSSM:

[S. Heinemeyer, W. Hollik, G. W. '04]

Prediction for $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$ in SM and MSSM:

χ^2 fit in mSUGRA with dark matter constraints:

 $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$, $(g-2)_{\mu}$, ${\rm BR}(b \to s\gamma)$

⇒ very good description of the data

preference for relatively small mass values

χ^2 fit in mSUGRA with dark matter constraints:

 $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$, $(g-2)_{\mu}$, ${
m BR}(b \to s\gamma)$

J. Ellis, S. Heinemeyer, K. Olive, G. W. '04

 \Rightarrow worse fit quality

preferred $m_{1/2}$ values larger by 200–300 GeV compared to $\tan \beta = 10$ case

χ^2 fit in mSUGRA with dark matter constraints:

 $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$, $(g-2)_{\mu}$, ${\rm BR}(b \to s\gamma)$

68% and 90% C.L. regions in $m_{1/2}$ – A_0 plane:

[J. Ellis, S. Heinemeyer, K. Olive, G. W. '04]

Fit results for particle masses, $\tan \beta = 10$:

 $m_{ ilde{\chi}_1^+} pprox m_{ ilde{\chi}_2^0}$, $m_{ ilde{ au}_1}$

[J. Ellis, S. Heinemeyer, K. Olive, G. W. '04]

 \Rightarrow Good prospects for the LHC and ILC

4. Conclusions

- Global SM fit
 - \Rightarrow preference for light Higgs, $M_{\rm H} \lesssim 260 \,\, {\rm GeV}$

strong $m_{\rm t}$ - $M_{\rm H}$ correlation

4. Conclusions

Global SM fit

 \Rightarrow preference for light Higgs, $M_{\rm H} \lesssim 260 \,\,{
m GeV}$ strong $m_{\rm t}$ - $M_{\rm H}$ correlation

 Fit in mSUGRA with dark matter constraints:
 > very good description of the data preference for relatively small SUSY masses good prospects for LHC and ILC

4. Conclusions

Global SM fit

 \Rightarrow preference for light Higgs, $M_{\rm H} \lesssim 260 \,\,{
m GeV}$ strong $m_{\rm t}$ - $M_{\rm H}$ correlation

 Fit in mSUGRA with dark matter constraints:
 > very good description of the data preference for relatively small SUSY masses good prospects for LHC and ILC

• At Tevatron, LHC, ILC: improved accuracy of prec. observables $M_{\rm W}, \sin^2 \theta_{\rm eff}, m_{\rm h}, \dots$ and input parameters $m_{\rm t}, m_{\tilde{t}}, \dots$ \Rightarrow Very sensitive test of electroweak theory