Finding the Higgs

Robert Harlander

Institute for Theoretical Particle Physics University of Karlsruhe

YETI'05, January 5-8, 2005

What are we looking for?

What are we looking for? (... of course, anything new will make us happy...)

What are we looking for?

(... of course, anything new will make us happy...)

- Higgs properties (Standard Model):
 - spin = 0
 - electric charge = 0
 - mass = ?
 - couples to mass!

What are we looking for?

(... of course, anything new will make us happy...)

- Higgs properties (Standard Model):
 - spin = 0
 - electric charge = 0
 - \square mass = ?
 - couples to mass!

$$\sum_{H}^{t} = \frac{m_t}{v}$$

,

Particle masses

t	b	С	s	au	μ	e	Z	W^{\pm}	Н
178	5	1.3	0.1	1.8	0.1	0.0005	91	80	
		_							

Particle masses

t	b	С	s	au	μ	e	Z	W^{\pm}	Н
178	5	1.3	0.1	1.8	0.1	0.0005	91	80	
		_							

Particle masses

t	b	С	s	au	μ	e	Z	W^{\pm}	Н
178	5	1.3	0.1	1.8	0.1	0.0005	91	80	$ \lesssim 260 \\ \ge 114 $

Tevatron Discovery Potential

Tevatron Discovery Potential

proton – proton collider

proton – proton collider

proton – proton collider

gluon fusion

gluon fusion

gluon fusion

gluon fusion

 $t\overline{t}H$

VBF

VBF

VBF
Higgs search at the LHC

VBF

Higgs Strahlung

Higgs search at the LHC

Higgs Strahlung

■ signature: $p \oplus H \oplus p$ (\oplus = rapidity gap)

[Khoze, Martin, Ryskin] [Boonekamp, de Roeck, Peschanski, Royon], ...

gluon fusion

 $t\bar{t}H$

gluon fusion

 $\hat{s} \ge M_H$

 $\hat{s} \ge 2m_t + M_H$

 $t\bar{t}H$

gluon fusion $\hat{s} \ge M_H$

 $t\bar{t}H$ $\hat{s} \ge 2m_t + M_H$

$$\hat{\boldsymbol{s}} = x_1 \, x_2 \, \boldsymbol{s} \sim x^2 \, \boldsymbol{s}$$

gluon fusion

 $\hat{s} \ge M_H$

 $x \geq 0.8 \cdot 10^{-2}$

$$\hat{s} \ge 2m_t + M_H$$
$$x \ge 3.3 \cdot 10^{-2}$$

 $t\bar{t}H$

$$\hat{\boldsymbol{s}} = x_1 \, x_2 \boldsymbol{s} \sim x^2 \, \boldsymbol{s}$$

largest cross section

- largest cross section
- $gg \to H \to ZZ \to 4\mu$: gold plated mode for $M_H \gtrsim 135 \,\text{GeV}$

- largest cross section
- $gg \to H \to ZZ \to 4\mu$: gold plated mode for $M_H \gtrsim 135 \,\text{GeV}$

sensitive to

new particles, e.g. supersymmetry:

top Yukawa coupling

but:

9 but: $gg \to H \to b\bar{b}$ not useful!

J but:
$$gg \to H \to b\overline{b}$$
 not useful!

■ need to rely on $gg \to H \to \gamma\gamma$ at $M_H \lesssim 135 \,\text{GeV}$

• but: $gg \to H \to b\bar{b}$ not useful!

■ need to rely on $gg \to H \to \gamma\gamma$ at $M_H \lesssim 135 \,\text{GeV}$

- **J** but: $gg \to H \to b\bar{b}$ not useful!
- need to rely on $gg \to H \to \gamma\gamma$ at $M_H \lesssim 135 \,\text{GeV}$
- Phase space is a single point: $\hat{s} \equiv M_H^2$

- **J** but: $gg \to H \to b\bar{b}$ not useful!

Phase space is a single point: $\hat{s} \equiv M_H^2$

- **•** but: $gg \to H \to b\bar{b}$ not useful!
- need to rely on $gg \to H \to \gamma\gamma$ at $M_H \lesssim 135 \,\text{GeV}$

phase space is a single point: $\hat{s} \equiv M_H^2$

 \Rightarrow large radiative corrections expected

- **•** but: $gg \to H \to b\bar{b}$ not useful!

phase space is a single point: $\hat{s} \equiv M_H^2$

- \Rightarrow large radiative corrections expected
- \rightarrow reliable result requires NNLO

Gluon fusion: theory prediction

Gluon fusion: theory prediction

Gluon fusion: theory prediction

Resummation

[Catani, de Florian, Grazzini, Nason ('03)]

● clear signature: $b\bar{b}b\bar{b}W^+W^-$

- clear signature: $b\bar{b}b\bar{b}W^+W^-$
- direct handle on top Yukawa coupling

- clear signature: $b\bar{b}b\bar{b}W^+W^-$
- direct handle on top Yukawa coupling
- but: rather small cross section

- clear signature: $b\bar{b}b\bar{b}W^+W^-$
- direct handle on top Yukawa coupling
- but: rather small cross section
- increased by QCD corrections?

Vector Boson Fusion

signature: two forward jets + Higgs

 $H o \gamma \gamma, \quad H o \tau^+ \tau^-, \quad H o WW, \quad H o b\bar{b}$

Vector Boson Fusion

- signature: two forward jets + Higgs $H \to \gamma\gamma, \quad H \to \tau^+\tau^-, \quad H \to WW, \quad H \to b\bar{b}$
- important for discovery ([Rainwater, Zeppenfeld '97], ...) and study (e.g. couplings [Zeppenfeld et al.], [Dührssen et al.])

Vector Boson Fusion

- signature: two forward jets + Higgs $H \to \gamma \gamma, \quad H \to \tau^+ \tau^-, \quad H \to WW, \quad H \to b\bar{b}$
- important for discovery ([Rainwater, Zeppenfeld '97], ...) and study (e.g. couplings [Zeppenfeld et al.], [Dührssen et al.])
- QCD corrections under control (and small)
 [Han, Willenbrock '91], [Figy, Oleari, Zeppenfeld '03]

Higgs Strahlung

most important mode at Tevatron!

- most important mode at Tevatron!
- ... but only marginal importance at LHC

Discovery Potential

$$H \quad \leftrightarrow \quad h^0, H^0, A, H^+, H^-$$

- $M_{h^0} \lesssim 130 \, {\rm GeV}$
- modified couplings to SM particles $(\tan \beta!)$

$$H \quad \leftrightarrow \quad h^0, H^0, A, H^+, H^-$$

- $M_{h^0} \lesssim 130 \, {\rm GeV}$
- modified couplings to SM particles $(\tan \beta!)$
- implications for Higgs production:

$$H \quad \leftrightarrow \quad h^0, H^0, A, H^+, H^-$$

- $M_{h^0} \lesssim 130 \, {\rm GeV}$
- modified couplings to SM particles $(\tan \beta!)$
- implications for Higgs production:

$$H \quad \leftrightarrow \quad h^0, H^0, A, H^+, H^-$$

- $M_{h^0} \lesssim 130 \, {\rm GeV}$
- modified couplings to SM particles $(\tan \beta!)$
- implications for Higgs production:

Example: "gluophobic Higgs"

[Djouadi '98], [Carena et al. '99]

Example: "gluophobic Higgs"

[Djouadi '98], [Carena et al. '99]

Example: "gluophobic Higgs"

[Djouadi '98], [Carena et al. '99]

$b \overline{b} ightarrow H$ in SUSY

modified Yukawa couplings in SUSY:

$$\frac{\lambda_b}{\lambda_t} = \frac{m_b}{m_t} \cdot \frac{v_u}{v_d} = \frac{m_b}{m_t} \cdot \tan\beta$$

$b \overline{b} ightarrow H$ in SUSY

modified Yukawa couplings in SUSY:

$$rac{\lambda_b}{\lambda_t} = rac{m_b}{m_t} \cdot rac{v_u}{v_d} = rac{m_b}{m_t} \cdot aneta$$

• collinear logarithms: $\sim \alpha_s \ln(m_b/M_H) \sim \alpha_s \ln(5/200)$

$b \overline{b} ightarrow H$ in SUSY

modified Yukawa couplings in SUSY:

$$rac{\lambda_b}{\lambda_t} = rac{m_b}{m_t} \cdot rac{v_u}{v_d} = rac{m_b}{m_t} \cdot aneta$$

- collinear logarithms: $\sim \alpha_s \ln(m_b/M_H) \sim \alpha_s \ln(5/200)$
 - resummation: bottom parton densities

$$pp
ightarrow H + b \overline{b}$$

- $b\bar{b} \rightarrow H$: [R.H., Kilgore '03]
- $gg \rightarrow b\overline{b}H$: [Dawson *et al.* '04], [Dittmaier *et al.* '04]

In differential vs. inclusive cross sections

In differential vs. inclusive cross sections

- behavior of QCD corrections?
- most recent development: NNLO Monte Carlo for $gg \rightarrow H$ [Anastasiou, Melnikov, Petriello '04]

differential vs. inclusive cross sections

- behavior of QCD corrections?
- most recent development: NNLO Monte Carlo for $gg \rightarrow H$ [Anastasiou, Melnikov, Petriello '04]
- technical developments(!)

In differential vs. inclusive cross sections

- behavior of QCD corrections?
- most recent development: NNLO Monte Carlo for $gg \rightarrow H$ [Anastasiou, Melnikov, Petriello '04]
- technical developments(!)
- charged Higgs bosons

combination necessary for Higgs studies

- combination necessary for Higgs studies
- theory predictions under good control
 - \rightarrow triggered many important technical developments

combination necessary for Higgs studies

- theory predictions under good control
 - \rightarrow triggered many important technical developments
- supersymmetry: much wider field,
 but many results remain valid