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We need Event Generators to understand our detectors and to

understand the physics.

In Electro-weak and many Beyond Standard Models things are easy.

With a few particle final-states we can calculate distributions

analytically to a high precision, and generating corresponding events

is trivial.

If there are a handful or more particles, there are automatic Matrix

Element Generators which will do it for you.

If QCD is involved we always get lots of final-state particles and

matrix element generators are typically not enough.
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At LHC everything is QCD

Every signal will have a QCD background

Every observable will have QCD corrections.

O = σ0(1 + C1αs + C2α
2
s + . . .)

For QCD we need not only describe how partons are produced, we

also need to model how they evolve and form hadrons. And also to

take into account how these hadrons decay.

QCD is difficult since a parton is not a jet.
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Leading order is never enough

O = σ0(1 + C1αs + C2α
2
s + . . .)

If we have a large scale µ2, αs ∝ 1/ log(µ2) is small. But the

coefficients contains integrals over gluon emissions giving

Cn ∝ log(µ2)n.

This means we need to resum the series — DGLAP.

Collinear factorization: Convolute ME with PDFs using the

approximation that the incoming partons are collinear. Sum over all

emissions with a scale below µ.

If µ2 is not so large we in addition get Cn ∝ log(S/µ2), this is not

taken into account in DGLAP.

To take these into account we need k⊥-factorization.
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If your observable includes jets, it’s not enough to resum and forget

about additional parton emission – these need to be generated, and

hadronized.

For hadronization we need models (string or cluster) which only work

if soft and collinear partons are included consistently.

To reconstruct these resummed emissions we use Parton Shower

Generators.
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To generate real exclusive events we want to generate according to

O+0 = σ0(1 + C01αs + C02α
2
s + C03α

3
s + . . .)

O+1 = σ0(C11αs + C12α
2
s + C13α

3
s + . . .)

O+2 = σ0(C22α
2
s + C23α

3
s + C24α

4
s + . . .)

...

O+0 = σ0(1 + C01αs + C02α
2
s + C03α

3
s + . . .)

O+1 = σ0(C11αs + C12α
2
s + C13α

3
s + . . .)

O+2 = σ0(C22α
2
s + C23α

3
s + C24α

4
s + . . .)

...

O+0 = σ0(1 + C01αs + C02α
2
s + C03α

3
s + . . .)

O+1 = σ0(C11αs + C12α
2
s + C13α

3
s + . . .)

O+2 = σ0(C22α
2
s + C23α

3
s + C24α

4
s + . . .)

...

Matrix Element Generators only gives tree-level diagrams and we get

inclusive events.

Next-to-leading order generators only gives us one extra parton.
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Leif Lönnblad 7



O+0 = σ0(1 + C01αs + C02α
2
s + C03α

3
s + . . .)

O+1 = σ0(C11αs + C12α
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s + C13α
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s + . . .)

O+2 = σ0(C22α
2
s + C23α

3
s + C24α

4
s + . . .)

...

All coefficients in the expansion are divergent due to soft and

collinear poles. We need to introduce a cutoff. If we use a cutoff in

a jet-clustering variable and get well separated hard partons, the

result can be compared to real jets clustered with the corresponding

jet algorithm.

But a jet is not a parton. To understand corrections we need to

model also the emission of soft and collinear partons, and the

transition into hadrons.
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Hadronization models (PYTHIA string, HERWIG cluster) work fairly

well, but they are non-perturbative models and need exclusive

partonic states with soft and collinear partons resolved down to

scales of around a GeV.

In a Parton Shower we do this by including all orders in αs, but

approximated to leading-logarithmic accuracy.

All coefficients are still divergent, but summed up to all orders, the

result is finite.

Leif Lönnblad 9



DGLAP-based PS
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The tree-level matrix element for an

n-parton state can be approximated by

a product of splitting functions

corresponding to a sequence of

one-parton emissions from the zeroth

order state.

These emissions need to be ordered in some resolution scale, ρ, so

that every emission is softer and more collinear that the previous.

Then they need to be made exclusive, ensuring there are no additional

emissions between ρi and ρi+1.
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The probability of a emitting parton b from parton a is then given by

dPab = P̂ab(ρi, Ωi)dρidΩi × exp

(

−
∑

d

∫ ρi−1

ρi

dρ

∫

dΩP̂ad(ρ, Ω)

)

exp(−
∫ ρi−1

ρi

. . .) = ∆S(ρi, ρi−1) is the Sudakov form factor.

P̂ab(ρi, Ωi) are the splitting functions which, when multiplied

together, corresponds to the approximate full tree-level ME

P̂abdρdΩ =
αs

2π
Pab(z)

dp2
⊥

p2
⊥

dzdφ

where P (z) are the standard DGLAP splitting functions.
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Integrating we get schematically

O+0 = σ0∆S0

= σ0(1 + CPS
01 αs + CPS

02 α2
s + . . .)

O+1 = σ0C
PS
11 αs∆S1

= σ0(C
PS
11 αs + CPS

12 α2
s + CPS

13 α3
s + . . .)

O+2 = σ0C
PS
22 α2

s∆S2

= σ0(C
PS
22 α2

s + CPS
23 α3

s + CPS
24 α4

s + . . .)

...

We still need a cutoff, ρcut, and the coefficients CPS
nn diverges as

logn ρmax/ρcut

but the Sudakovs corresponds to the leading-log resummation of all

virtual terms and makes things finite, and we can use ρcut ∼ 1 GeV.
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Parton showers cannot model several hard jets very well. Especially

the correlations between hard jets are poorly described.

The splitting probabilities means that coherence effects are not taken

into account

+

2

+

22

Most coherence effects can be taken into account by angular

ordering.

Some angular correlations can also be taken into account by

adjusting the azimuthal angles after a shower is generated.
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Coherence effects can be included directly, by considering gluon

radiation from colour dipoles between colour-connected partons.

+

2

=

2

+

2

=

2

Rather than iterating 1 → 2 parton splitting we iterate 2 → 3

splittings. Each emission from a dipole will create two new dipoles

which can continue radiating.

This is implemented in the ARIADNE generator.
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Initial-state shower

For incoming hadrons, we need to consider the evolution of the

parton densities. Using collinear factorization and DGLAP evolution

we have (with t = log k2
⊥

/Λ2)

dfb(x, t)

dt
=
∑

a

∫

dx′

x′
fa(x′, t)

αs

2π
Pab

( x

x′

)

We can interpret this as during a small increase t. there is a

probability for parton a with momentum fraction x′ to become

resolved into parton b at x = zx′ and another parton c at

x′ − x = (1 − z)x′.
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In a backward evolution scenario we start out with the hard

sub-process at some scale tmax

σ0 ∝ σ̂ab→Xfa(xa, tmax)fb(xb, tmax)

and we get the relative probability for the parton a to be unresolved

into parton c during a decrease in resolution scale dt

dPa =
dfa(xa, t)

fa(xa, t)
= |dt|

∑

c

∫

dx′

x′

fc(x
′, t)

fa(xa, t)

αs

2π
Pca

(xa

x′

)

Summing up the cumulative effect of many small changes dt, the

probability for no radiation exponentiates and we get a Sudakov

∆Sa
(xa, tmax, t) = exp

{

−

∫ tmax

t

dt′
∑

c

∫

dx′

x′

fc(x
′, t′)

fa(xa, t′)

αs(t
′)

2π
Pca

(xa

x′

)

}
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This now gives us the probability for a backwards initial-state

splitting

dPca =
αs

2π
Pac(z)

fc(xa/z, t)

fa(xa, t)
dt

dz

z
dφ × ∆Sa

(xa, tmax, t)

In a hadronic collision we first generate the hard scattering, then

evolve the incoming partons backward to lower scales, and then alow

for a final-state shower from all partons from the hard scattering and

the initial-state shower.

This works nicely as long as the hard scale is large and DGLAP

evolution is applicable with decreasing virtualities in each backward

initial-state splitting.
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k⊥-factorization

DGLAP evolution is not applicable if the hard scale is much smaller

than the total energy and the virtuality of the incoming partons are

not much smaller than the hard scale.

Collinear factorization =⇒ k⊥-factorization

∫

dxadxbσ̂ab→Xfa(xa, Q2)fb(xb, Q
2) =⇒

∫

dxadxbdk⊥adk⊥bσ̂
?
ab→XFa(xa, k⊥a, Q2)Fb(xb, k⊥b, Q

2)

F an unintegrated parton density.

σ̂? is the off-shell matrix element
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proton

P

k0

q1

k1

q2

k2

q3

qn+1

kn

lepton

qγ

In DIS, the cross section is dominated by

events with small Q2 = −q2
γ and small x.

The available phase space for emitting

partons is not limited by Q2, but rather by

the total hadronic energy, W 2 ≈ Q2/x.

The 1/z pole in the gluon splitting

function makes it possible to emit many

initial-state gluons even for small Q2.

We need to take into account unordered

evolution.

Forward jets at HERA cannot be reproduced by DGLAP based

initial-state parton showers.
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Leif Lönnblad 19



Let’s look at the unintegrated gluon density, which should be

dominating. Starting from a (non-perturbative) gluon at some x0 we

get the contribution

G(x, k2
⊥

) =
∑

n

n
∏

i

{
∫

dq2
⊥i

q2
⊥i

dziᾱP̃ (zi, q
2
⊥i)Θ(zi, q

2
⊥i)

}

δ(x−x0Πzi)δ(k
2
⊥
−k2

⊥n)

ᾱ is a suitably scaled αs

P̃ (zi, q
2
⊥i) is the splitting function

Θ(zi, q
2
⊥i) is some phase space limitation defining which emissions

we want to include in the evolution.
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For large k⊥ and small x we can use the double leading logarithmic

approximation with P̃ (z) ≈ 1/z and Θ = θ(q⊥i − q⊥i−1)

G(x, k2
⊥

) =
∑

n

n
∏

i

{
∫

dq2
⊥i

q2
⊥i

dxi

xi

θ(q⊥i − q⊥i−1)θ(xi−1 − xi)

}

δ(x−xn)δ(k2
⊥
−k2

⊥n)

which can be easily integrated to get the well known DLL result

G ∝ exp(2
√

ᾱ ln k2
⊥

ln 1/x)

Using running coupling ᾱ = α0/ log(q2
⊥

/Λ2) we would instead get

G ∝ exp(2
√

α0 ln ln k2
⊥

ln 1/x)
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In the limit of asymptotically small x and moderate k⊥ we may use

BFKL evolution. Here there is no upper limit on the q⊥ of the

emitted gluons and the splitting function

P̃ (z, k2
⊥

) = ∆R(z, k2
⊥

)/z

corresponds to real gluon emissions from Reggeized gluons, where

the Regge form factor corresponding to a sum over virtual diagrams:

∆R(z, k2
⊥

) = exp

(

−ᾱ

∫ 1

zi

dz

z

∫ k2

⊥i

µ2

dk2
⊥

k2
⊥

)

The integration is a bit more tricky, but is doable and the result is

the well-known strong rise of the gluon

G ∝ x−λ = x−4 ln 2ᾱ
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The next-to-leading logarithmic corrections to BFKL turns out to be

massive. The main reason for this seems to be the lack of

(transverse) momentum conservation when allowing for unlimited q⊥

in the emissions.

The first commandment of Event Generation

Thou Shalt always respect Energy and
Momentum conservation
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proton

P

k0

q1

k1

q2

k2

q3

qn+1

kn

lepton

qγ

In a parton shower scenario we typically

want to separate between initial-state

emissions which corresponds to the

evolution of the parton densities, and

final-state emissions which do not.

In CCFM evolution this done by defining

all emissions not corresponding to a

angular ordered final-state shower to be

initial-state emissions.
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CCFM

CCFM limits the initial-state emissions to have increasing opening

angles (rapidity). In terms of the rescaled transverse momentum

q̄ = q⊥/(1 − z) we then get the phase space restriction

Θ = θ(q̄i − zi−1q̄i−1)

Starting from BFKL and resumming all emissions now treated as

final-state will cancel parts of the Regge form factor giving

∆R

zi

−→
∆ne

zi

=
1

zi

exp

(

−ᾱ

∫ 1

zi

dz

z

∫ k2

⊥i dq̄2

q̄2
θ(q̄ − zq̄i)

)

The angular ordering properly takes into account gluon coherence and

also results in less infrared sensitivity.

Leif Lönnblad 25



Here we may also include the soft pole in the splitting function with

a corresponding Sudakov form factor to conserve energy

P̃ =
∆ne

z
+

∆S

1 − z

which means that for not so small x we recover the main features of

DGLAP evolution.

CCFM has been implemented in two event generators,

SMALLX (forward evolution) and CASCADE (backward evolution).
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Linked Dipole Chains

The division between initial- and final-state emissions can be made

in many ways. However it is reasonable to require that the final-state

emissions do not change the basic propagators in the ladder too

much.

In the Linked Dipole Chain (LDC) model the final-state emissions

are coming from the dipoles between the gluons emitted in the

initial-state. A suitable constraint on the initial state emissions turns

out to be

Θ = θ(q⊥i − min(k⊥i−1, k⊥i))

This is a stronger restriction than in CCFM and summing up the

contributions from final-state emissions will give us simply

∆ne/z −→ 1/z
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In this way, LDC becomes even less infrared sensitive, and the

absence of a form factor makes it easy to include full DGLAP

splitting functions (not only the singular parts) and even include the

evolution of quarks.

Also LDC has been implemented in an event generator, LDCMC.

But we can also learn some qualitative lessons from the LDC

formulation.

Looking at the limit of strongly ordered k⊥, not only increasing but

also decreasing, we find that the phase space restriction in LDC

means that q⊥i ≈ max(k⊥i−1, k⊥i). Also considering strongly

ordered x we get for each emission

ᾱ
dzi

zi

dq2
⊥i

q2
⊥i

≈ ᾱ
dzi

zi

dk2
⊥i

max(k⊥i−1, k⊥i)
= ᾱ

dzi

zi

dk2
⊥i

k2
⊥i

min

(

k⊥i

k⊥i−1

, 1

)
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Comparing with the DLL approximation above which we can rewrite

in terms of κ = log k2
⊥i/Λ2 and li = log(1/xi):

G(l, κ) ∝
∑

n

n
∏

i

{

ᾱ

∫ κ

dκiθ(κi − κi−1)

∫ l

dliθ(li − li−1)

}

=
∑

n

ᾱn κn

n!

ln

n!

we now want to allow also for unordered κ, but we note that taking

a step down in κ is punished exponentially by

k2
⊥i/k2

⊥i−1 = exp(κi−1 − κi).

Approximating the exponential suppression with a step function we

get an approximate ordering in κ, θ(κi − κi−1 + 1) and we have

∫ κ n
∏

i

θ(κi − κi−1 + 1) ≈
(κ + n)n

n!

For large κ we recover the DLL result
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On the other hand if κ is small we get from Sterlings formula

(κ + n)n

n!
≈

nn

n!
≈ en

and

G(l, κ) ∝
∑

n

ᾱnen ln

n!
≈ eᾱel = x−λ

with λ = eᾱ ≈ 2.72ᾱ which is remarkably close to the BFKL result

λ = 4 log 2ᾱ ≈ 2.77ᾱ.

We can also get an estimate of where the transition between DGLAP

and BFKL should occur, and obtain κ ≈ λl
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We can now also try to include a running coupling which means

ᾱdκ → α0

dκ

κ
= α0du

with u = log κ.

Remembering the approximate phase space constraint

θ(κi − κi−1 + 1) we note that for large κ, one extra unit in κ is

negligible in u and we recover the DLL situation, while for small κ

the restriction basically vanishes and we get a random walk in κ.
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We can therefore expect the typical evolution path, going backwards

from the hard scale, to be DGLAP-like until the virtualities reach

smaller values where it becomes BFKL-like.

ln
 k

⊥

y=ln x

ln Q2

ln 2 GeV

DLGAP
LDC

This can be simulated with a DGLAP shower by adding an

unnaturally large intrinsic k⊥ (needed to describe p⊥-distributions

for prompt photons and W production).
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The problem with
BFKL/CCFM/LDC

The event generators CASCADE and LDCMC give consistent result.

However, the forward jet rates, a measurement designed to be

impossible to reproduce without unordered evolution, is only

reproduced by CASCADE and LDCMC if non-singular terms are omitted

from the gluon splitting function. Using the full function

Pgg(z) =
1

z
+

1

1 − z
+z(1 − z) − 2

will underestimate forward jet rates by almost a factor 2.

The dipole shower in ARIADNE allows for un-ordered evolution

(although not directly related to BFKL/CCFM/LDC) and reproduces

forward jets quite nicely.
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(although not directly related to BFKL/CCFM/LDC) and reproduces

forward jets quite nicely.
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Matching with Matrix Elements

Tree-level matrix element generators are good for a handful hard,

well separated partons, but bad for many soft and collinear partons.

Parton shower generators are good for a handful hard, well separated

partons, but bad for many soft and collinear partons.

Why can’t we simply combine the two?

For one extra parton emission we can usually simply modify the

splitting functions to reproduce the correct matrix element.

For more partons we need CKKW.
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Parton Shower

O+0 = σ0∆S0

O+1 = σ0C
PS
11 αs∆S1

O+2 = σ0C
PS
22 α2

s∆S2

...

Matrix Element

O+0 = σ0

O+1 = σ0C
ME
11 αs

O+2 = σ0C
ME
22 α2

s

...

Comparing the αs expansions the strategy should be obvious.

Generate events with 1, 2, 3, . . . , N extra hard jets according to

tree-level matrix elements using some (large) cutoff. Then reweight

with Sudakov form factors from the parton shower. Finally add

parton shower to get events with more than N partons and with

partons below the ME cutoff.
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To obtain Sudakov form factors we need to have an ordered set of

emission scales. This can be done by applying a jet clustering

algorithm to the parton state generated with the Matrix Element.

Alternatively we can make a shower reconstruction (answering the

question how would my parton shower have generated this partonic

state?)

The Sudakovs can then be calculated analytically or by making trial

parton shower emissions from intermediate states in the shower

reconstruction, remembering that the Sudakov is a no-emission

probability
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When adding the parton shower we must make sure we do not

double-count and add shower emissions which could also have been

generated by the matrix element.

Also we must not under-count and miss phase space regions not

covered by the matrix element.

The solution is to do a full parton shower, starting from the highest

possible scale, but to veto emissions which are above the matrix

element cutoff.

Special care must be taken for the highest parton multiplicity state

generated by the matrix element. There we must only veto emissions

which are above the lowest reconstructed scale.
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Summary

• DGLAP-based parton showers corresponds to an explicit

leading-log resummation of QCD corrections

• Essential to understand hadronization effects on jet observables.

• All (both) reasonable hadronization models need exclusive

many-parton final-states, well modeled in the soft and collinear

region

• Key ingredient to get exclusive states is the Sudakov form

factors, corresponding to leading-log resummation of virtual

diagrams.
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• DGLAP-based parton showers have problems describing small-x

final states in hadronic collisions.

(Higgs production at LHC has x <
∼ 0.01)

• Adding an unnatural intrinsic k⊥ will simulate some small-x

effects.

• CCFM/LDC based parton showers do better at small-x, but

there are still problems.

• With CKKW you can get the best of both the matrix element

and parton shower world.
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Summary of event generators

• PYTHIA: DGLAP-based PS (virtuality and k⊥-ordered), string

fragmentation and . . .

• HERWIG: DGLAP-based PS (angular ordered), cluster

fragmentation and . . .

• ARIADNE: Dipole shower (fragmentation and more in PYTHIA).

• CASCADE: CCFM shower (no final-state PS).

• LDCMC: No longer publically available.
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