Yeti 2005/6: Effective Field Theories

Dr P. Ball

Imagine you turn on the LHC and there is no striking large missing E_T event – even after years of running.

What do you do?

Imagine you turn on the LHC and there is no striking large missing E_T event – even after years of running. What do you do?

 (a) Run your favourite SUSY fitter program for Snowmass benchmark point 11 3/4 and create scores of incomprehensible, but nicely coloured exclusion plots.

Imagine you turn on the LHC and there is no striking large missing E_T event – even after years of running. What do you do?

- (a) Run your favourite SUSY fitter program for Snowmass benchmark point 11 3/4 and create scores of incomprehensible, but nicely coloured exclusion plots.
- (b) Parametrize the effects of new physics on SM observables in a model-independent way with a minimum number of parameters, determine bounds on these parameters and understand what they mean.

Imagine you turn on the LHC and there is no striking large missing E_T event – even after years of running. What do you do?

- (a) Run your favourite SUSY fitter program for Snowmass benchmark point 11 3/4 and create scores of incomprehensible, but nicely coloured exclusion plots.
- (b) Parametrize the effects of new physics on SM observables in a model-independent way with a minimum number of parameters, determine bounds on these parameters and understand what they mean.

If you chose (a) — very good! Mindless slaves are always in high demand.

Imagine you turn on the LHC and there is no striking large missing E_T event – even after years of running. What do you do?

- (a) Run your favourite SUSY fitter program for Snowmass benchmark point 11 3/4 and create scores of incomprehensible, but nicely coloured exclusion plots.
- (b) Parametrize the effects of new physics on SM observables in a model-independent way with a minimum number of parameters, determine bounds on these parameters and understand what they mean.

If you chose (a) — very good! Mindless slaves are always in high demand.

If you chose (b) — seems you are in the right talk.

EFTs – the tool of choice for smart YEATs

In a nutshell:

An effective field theory is a field theory with a restricted range of application: at energy $E \ll \Lambda$, it contains a series of contributions of type $(E/\Lambda)^n$, n positive integer. Truncating the series at some n_{\max} implies that predictions are only accurate up to terms of $O((E/\Lambda)^{n_{\max}+1})$.

 Λ is often called cut-off of the EFT and is a very popular fit parameter.

EFTs – the tool of choice for smart YEATs

In a nutshell:

An effective field theory is a field theory with a restricted range of application: at energy $E \ll \Lambda$, it contains a series of contributions of type $(E/\Lambda)^n$, n positive integer. Truncating the series at some n_{\max} implies that predictions are only accurate up to terms of $O((E/\Lambda)^{n_{\max}+1})$.

 Λ is often called cut-off of the EFT and is a very popular fit parameter.

Why would anyone want to do such a crazy thing and expand a theory in E/Λ ?

An EFT for Pedestrians

Assume we know weak interaction only from the process $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$. Can we say anything about the characteristic scale of weak interactions?

An EFT for Pedestrians

Assume we know weak interaction only from the process $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$. Can we say anything about the characteristic scale of weak interactions?

Effective Lagrangian (Fermi's 4-fermion Lagrangian):

$$\mathcal{L}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} J^{\mu} J_{\mu} + O\left(\frac{1}{m_W^4}\right)$$

with

$$\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{8m_W^2}, \qquad G_F|_{\exp} = 1.166 \cdot 10^{-5} \,\mathrm{GeV}^{-2}$$

from the partial decay rate $\Gamma(\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu)$

(g_W : weak interaction coupling).

• replaced fundamental Lagrangian of weak interactions by effective Lagrangian expanded in terms of $1/m_W$ (only leading term included)

- replaced fundamental Lagrangian of weak interactions by effective Lagrangian expanded in terms of $1/m_W$ (only leading term included)
- W has disappeared as dynamical particle of effective theory (has been "integrated out"), but sets scale of effective coupling G_F

- replaced fundamental Lagrangian of weak interactions by effective Lagrangian expanded in terms of $1/m_W$ (only leading term included)
- W has disappeared as dynamical particle of effective theory (has been "integrated out"), but sets scale of effective coupling G_F
- effective Lagrangian is valid for masses and energies of external particles ("light fields") $\ll m_W$, i.e. m_W is a cut-off of the theory

- replaced fundamental Lagrangian of weak interactions by effective Lagrangian expanded in terms of $1/m_W$ (only leading term included)
- W has disappeared as dynamical particle of effective theory (has been "integrated out"), but sets scale of effective coupling G_F
- effective Lagrangian is valid for masses and energies of external particles ("light fields") $\ll m_W$, i.e. m_W is a cut-off of the theory
- Lessons to be learned:

- replaced fundamental Lagrangian of weak interactions by effective Lagrangian expanded in terms of $1/m_W$ (only leading term included)
- W has disappeared as dynamical particle of effective theory (has been "integrated out"), but sets scale of effective coupling G_F
- effective Lagrangian is valid for masses and energies of external particles ("light fields") $\ll m_W$, i.e. m_W is a cut-off of the theory
- Lessons to be learned:
- if a theory contains largely different scales, e.g. $m_{\mu} \ll m_{W}$, one can expand low-energy amplitudes with "light" external states in inverse powers of the heavy scale Λ

So where does new physics enter the game?

Let's pretend we don't know the SM, don't know that charged weak interactions are mediated by W and in particular don't know the formula

 $G_F/\sqrt{2} = g_W^2/(8m_W^2).$

So where does new physics enter the game?

Let's pretend we don't know the SM, don't know that charged weak interactions are mediated by W and in particular don't know the formula

$$G_F/\sqrt{2} = g_W^2/(8m_W^2).$$

Then the measurement of G_F is the measurement of a new fundamental scale Λ with

$$\mathcal{L}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} J_\mu J^\mu \equiv -\frac{1}{\Lambda^2} J_\mu J^\mu.$$

So where does new physics enter the game?

Let's pretend we don't know the SM, don't know that charged weak interactions are mediated by W and in particular don't know the formula

$$G_F/\sqrt{2} = g_W^2/(8m_W^2).$$

Then the measurement of G_F is the measurement of a new fundamental scale Λ with

$$\mathcal{L}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} J_\mu J^\mu \equiv -\frac{1}{\Lambda^2} J_\mu J^\mu.$$

$$\Lambda \equiv \left(\frac{\sqrt{2}}{G_F}\right)^{1/2} \approx 350 \,\mathrm{GeV}$$

is that new scale and characterices the "new physics" of weak interactions.

• For energies $E \ll \Lambda$, an EFT Lagrangian can be written as

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{d \le 4} + \sum_{d > 4} \frac{1}{\Lambda^{d-4}} \sum_{i_d} g_{i_d} O_{i_d}$$

where $\mathcal{L}_{d\leq 4}$ describes a "fundamental", e.g. gauge field theory, the g_{i_d} are coupling constants and O_{i_d} are monomials in the light fields with operator dimension d.

• For energies $E \ll \Lambda$, an EFT Lagrangian can be written as

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{d \le 4} + \sum_{d > 4} \frac{1}{\Lambda^{d-4}} \sum_{i_d} g_{i_d} O_{i_d}$$

where $\mathcal{L}_{d\leq 4}$ describes a "fundamental", e.g. gauge field theory, the g_{i_d} are coupling constants and O_{i_d} are monomials in the light fields with operator dimension d.

• Λ can be the mass of a heavy field or it reflects the short-distance structure in a more indirect way.

• For energies $E \ll \Lambda$, an EFT Lagrangian can be written as

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{d \le 4} + \sum_{d > 4} \frac{1}{\Lambda^{d-4}} \sum_{i_d} g_{i_d} O_{i_d}$$

where $\mathcal{L}_{d\leq 4}$ describes a "fundamental", e.g. gauge field theory, the g_{i_d} are coupling constants and O_{i_d} are monomials in the light fields with operator dimension d.

- Λ can be the mass of a heavy field or it reflects the short-distance structure in a more indirect way.
- as long as g_{i_d} not known, can't measure Λ !

• For energies $E \ll \Lambda$, an EFT Lagrangian can be written as

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{d \le 4} + \sum_{d > 4} \frac{1}{\Lambda^{d-4}} \sum_{i_d} g_{i_d} O_{i_d}$$

where $\mathcal{L}_{d\leq 4}$ describes a "fundamental", e.g. gauge field theory, the g_{i_d} are coupling constants and O_{i_d} are monomials in the light fields with operator dimension d.

- Λ can be the mass of a heavy field or it reflects the short-distance structure in a more indirect way.
- as long as g_{i_d} not known, can't measure Λ !
- a measurement of Λ in the EFT term O/Λ^n is only indicative for the fundamental scale of the truly fundamental theory, because the couplings g_{i_d} have to be set to 1

• that is why G_F translates into $\Lambda = 350 \text{ GeV}$ and not $m_W \approx 80 \text{ GeV}$, although a factor 4 is not that bad (viewed from the perspective at 0.1 GeV)

- that is why G_F translates into $\Lambda = 350 \text{ GeV}$ and not $m_W \approx 80 \text{ GeV}$, although a factor 4 is not that bad (viewed from the perspective at 0.1 GeV)
- If the fundamental theory is known, L_{eff} can be obtained by matching the effective to the fundamental theory at a matching scale (typically Λ), i.e. one requires equality of physical amplitudes in both theories.

Example: Fermi's four-fermion interaction is matched to the SM.

- that is why G_F translates into $\Lambda = 350 \text{ GeV}$ and not $m_W \approx 80 \text{ GeV}$, although a factor 4 is not that bad (viewed from the perspective at 0.1 GeV)
- If the fundamental theory is known, L_{eff} can be obtained by matching the effective to the fundamental theory at a matching scale (typically Λ), i.e. one requires equality of physical amplitudes in both theories.
 Example: Fermi's four-fermion interaction is matched to the SM.
- If the fundamental theory is unknown, one can still write down \mathcal{L}_{eff} where the allowed operators O_{i_d} are constrained by the symmetries of $\mathcal{L}_{d\leq 4}$. The associated couplings g_{i_d} serve as bookmarks for new physics:

Neither Λ nor g_{i_d} can be determined directly from experiment, only the ratio of couplings.

Example: the SM.

• there are many possible operators at $O(1/\Lambda)$ and $O(1/\Lambda^2)$, which can be probed in different processes

- there are many possible operators at $O(1/\Lambda)$ and $O(1/\Lambda^2)$, which can be probed in different processes
- one very interesting one is the one responsible for the process $s \rightarrow de^+e^-$: forbidden in SM at tree level, induced at 1-loop by so-called penguin diagrams

- there are many possible operators at $O(1/\Lambda)$ and $O(1/\Lambda^2)$, which can be probed in different processes
- one very interesting one is the one responsible for the process $s \rightarrow de^+e^-$: forbidden in SM at tree level, induced at 1-loop by so-called penguin diagrams
- actual processes to look for: $K^0 \to \pi^0 e^+ e^-$, $K^+ \to \pi^+ e^+ e^-$ (SM BRs $\sim 10^{-9}$)

- there are many possible operators at $O(1/\Lambda)$ and $O(1/\Lambda^2)$, which can be probed in different processes
- one very interesting one is the one responsible for the process $s \rightarrow de^+e^-$: forbidden in SM at tree level, induced at 1-loop by so-called penguin diagrams
- actual processes to look for: $K^0 \to \pi^0 e^+ e^-$, $K^+ \to \pi^+ e^+ e^-$ (SM BRs $\sim 10^{-9}$)
- experimental bounds imply $\Lambda > 100 \, {\rm TeV}$

- there are many possible operators at $O(1/\Lambda)$ and $O(1/\Lambda^2)$, which can be probed in different processes
- one very interesting one is the one responsible for the process $s \rightarrow de^+e^-$: forbidden in SM at tree level, induced at 1-loop by so-called penguin diagrams
- actual processes to look for: $K^0 \to \pi^0 e^+ e^-$, $K^+ \to \pi^+ e^+ e^-$ (SM BRs $\sim 10^{-9}$)
- experimental bounds imply $\Lambda > 100 \text{ TeV}$
- such a high scale not likely to be associated with a new heavy particle

- there are many possible operators at $O(1/\Lambda)$ and $O(1/\Lambda^2)$, which can be probed in different processes
- one very interesting one is the one responsible for the process $s \rightarrow de^+e^-$: forbidden in SM at tree level, induced at 1-loop by so-called penguin diagrams
- actual processes to look for: $K^0 \to \pi^0 e^+ e^-$, $K^+ \to \pi^+ e^+ e^-$ (SM BRs $\sim 10^{-9}$)
- experimental bounds imply $\Lambda > 100 \text{ TeV}$
- such a high scale not likely to be associated with a new heavy particle
- That is: whatever the new physics beyond the SM, it has to naturally explain the suppression of these processes, for example in form of a symmetry that forbids them

• effective Lagrangians of weak interactions: extend Fermi's Lagrangian to include quark fields, include also interactions forbidden in the SM at tree-level (flavour-changing neutral currents, e.g. $s \rightarrow de^+e^-$)

- effective Lagrangians of weak interactions: extend Fermi's Lagrangian to include quark fields, include also interactions forbidden in the SM at tree-level (flavour-changing neutral currents, e.g. $s \rightarrow de^+e^-$)
- Heavy Quark Effective Theory (HQET): $\Lambda = m_b \approx 5 \text{ GeV}$: expand processes involving *b* quarks in $1/m_b$; application in *B* physics \rightarrow lecture by A. Dedes

- effective Lagrangians of weak interactions: extend Fermi's Lagrangian to include quark fields, include also interactions forbidden in the SM at tree-level (flavour-changing neutral currents, e.g. $s \rightarrow de^+e^-$)
- Heavy Quark Effective Theory (HQET): $\Lambda = m_b \approx 5 \text{ GeV}$: expand processes involving *b* quarks in $1/m_b$; application in *B* physics \rightarrow lecture by A. Dedes
- Chiral Perturbation Theory: describe low-energy QCD in terms of meson fields

- effective Lagrangians of weak interactions: extend Fermi's Lagrangian to include quark fields, include also interactions forbidden in the SM at tree-level (flavour-changing neutral currents, e.g. $s \rightarrow de^+e^-$)
- Heavy Quark Effective Theory (HQET): $\Lambda = m_b \approx 5 \text{ GeV}$: expand processes involving *b* quarks in $1/m_b$; application in *B* physics \rightarrow lecture by A. Dedes
- Chiral Perturbation Theory: describe low-energy QCD in terms of meson fields
- other currently popular theory: soft collinear effective theory: interactions between b quarks and energetic light quarks, e.g. $b \rightarrow u$ and $b \rightarrow s$ transitions

 Dynamics at low energies (large distances) does not depend on details of dynamics at high energies (short distances).

- Dynamics at low energies (large distances) does not depend on details of dynamics at high energies (short distances).
- Nonlocal heavy-particle exchanges are replaced by a tower of local contact interactions among the light particles.

- Dynamics at low energies (large distances) does not depend on details of dynamics at high energies (short distances).
- Nonlocal heavy-particle exchanges are replaced by a tower of local contact interactions among the light particles.
- These effective low-energy interactions can be used to deduce the approximate mass-scale Λ of the heavy particles from low-energy experiments.

- Dynamics at low energies (large distances) does not depend on details of dynamics at high energies (short distances).
- Nonlocal heavy-particle exchanges are replaced by a tower of local contact interactions among the light particles.
- These effective low-energy interactions can be used to deduce the approximate mass-scale Λ of the heavy particles from low-energy experiments.
- The EFT has the same infra-red behaviour/particle content as the underlying fundamental theory, but a different one in the ultra-violet.

- Dynamics at low energies (large distances) does not depend on details of dynamics at high energies (short distances).
- Nonlocal heavy-particle exchanges are replaced by a tower of local contact interactions among the light particles.
- These effective low-energy interactions can be used to deduce the approximate mass-scale Λ of the heavy particles from low-energy experiments.
- The EFT has the same infra-red behaviour/particle content as the underlying fundamental theory, but a different one in the ultra-violet.
- The only remnants of the high-energy dynamics are in the low-energy couplings and in the symmetries of the theory.

Common Misconceptions about EFTs

• Λ from O/Λ is "the" scale of new physics: only if all interaction couplings are equal to 1! But Λ certainly is an order of magnitude estimate.

Common Misconceptions about EFTs

- Λ from O/Λ is "the" scale of new physics: only if all interaction couplings are equal to 1! But Λ certainly is an order of magnitude estimate.
- EFT tells you that new physics just longs to be discovered at 1 TeV!

If only it would! But there is no strong hint at $\Lambda = 1$ TeV from any analysis I am aware of.

Common Misconceptions about EFTs

- Λ from O/Λ is "the" scale of new physics: only if all interaction couplings are equal to 1! But Λ certainly is an order of magnitude estimate.
- EFT tells you that new physics just longs to be discovered at 1 TeV!

If only it would! But there is no strong hint at $\Lambda = 1$ TeV from any analysis I am aware of.

 EFTs are very suspicious because they don't allow precise predictions.
Who says that Fermi's weak interaction Lagrangian is not precise enough? Theories in physics always come with a certain region of applicability. EFT are very precise as long as

you don't want to reach energies of $O(\Lambda)$.

• EFTs are not renormalisable.

That is true – and irrelevant. Renormalisability means that the infra-red behaviour of a theory does not depend at all on the ultra-violet regime. A renormalisable theory is the limit of an EFT for $\Lambda \rightarrow \infty$. It's a nice thing to have, for practical calculations, but also rather unrealistic, because it is an illusion to believe that a renormalisable theory like QED (or the SM) would be valid at all energy scales right up to m_{Planck} .

Lectures & Reviews

- 1. H. Georgi, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209.
- 2. A. V. Manohar, arXiv:hep-ph/9606222.
- 3. A. Pich, arXiv:hep-ph/9806303.
- 4. I. Z. Rothstein, arXiv:hep-ph/0308266.
- 5. G. Ecker, arXiv:hep-ph/0507056.
- 6. D. B. Kaplan, arXiv:nucl-th/0510023.

All these papers require basic knowledge of quantum field theory.