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1. (today) Introduction and Overview; Monte Carlo Techniques

2. (today) Matrix Elements; Parton Showers I

3. (tomorrow) Parton Showers II; Matching Issues

4. (tomorrow) Multiple Interactions and Beam Remnants

5. (Wednesday) Hadronization and Decays; Summary and Outlook



Apologies

These lectures will not cover:

? Heavy-ion physics:
• without quark-gluon plasma formation, or
• with quark-gluon plasma formation.

? Specific physics studies for topics such as
• B production,
• Higgs discovery,
• SUSY phenomenology,
• other new physics discovery potential.

? The modelling of elastic and diffractive topologies.

They will cover the “normal” physics that will be there
in (essentially) all LHC pp events, from QCD to exotics:
? the generation and availability of different processes,
? the addition of parton showers,
? the addition of an underlying event,
? the transition from partons to observable hadrons, plus
? the status and evolution of general-purpose generators.



Read More

These lectures (and more):
http://www.thep.lu.se/∼torbjorn/ and click on “Talks”

Steve Mrenna, CTEQ Summer School lectures, June 2004:
http://www.phys.psu.edu/∼cteq/schools/summer04/mrenna/mrenna.pdf

Mike Seymour, Academic Training lectures July 2003:
http://seymour.home.cern.ch/seymour/slides/CERNlectures.html

Bryan Webber, HERWIG lectures for CDF, October 2004:
http://www-cdf.fnal.gov/physics/lectures/herwig Oct2004.html

Michelangelo Mangano, KEK LHC simulations workshop, April 2004:
http://mlm.home.cern.ch/mlm/talks/kek04 mlm.pdf

The “Les Houches Guidebook to Monte Carlo Generators
for Hadron Collider Physics”, hep-ph/0403045
http://arxiv.org/pdf/hep-ph/0403045
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Why Generators? (I)
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Why Generators? (II)

• Allow theoretical and experimental studies of
complex multiparticle physics

• Large flexibility in physical quantities that can be addressed

• Vehicle of ideology to disseminate ideas
from theorists to experimentalists

Can be used to

• predict event rates and topologies
⇒ can estimate feasibility

• simulate possible backgrounds
⇒ can devise analysis strategies

• study detector requirements
⇒ can optimize detector/trigger design

• study detector imperfections
⇒ can evaluate acceptance corrections



A tour to Monte Carlo

. . . because Einstein was wrong: God does throw dice!
Quantum mechanics: amplitudes =⇒ probabilities

Anything that possibly can happen, will! (but more or less often)



The structure of an event

Warning: schematic only, everything simplified, nothing to scale, . . .

p
p/p

Incoming beams: parton densities
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Hard subprocess: described by matrix elements
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Resonance decays: correlated with hard subprocess
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Initial-state radiation: spacelike parton showers
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Final-state radiation: timelike parton showers
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Multiple parton–parton interactions . . .
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. . . with its initial- and final-state radiation



Beam remnants and other outgoing partons



Everything is connected by colour confinement strings

Recall! Not to scale: strings are of hadronic widths



The strings fragment to produce primary hadrons



Many hadrons are unstable and decay further
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These are the particles that hit the detector



The Monte Carlo method

Want to generate events in as much detail as Mother Nature
=⇒ get average and fluctutations right

=⇒ make random choices, ∼ as in nature

σfinal state = σhard processPtot,hard process→final state

(appropriately summed & integrated over non-distinguished final states)

where Ptot = PresPISRPFSRPMIPremnantsPhadronization Pdecays

with Pi =
∏

j Pij =
∏

j
∏

k Pijk = . . . in its turn

=⇒ divide and conquer

an event with n particles involves O(10n) random choices,
(flavour, mass, momentum, spin, production vertex, lifetime, . . . )

LHC: ∼ 100 charged and ∼ 200 neutral (+ intermediate stages)
=⇒ several thousand choices

(of O(100) different kinds)



Generator Landscape

Hard Processes

Resonance Decays

Parton Showers

Underlying Event

Hadronization

Ordinary Decays

General-Purpose

HERWIG

PYTHIA

ISAJET

SHERPA

Specialized

a lot

HDECAY, . . .

Ariadne/LDC, NLLjet

DPMJET

none (?)

TAUOLA, EvtGen

specialized often best at given task, but need General-Purpose core



The Bigger Picture

Process Selection

Resonance Decays

Parton Showers

Multiple Interactions

Beam Remnants

Hadronization

Ordinary Decays

Detector Simulation

ME Generator

ME Expression

SUSY/. . .
spectrum

calculation

Phase Space

Generation

PDF Library

τ Decays

B Decays

=⇒ need standardized interfaces (LHA, LHAPDF, SUSY LHA, . . . )



PDG Particle Codes

A. Fundamental objects

1 d 11 e− 21 g
2 u 12 νe 22 γ 32 Z′0

3 s 13 µ− 23 Z0 33 Z′′0

4 c 14 νµ 24 W+ 34 W′+

5 b 15 τ− 25 h0 35 H0 37 H+

6 t 16 ντ 36 A0 39 Graviton

add − sign for
antiparticle,
where appropriate

+ diquarks, SUSY,
technicolor, . . .

B. Mesons
100 |q1| + 10 |q2| + (2s+ 1) with |q1| ≥ |q2|
particle if heaviest quark u, s, c, b; else antiparticle

111 π0 311 K0 130 K0
L 221 η0 411 D+ 431 D+

s

211 π+ 321 K+ 310 K0
S 331 η′0 421 D0 443 J/ψ

C. Baryons
1000 q1 + 100 q2 + 10 q3 + (2s+ 1)

with q1 ≥ q2 ≥ q3, or Λ-like q1 ≥ q3 ≥ q2

2112 n 3122 Λ0 2224 ∆++ 3214 Σ∗0

2212 p 3212 Σ0 1114 ∆− 3334 Ω−



The HEPEVT Event Record

Old standard output of the final event; being replaced by HepMC (in C++).

PARAMETER (NMXHEP=4000)

COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),

&JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),

&VHEP(4,NMXHEP)

DOUBLE PRECISION PHEP, VHEP

NMXHEP = maximum number of entries
NEVHEP = event number

NHEP = number of entries in current event

ISTHEP = status code of entry (0 = null entry, 1 = existing entry,
2 = fragmented/decayed entry, 3 = documentation entry)

IDHEP = PDG particle identity (+ some internal, e.g. 92 = string)

JMOHEP = mother position(s)
JDAHEP = first and last daughter position

PHEP = momentum (px, py, pz, E,m) in GeV
VHEP = production vertex (x, y, z, t) in mm



Generator Homepages

HERWIG
http://hepwww.rl.ac.uk/theory/seymour/herwig/

http://hepforge.cedar.ac.uk/herwig/

PYTHIA
http://www.thep.lu.se/∼torbjorn/Pythia.html

ISAJET
http://www.phy.bnl.gov/∼isajet/

SHERPA
http://www.physik.tu-dresden.de/∼krauss/hep/

HEPCODE Program Listing
http://www.ippp.dur.ac.uk/%7Ewjs/HEPCODE/index.html



Monte Carlo Techniques

• Random Numbers
• Monte Carlo Methods
• The Veto Algorithm

Buffon’s needles

empty



Random Numbers

Monte Carlos assume access to a good random number generator R:
(i) inclusively R is uniformly distributed in 0 < R < 1

(ii) there are no correlations between R values along sequence

Radioactive decay ⇒ true random numbers
Computer algorithms ⇒ pseudorandom numbers

Many (in)famous pitfalls:
• short periods
• Marsaglia effect: multiplets along hyperplanes
⇒ do not trust “standard libraries” with compiler

Recommended:

• Marsaglia–Zaman–Tsang (RANMAR), improved by L üscher (RANLUX):
can pick ∼ 900,000,000 different sequences, each with period > 1043

but state is specified by 100 words (97 double precision reals, 3 integers)

• l’Ecuyer (RANECU):
can pick 100 different sequences, each with period > 1018, by two seeds



Monte Carlo Methods

Assume function f(x),
studied range xmin < x < xmax,
where f(x) ≥ 0 everywhere
(in practice x is multidimensional)

x

y

xmin xmax
0

f(x)

Two standard tasks:

1) Calculate (approximatively)
∫ xmax

xmin

f(x′) dx′

usually: integrated cross section from differential one

2) Select x at random according to f(x)
usually: probability distribution from quantum mechanics,
normalization to unit area implicit

Often combined: for 2 → 2 process
• select phase-space points x = (x1, x2, t̂)

• and integrate differential cross section (parton densities, dσ̂/dt̂)



Selection of x according to f(x)
is equivalent to uniform selection of (x, y) in the area
xmin < x < xmax, 0 < y < f(x)

since P(x) ∝ ∫ f(x)
0 1dy = f(x)

Therefore
∫ x

xmin

f(x′) dx′ = R
∫ xmax

xmin

f(x′) dx′

x

y

xmin xmax
0

x

f(x)

Method 1: Analytical solution
If know primitive function F (x) and know inverse F−1(y) then

F (x) − F (xmin) = R (F (xmax) − F (xmin)) = RAtot

=⇒ x = F−1(F (xmin) +RAtot)

Proof:
introduce z = F (xmin) +RAtot. Then

dP
dx

=
dP
dR

dR

dx
= 1

1
dx
dR

=
1

dx
dz

dz
dR

=
1

dF−1(z)
dz

dz
dR

=

dF(x)
dx
dz
dR

=
f(x)

Atot



Example 1:
f(x) = 2x, 0 < x < 1, =⇒ F (x) = x2

F (x) − F (0) = R (F (1) − F (0)) =⇒ x2 = R =⇒ x =
√
R

Example 2:
f(x) = e−x, x > 0, F (x) = 1 − e−x
1 − e−x = R =⇒ e−x = 1 −R = R =⇒ x = − lnR

Method 2: Hit-and-miss
If f(x) ≤ fmax in xmin < x < xmax

use interpretation as an area
1) select x = xmin +R (xmax − xmin)

2) select y = Rfmax (new R!)
3) while y > f(x) cycle to 1) x

y

xmin xmaxx
0

fmax

y1

y2

f(x)

accepted

rejected

Integral as by-product:

I =

∫ xmax

xmin

f(x) dx = fmax (xmax − xmin)
Nacc

Ntry
= Atot

Nacc

Ntry

Binomial distribution with p = Nacc/Ntry and q = Nfail/Ntry, so error

δI

I
=
Atot

√

p q/Ntry

Atot p
=

√

q

pNtry
=

√

q

Nacc
−→ 1√

Nacc
for p� 1



Method 3: Improved hit-and-miss (importance sampling)
If f(x) ≤ g(x) in xmin < x < xmax

and G(x) =
∫

g(x′) dx′ is simple
and G−1(y) is simple
1) select x according to g(x) distribution
2) select y = Rg(x) (new R!)
3) while y > f(x) cycle to 1)

x

y

xmin xmaxx
0

y1

y2

f(x)

accepted

rejected

g(x)

Example 3:
f(x) = x e−x, x > 0

Attempt 1: F (x) = 1 − (1 + x) e−x not invertible
Attempt 2: f(x) ≤ f(1) = e−1 but 0 < x <∞
Attempt 3: g(x) = N e−x/2

f(x)

g(x)
=

x e−x

N e−x/2
=
x e−x/2

N
≤ 1

for rejection to work, so find maximum:

d

dx

(

f(x)

g(x)

)

=
1

N

(

1 − x

2

)

e−x/2 = 0 =⇒ x = 2

Normalize so g(2) = f(2) =⇒ N = 2/e



G(x) ∝ 1 − e−x/2 = R

=⇒ x = −2 lnR so
1) select x = −2 lnR

2) select y = Rg(x) = R 2e−(1+x/2)

3) while y > f(x) = x e−x cycle to 1)

efficiency =

∫∞
0 f(x) dx
∫∞
0 g(x) dx

=
e

4
x

y

0 1 2 3 4
0

0.25

0.5

0.75

f(x)

g(x)

Attempt 4: pull the rabbit . . .
x = − ln(R1R2)

since with z = z1 z2 = R1R2

F (z) =
∫ z

0
f(z′) dz′

=
∫ z

0
1dz1 +

∫ 1

z

z

z1
dz1

= z − z ln z z1

z2

0 1z
0

1

and using that x = − ln z ⇐⇒ z = e−x

F (x) = 1 − F (z = e−x) = 1 − e−x + e−x (−x) =⇒ f(x) = x e−x



Method 4: Multichannel
If f(x) ≤ g(x) =

∑

i gi(x),
where all gi “nice” (but g(x) not)
1) select i with relative probability

Ai =
∫ xmax

xmin

gi(x
′) dx′

2) select x according to gi(x)
3) select y = Rg(x) = R

∑

i gi(x)

4) while y > f(x) cycle to 1)
x

y

xmin xmax
0

g1(x)

g2(x)g(x)

Example 4:

f(x) =
1

√

x(1 − x)
, 0 < x < 1

g(x) =
1√
x

+
1√

1 − x
=

√
x+

√
1 − x

√

x(1 − x)
,

1√
2
≤ f(x)

g(x)
≤ 1

1) if R < 1/2 then g1(x) else g2(x)

2) g1: G1(x) = 2
√
x = 2R =⇒ x = R2

g2: G2(x) = 2(1 −
√

1 − x) = 2R =⇒ x = 1 −R2



Method 5: Variable transformations
• map to finite x range
• map away singular/peaked regions

Method 6: Special tricks

e.g. f(x) ∝ e−x
2

is not integrable, but

f(x) dx f(y) dy ∝ e−(x2+y2) dxdy

= e−r
2
rdr dφ ∝ e−r

2
dr2 dφ

F (r2) = 1 − e−r
2

=⇒ r2 = − lnR1

x =
√

− lnR1 cos(2π R2)

y =
√

− lnR1 sin(2π R2)

Comment:
In practice almost always multidimensional integrals

∫

V
f(x) dx = V

1

Ntry

∑

i

f(xi) or =

∫

V
g(x) dx

Nacc

Ntry

gives error ∝ 1/
√
N irrespective of dimension

whereas trapezium rule error ∝ 1/N2 → 1/N2/d in d dimensions,
and Simpson’s rule error ∝ 1/N4 → 1/N4/d in d dimensions



The Veto Algorithm

Consider “radioactive decay”:
N(t) = number of remaining nuclei at time t
but normalized to N(0) = 1 instead, so equivalently
N(t) = probability that nuclei has not decayed by time t
P (t) = −dN(t)/dt = probability for decay at time t

Normally P (t) = cN(t), with c constant, but assume time-dependence:

P (t) = −dN(t)

dt
= f(t)N(t) ; f(t) ≥ 0

Standard solution:

dN(t)

dt
= −f(t)N(t) ⇐⇒ dN

N
= d(lnN) = −f(t) dt

lnN(t)−lnN(0) = −
∫ t

0
f(t′) dt′ =⇒ N(t) = exp

(

−
∫ t

0
f(t′) dt′

)

F (t) =

∫ t
f(t′) dt′ =⇒ N(t) = exp (−(F (t) − F (0)))

N(t) = R =⇒ t = F−1(F (0) − lnR)



What now if f(t) has no simple F (t) or F−1?
Hit-and-miss not good enough, since for f(t) ≤ g(t), g “nice”,

t = G−1(G(0) − lnR) =⇒ N(t) = exp

(

−
∫ t

0
g(t′) dt′

)

P (t) = −dN(t)

dt
= g(t) exp

(

−
∫ t

0
g(t′) dt′

)

and hit-or-miss provides rejection factor f(t)/g(t), so that

P (t) = f(t) exp

(

−
∫ t

0
g(t′) dt′

)

where it ought to have been

P (t) = f(t) exp

(

−
∫ t

0
f(t′) dt′

)

Correct answer is:
0) start with i = 0 and t0 = 0

1) ++i (i.e. increase i by one)
2) ti = G−1(G(ti−1) − lnR), i.e ti > ti−1

3) y = Rg(t)

4) while y > f(t) cycle to 1)

t0

t0 t1 t2t3 t = t4



Proof:
define Sg(ta, tb) = exp

(

− ∫ tb
ta g(t

′) dt′
)

P0(t) = P (t = t1) = g(t)Sg(0, t)
f(t)

g(t)
= f(t)Sg(0, t)

P1(t) = P (t = t2) =

∫ t

0
dt1 g(t1)Sg(0, t1)

(

1 − f(t1)

g(t1)

)

g(t)Sg(t1, t)
f(t)

g(t)

= f(t)Sg(0, t)
∫ t

0
dt1 (g(t1) − f(t1)) = P0(t) Ig−f

P2(t) = · · · = P0(t)
∫ t

0
dt1 (g(t1) − f(t1))

∫ t

t2
dt2 (g(t2) − f(t2))

= P0(t)
∫ t

0
dt1 (g(t1) − f(t1))

∫ t

0
dt2 (g(t2) − f(t2)) θ(t2 − t1)

= P0(t)
1

2

(
∫ t

0
dt1 (g(t1) − f(t1))

)2

= P0(t)
1

2
I2g−f

P (t) =
∞
∑

i=0

Pi(t) = P0(t)
∞
∑

i=0

Iig−f
i!

= P0(t) exp(Ig−f)

= f(t) exp

(

−
∫ t

0
g(t′) dt′

)

exp

(
∫ t

0
dt1 (g(t1) − f(t1))

)

= f(t) exp

(

−
∫ t

0
f(t′) dt′

)



Summary Lecture 1

• Event generators indispensable •

• Quantum Mechanics =⇒ probabilities •
? Divide and conquer ?

• Main physics components: •
? Hard processes and resonance decays ?

? Initial- and final-state radiation ?
? Multiple parton–parton interactions and beam remnants ?

? Hadronization and decays ?

• Monte Carlo Techniques: •
? Use good random number generator ?
? Monte Carlo = selection and integration ?

? Adapt Monte Carlo approach to problem at hand ?
? Multichannel and Veto algorithms common ?


