

YETI'06–SM IPPP, Durham, UK 27–29 March 2006

LUND UNIVERSITY

Monte Carlo Event Generators

Torbjörn Sjöstrand Lund University

1. (today) Introduction and Overview; Monte Carlo Techniques

2. (today) Matrix Elements; Parton Showers I

3. (tomorrow) Parton Showers II; Matching Issues

4. (tomorrow) Multiple Interactions and Beam Remnants

5. (Wednesday) Hadronization and Decays; Summary and Outlook

Apologies

These lectures will not cover:

- ★ Heavy-ion physics:
 - without quark-gluon plasma formation, or
 - with quark-gluon plasma formation.
- \star Specific physics studies for topics such as
 - B production,
 - Higgs discovery,
 - SUSY phenomenology,
 - other new physics discovery potential.
- \star The modelling of elastic and diffractive topologies.

They *will* cover the "normal" physics that will be there in (essentially) all LHC pp events, from QCD to exotics:

- \star the generation and availability of different processes,
- \star the addition of parton showers,
- \star the addition of an underlying event,
- \star the transition from partons to observable hadrons, plus
- \star the status and evolution of general-purpose generators.

Read More

These lectures (and more):

http://www.thep.lu.se/~torbjorn/ and click on "Talks"

Steve Mrenna, CTEQ Summer School lectures, June 2004: http://www.phys.psu.edu/~cteq/schools/summer04/mrenna/mrenna.pdf

Mike Seymour, Academic Training lectures July 2003: http://seymour.home.cern.ch/seymour/slides/CERNlectures.html

Bryan Webber, HERWIG lectures for CDF, October 2004: http://www-cdf.fnal.gov/physics/lectures/herwig_Oct2004.html

Michelangelo Mangano, KEK LHC simulations workshop, April 2004: http://mlm.home.cern.ch/mlm/talks/kek04_mlm.pdf

The "Les Houches Guidebook to Monte Carlo Generators for Hadron Collider Physics", hep-ph/0403045 http://arxiv.org/pdf/hep-ph/0403045

Event Generator Position

Event Generator Position

Why Generators? (I)

not feasible without generators

Why Generators? (II)

 Allow theoretical and experimental studies of complex multiparticle physics

- Large flexibility in physical quantities that can be addressed
 - Vehicle of ideology to disseminate ideas from theorists to experimentalists

Can be used to

- predict event rates and topologies
 ⇒ can estimate feasibility
 - simulate possible backgrounds
 - \Rightarrow can devise analysis strategies
 - study detector requirements
- \Rightarrow can optimize detector/trigger design
 - study detector imperfections
- \Rightarrow can evaluate acceptance corrections

A tour to Monte Carlo

... because Einstein was wrong: God does throw dice!
 Quantum mechanics: amplitudes ⇒ probabilities
 Anything that possibly can happen, will! (but more or less often)

The structure of an event

Warning: schematic only, everything simplified, nothing to scale, ...

Incoming beams: parton densities

Hard subprocess: described by matrix elements

Resonance decays: correlated with hard subprocess

Initial-state radiation: spacelike parton showers

Final-state radiation: timelike parton showers

Multiple parton-parton interactions ...

... with its initial- and final-state radiation

Beam remnants and other outgoing partons

Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths

The strings fragment to produce primary hadrons

These are the particles that hit the detector

The Monte Carlo method

Want to generate events in as much detail as Mother Nature \implies get average *and* fluctutations right \implies make random choices, \sim as in nature

 $\sigma_{\text{final state}} = \sigma_{\text{hard process}} \mathcal{P}_{\text{tot,hard process}} \rightarrow \text{final state}$ (appropriately summed & integrated over non-distinguished final states) where $\mathcal{P}_{\text{tot}} = \mathcal{P}_{\text{res}} \mathcal{P}_{\text{ISR}} \mathcal{P}_{\text{FSR}} \mathcal{P}_{\text{MI}} \mathcal{P}_{\text{remnants}} \mathcal{P}_{\text{hadronization}} \mathcal{P}_{\text{decays}}$ with $\mathcal{P}_i = \prod_j \mathcal{P}_{ij} = \prod_j \prod_k \mathcal{P}_{ijk} = \dots$ in its turn \Longrightarrow divide and conquer

an event with *n* particles involves $\mathcal{O}(10n)$ random choices, (flavour, mass, momentum, spin, production vertex, lifetime, ...) LHC: ~ 100 charged and ~ 200 neutral (+ intermediate stages) \implies several thousand choices (of $\mathcal{O}(100)$ different kinds)

Generator Landscape

specialized often best at given task, but need General-Purpose core

The Bigger Picture

 \implies need standardized interfaces (LHA, LHAPDF, SUSY LHA, ...)

PDG Particle Codes

A. Fundamental objects

1	d	11	e ⁻	21	g					add – sign for
2	u	12	$ u_{e}$	22	γ	32	Z′ ⁰			antiparticle,
3	S	13	μ^-	23	Z ⁰	33	Z″ ⁰			where appropriate
4	С	14	$ u_{\mu}$	24	W^+	34	W'^+			
5	b	15	$ au^{-}$	25	h ⁰	35	Н ⁰	37	H^+	+ diquarks, SUSY,
6	t	16	$ u_{ au}$			36	A ⁰	39	Graviton	technicolor,

B. Mesons

 $100 |q_1| + 10 |q_2| + (2s + 1)$ with $|q_1| \ge |q_2|$ particle if heaviest quark u, \overline{s} , c, \overline{b} ; else antiparticle

111 π^0 311 κ^0 130 κ^0_L 221 η^0 411 D^+ 431 D^+_s 211 π^+ 321 κ^+ 310 κ^0_S 331 η'^0 421 D^0 443 J/ψ

C. Baryons

$$\begin{array}{c|c} 1000 \ q_1 + 100 \ q_2 + 10 \ q_3 + (2s + 1) \\ \text{with } q_1 \ge q_2 \ge q_3, \text{ or } \Lambda \text{-like } q_1 \ge q_3 \ge q_2 \\ 2112 \ n & 3122 \ \Lambda^0 & 2224 \ \Delta^{++} & 3214 \ \Sigma^{*0} \\ 2212 \ p & 3212 \ \Sigma^0 & 1114 \ \Delta^{-} & 3334 \ \Omega^{-} \end{array}$$

The HEPEVT Event Record

Old standard output of the *final* event; being replaced by HepMC (in C++).

```
PARAMETER (NMXHEP=4000)
COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),
&JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),
&VHEP(4,NMXHEP)
DOUBLE PRECISION PHEP, VHEP
```

```
NMXHEP = maximum number of entries
```

```
NEVHEP = event number
```

```
NHEP = number of entries in current event
```

```
ISTHEP = status code of entry (0 = null entry, 1 = existing entry,
2 = fragmented/decayed entry, 3 = documentation entry)
IDHEP = PDG particle identity (+ some internal, e.g. 92 = string)
JMOHEP = mother position(s)
JDAHEP = first and last daughter position
PHEP = momentum (p_x, p_y, p_z, E, m) in GeV
VHEP = production vertex (x, y, z, t) in mm
```

Generator Homepages

HERWIG

http://hepwww.rl.ac.uk/theory/seymour/herwig/
 http://hepforge.cedar.ac.uk/herwig/

PYTHIA

http://www.thep.lu.se/~torbjorn/Pythia.html

ISAJET http://www.phy.bnl.gov/~isajet/

SHERPA

http://www.physik.tu-dresden.de/~krauss/hep/

HEPCODE Program Listing

http://www.ippp.dur.ac.uk/%7Ewjs/HEPCODE/index.html

Monte Carlo Techniques

- Random Numbers
- Monte Carlo Methods
- The Veto Algorithm

Buffon's needles

Random Numbers

Monte Carlos assume access to a good random number generator R: (*i*) inclusively R is uniformly distributed in 0 < R < 1(*ii*) there are no correlations between R values along sequence

Radioactive decay \Rightarrow true random numbers Computer algorithms \Rightarrow pseudorandom numbers

Many (in)famous pitfalls:

- short periods
- Marsaglia effect: multiplets along hyperplanes
- \Rightarrow do not trust "standard libraries" with compiler

Recommended:

• Marsaglia–Zaman–Tsang (RANMAR), improved by L[°]uscher (RANLUX): can pick $\sim 900,000,000$ different sequences, each with period $> 10^{43}$ but state is specified by 100 words (97 double precision reals, 3 integers)

• l'Ecuyer (RANECU):

can pick 100 different sequences, each with period $> 10^{18}$, by two seeds

Monte Carlo Methods

Assume function f(x), studied range $x_{\min} < x < x_{\max}$, where $f(x) \ge 0$ everywhere (in practice x is multidimensional)

Two standard tasks:

```
1) Calculate (approximatively)
```

$$\int_{x_{\min}}^{x_{\max}} f(x') \, \mathrm{d}x'$$

usually: integrated cross section from differential one

2) Select x at random according to f(x)usually: probability distribution from quantum mechanics, normalization to unit area implicit

Often combined: for $2 \rightarrow 2$ process

- select phase-space points $x = (x_1, x_2, \hat{t})$
- and integrate differential cross section (parton densities, $d\hat{\sigma}/d\hat{t}$)

Selection of x according to f(x)is equivalent to uniform selection of (x, y) in the area $x_{\min} < x < x_{\max}, 0 < y < f(x)$ since $\mathcal{P}(x) \propto \int_0^{f(x)} 1 \, dy = f(x)$

Therefore

$$\int_{x_{\min}}^{x} f(x') \, \mathrm{d}x' = R \int_{x_{\min}}^{x_{\max}} f(x') \, \mathrm{d}x'$$

Method 1: Analytical solution

If know primitive function F(x) and know inverse $F^{-1}(y)$ then

$$F(x) - F(x_{\min}) = R(F(x_{\max}) - F(x_{\min})) = RA_{tot}$$
$$\implies x = F^{-1}(F(x_{\min}) + RA_{tot})$$

Proof:

introduce $z = F(x_{\min}) + RA_{tot}$. Then

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}x} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}R}\frac{\mathrm{d}R}{\mathrm{d}x} = 1\frac{1}{\frac{\mathrm{d}x}{\mathrm{d}R}} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}z}\frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{1}{\frac{\mathrm{d}F^{-1}(z)}{\mathrm{d}z}\frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{\frac{\mathrm{d}F(x)}{\mathrm{d}x}}{\frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{f(x)}{A_{\mathsf{tot}}}$$

Example 1: $f(x) = 2x, 0 < x < 1, \Longrightarrow F(x) = x^2$ $F(x) - F(0) = R(F(1) - F(0)) \Longrightarrow x^2 = R \Longrightarrow x = \sqrt{R}$ Example 2: $f(x) = e^{-x}, x > 0, F(x) = 1 - e^{-x}$ $1 - e^{-x} = R \Longrightarrow e^{-x} = 1 - R = R \Longrightarrow x = -\ln R$

Method 2: Hit-and-miss

If $f(x) \leq f_{\max}$ in $x_{\min} < x < x_{\max}$ use interpretation as an area 1) select $x = x_{\min} + R(x_{\max} - x_{\min})$ 2) select $y = R f_{\max}$ (new R!)

3) while y > f(x) cycle to 1) Integral as by-product:

$$I = \int_{x_{\min}}^{x_{\max}} f(x) \, \mathrm{d}x = f_{\max} \left(x_{\max} - x_{\min} \right) \frac{N_{\text{acc}}}{N_{\text{try}}} = A_{\text{tot}} \frac{N_{\text{acc}}}{N_{\text{try}}}$$

Binomial distribution with $p = N_{acc}/N_{try}$ and $q = N_{fail}/N_{try}$, so error

$$\frac{\delta I}{I} = \frac{A_{\text{tot}} \sqrt{p \, q/N_{\text{try}}}}{A_{\text{tot}} \, p} = \sqrt{\frac{q}{p \, N_{\text{try}}}} = \sqrt{\frac{q}{N_{\text{acc}}}} \longrightarrow \frac{1}{\sqrt{N_{\text{acc}}}} \quad \text{for } p \ll 1$$

Method 3: Improved hit-and-miss (importance sampling)

If $f(x) \le g(x)$ in $x_{\min} < x < x_{\max}$ and $G(x) = \int g(x') dx'$ is simple and $G^{-1}(y)$ is simple 1) select x according to g(x) distribution 2) select y = R g(x) (new R!) 3) while y > f(x) cycle to 1)

Example 3:

 $f(x) = x e^{-x}, x > 0$ Attempt 1: $F(x) = 1 - (1 + x) e^{-x}$ not invertible Attempt 2: $f(x) \le f(1) = e^{-1}$ but $0 < x < \infty$ Attempt 3: $g(x) = N e^{-x/2}$

$$\frac{f(x)}{g(x)} = \frac{x e^{-x}}{N e^{-x/2}} = \frac{x e^{-x/2}}{N} \le 1$$

for rejection to work, so find maximum:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f(x)}{g(x)}\right) = \frac{1}{N}\left(1 - \frac{x}{2}\right)e^{-x/2} = 0 \Longrightarrow x = 2$$

Normalize so $g(2) = f(2) \Longrightarrow N = 2/e$

$$G(x) \propto 1 - e^{-x/2} = R$$

$$\implies x = -2 \ln R \text{ so}$$
1) select $x = -2 \ln R$
2) select $y = R g(x) = R 2e^{-(1+x/2)}$
3) while $y > f(x) = x e^{-x}$ cycle to 1)
efficiency $= \frac{\int_0^\infty f(x) \, dx}{\int_0^\infty g(x) \, dx} = \frac{e}{4}$

 $\mathbf{0}$

Attempt 4: pull the rabbit ... z_2 $x = -\ln(R_1 R_2)$ since with $z = z_1 z_2 = R_1 R_2$ $F(z) = \int_0^z f(z') \,\mathrm{d}z'$ $=\int_{0}^{z} 1 dz_{1} + \int_{z}^{1} \frac{z}{z_{1}} dz_{1}$ $= z - z \ln z$ z_1 ()z

and using that $x = -\ln z \iff z = e^{-x}$

Method 4: Multichannel

If $f(x) \le g(x) = \sum_i g_i(x)$, where all g_i "nice" (but g(x) not) 1) select *i* with relative probability

$$A_i = \int_{x_{\min}}^{x_{\max}} g_i(x') \, \mathrm{d}x'$$

2) select x according to $g_i(x)$ 3) select $y = R g(x) = R \sum_i g_i(x)$ 4) while y > f(x) cycle to 1)

Example 4:

$$f(x) = \frac{1}{\sqrt{x(1-x)}}, \quad 0 < x < 1$$

$$g(x) = \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{1-x}} = \frac{\sqrt{x} + \sqrt{1-x}}{\sqrt{x(1-x)}}, \quad \frac{1}{\sqrt{2}} \le \frac{f(x)}{g(x)} \le 1$$
1) if $R < 1/2$ then $g_1(x)$ else $g_2(x)$

2)
$$g_1: G_1(x) = 2\sqrt{x} = 2R \Longrightarrow x = R^2$$

 $g_2: G_2(x) = 2(1 - \sqrt{1 - x}) = 2R \Longrightarrow x = 1 - R^2$

Method 5: Variable transformations

- map to finite x range
- map away singular/peaked regions

Method 6: Special tricks

e.g. $f(x) \propto e^{-x^2}$ is not integrable, but

$$f(x) dx f(y) dy \propto e^{-(x^2+y^2)} dx dy$$

= $e^{-r^2} r dr d\phi \propto e^{-r^2} dr^2 d\phi$
$$F(r^2) = 1 - e^{-r^2} \implies r^2 = -\ln R_1$$

$$x = \sqrt{-\ln R_1} \cos(2\pi R_2)$$

$$y = \sqrt{-\ln R_1} \sin(2\pi R_2)$$

Comment:

In practice almost always multidimensional integrals

$$\int_{V} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} = V \frac{1}{N_{\text{try}}} \sum_{i} f(\mathbf{x}_{i}) \text{ or } = \int_{V} g(\mathbf{x}) \, \mathrm{d}\mathbf{x} \frac{N_{\text{acc}}}{N_{\text{try}}}$$

gives error $\propto 1/\sqrt{N}$ irrespective of dimension whereas trapezium rule error $\propto 1/N^2 \to 1/N^{2/d}$ in d dimensions, and Simpson's rule error $\propto 1/N^4 \to 1/N^{4/d}$ in d dimensions

The Veto Algorithm

Consider "radioactive decay": N(t) = number of remaining nuclei at time tbut normalized to N(0) = 1 instead, so equivalently N(t) = probability that nuclei has not decayed by time tP(t) = -dN(t)/dt = probability for decay at time t

Normally P(t) = cN(t), with c constant, but assume time-dependence:

$$P(t) = -\frac{\mathrm{d}N(t)}{\mathrm{d}t} = f(t)N(t) ; \ f(t) \ge 0$$

Standard solution:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -f(t)N(t) \iff \frac{\mathrm{d}N}{N} = \mathrm{d}(\ln N) = -f(t)\,\mathrm{d}t$$

$$\ln N(t) - \ln N(0) = -\int_0^t f(t') dt' \implies N(t) = \exp\left(-\int_0^t f(t') dt'\right)$$

$$F(t) = \int^t f(t') dt' \implies N(t) = \exp\left(-(F(t) - F(0))\right)$$

 $N(t) = R \implies t = F^{-1}(F(0) - \ln R)$

What now if f(t) has no simple F(t) or F^{-1} ? Hit-and-miss not good enough, since for $f(t) \le g(t)$, g "nice",

$$t = G^{-1}(G(0) - \ln R) \implies N(t) = \exp\left(-\int_0^t g(t') \, \mathrm{d}t'\right)$$
$$P(t) = -\frac{\mathrm{d}N(t)}{\mathrm{d}t} = g(t) \exp\left(-\int_0^t g(t') \, \mathrm{d}t'\right)$$

and hit-or-miss provides rejection factor f(t)/g(t), so that

$$P(t) = f(t) \exp\left(-\int_0^t g(t') \, \mathrm{d}t'\right)$$

where it ought to have been

$$P(t) = f(t) \exp\left(-\int_0^t f(t') \, \mathrm{d}t'\right)$$

Correct answer is:

0) start with i = 0 and $t_0 = 0$ 1) ++i (i.e. increase i by one) 2) $t_i = G^{-1}(G(t_{i-1}) - \ln R)$, i.e $t_i > t_{i-1}$ 3) y = R g(t)4) while y > f(t) cycle to 1) $t_0 \quad t_1 \quad t_2 t_3 \quad t = t_4$ $t_0 \quad t_1 \quad t_2 t_3 \quad t = t_4$ 0

$$\begin{aligned} & \text{Proof:} \\ & \text{define } S_g(t_a, t_b) = \exp\left(-\int_{t_a}^{t_b} g(t') \, dt'\right) \\ & P_0(t) = P(t = t_1) = g(t) \, S_g(0, t) \, \frac{f(t)}{g(t)} = f(t) \, S_g(0, t) \\ & P_1(t) = P(t = t_2) = \int_0^t dt_1 \, g(t_1) S_g(0, t_1) \, \left(1 - \frac{f(t_1)}{g(t_1)}\right) g(t) \, S_g(t_1, t) \, \frac{f(t)}{g(t)} \\ & = f(t) \, S_g(0, t) \, \int_0^t dt_1 \, (g(t_1) - f(t_1)) = P_0(t) \, I_{g-f} \\ & P_2(t) = \cdots = P_0(t) \, \int_0^t dt_1 \, (g(t_1) - f(t_1)) \, \int_t^t dt_2 \, (g(t_2) - f(t_2)) \theta(t_2 - t_1) \\ & = P_0(t) \, \int_0^t dt_1 \, (g(t_1) - f(t_1)) \, \int_0^t dt_2 \, (g(t_2) - f(t_2)) \, \theta(t_2 - t_1) \\ & = P_0(t) \, \frac{1}{2} \left(\int_0^t dt_1 \, (g(t_1) - f(t_1)) \right)^2 = P_0(t) \, \frac{1}{2} \, I_{g-f}^2 \\ & P(t) = \sum_{i=0}^\infty P_i(t) = P_0(t) \, \sum_{i=0}^\infty \frac{I_{g-f}^i}{i!} = P_0(t) \exp(I_{g-f}) \\ & = f(t) \, \exp\left(-\int_0^t g(t') \, dt'\right) \, \exp\left(\int_0^t dt_1 \, (g(t_1) - f(t_1))\right) \right) \end{aligned}$$

Summary Lecture 1

• Event generators indispensable •

Quantum Mechanics =>> probabilities •
 * Divide and conquer *

Main physics components:
 * Hard processes and resonance decays *
 * Initial- and final-state radiation *
 * Multiple parton-parton interactions and beam remnants *
 * Hadronization and decays *

• Monte Carlo Techniques: •

* Use good random number generator *
* Monte Carlo = selection and integration *
* Adapt Monte Carlo approach to problem at hand *
* Multichannel and Veto algorithms common *