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Next-to-leading order basics

The perturbative expansion of an observable to one order higher in the coupling
constant than the first approximation.

Since αem(MZ) = 1/137 and αs(MZ) ∼ 0.12, the corrections associated with
the strong coupling of QCD are the most important ones.

Typically the lowest order prediction is based on the calculation of tree graphs
(although this is not always the case). Extra factors of the coupling are obtained by
adding vertices representing the radiation of an additional gluon.

The Feynman diagrams that must be calculated fall into two categories. For
example, when calculating the cross section for the production of a W boson by
the Drell-Yan mechanism at a hadron collider:
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an additional gluon is radiated
and is present in the final state
(REAL diagrams)

a virtual gluon is emitted in
one place and reabsorbed in
another (VIRTUAL or ONE-
LOOP diagrams)
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Real diagrams

The calculation of the real diagrams is straightforward (tree level). Applying the
Feynman rules one finds the kinematic structure,

|M|2real ∼
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sd̄g
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sug

+
2m2
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sud̄

sugsd̄g

!

.

Since all particles are massless we can parametrize the final term by,

2m2
W

(1 − cos θud̄)

E2
g (1 − cos θug)(1 − cos θd̄g)

so that when combined with the phase space for the gluon emission,
R

d4pg →
R

EgdEg d cos θug we are left with expressions of the form,

Z
dEg d cos θug

Eg(1 − cos θug)
.

Thus there are logarithmic singularities when cos θug → 1 (the gluon is
COLLINEAR to the quark) and when Eg → 0 (the gluon is SOFT).

This behaviour of the matrix elements is universal.
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Subtraction

In order to proceed with a NLO calculation, the infrared (collinear and soft)
singularities must be isolated in some way.

A common technique is called SUBTRACTION, with the basic idea that the
singular behaviour is compensated for by a simple function that is easy to integrate
analytically.

In order to expose the singularities, we pass from four dimensions to 4 − 2ε as an
intermediate step. Schematically, this corresponds to:

I =

Z 1

0

dx

x
xε [M(x) −M(0)]

| {z }

finite as x→0

+M(0)

Z 1

0

dx

x
xε

| {z }

singular term

,

where M represents the matrix elements and x corresponds to the energy of the
gluon, for instance.

A different subtraction term is required for each singular region of phase space. As
the number of partons in the final state grows, the number of subtractions
performed in the calculation increases.
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Virtual diagrams

An arbitrary LOOP MOMENTUM ` is intro-
duced, which must be integrated over to obtain
a final result.

The contribution from this diagram is,
Z

d4` N

`2(` + pd̄)2(` + pd̄ + pu)2

where N = ū(d̄)γα 6 6̀ε(6` + 6pd̄ + 6pu)γαv(u).

u

d̄

W+

pd̄

`

pu

` + pd̄ + pu

` + pd̄

Evaluating these types of integrals – in particular as the number of propagators in
the denominator grows and as the complexity of N increases – is the major
challenge for NLO calculations.

Inspecting the denominator of the integral, there is a singularity when ` → −pd̄,
with two propagators vanishing. This occurs when the virtual gluon is SOFT.

In fact, ` ∝ pd̄ has the same effect. In this general case, the singularity occurs
when the virtual gluon is COLLINEAR to the external d̄ quark.

Just as when dealing with the singular configurations in the real diagrams, the
singularities can be exposed by moving out of four dimensions, d4` → d4−2ε`.
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Putting it all together
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|Mud̄→W |2 SINGULAR

VIRTUAL O(ε0) FINITE“

− 2

ε2
− 3

ε

”

|Mud̄→W |2 SINGULAR

The singularities from the REAL and VIRTUAL contributions are equal and
opposite, so that they cancel in the sum. This is true for every properly-defined
observable in any process (Bloch-Nordsieck and KLN theorems).

The implementation of NLO matrix elements within a Monte Carlo phase space
integration program is thus divided into two contributions. For an obervable
calculated from an n particle final state:

? Contributions containing (n + 1) particles, with n-particle singular

configurations subtracted. As a result, this piece may be negative at any

given point and its overall integral may be negative too (REAL).

? Contributions with exactly n particles in the final state (VIRTUAL).

Although each contribution is separately finite, only the sum is meaningful.
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Features of NLO

Parton level Monte Carlo at NLO – p.9



Normalization

The overall cross section for each process changes at NLO. It is not guaranteed to
increase, but for usual choices of scales this is indeed the case.

The information provided by a NLO calculation is often encapsulated in the form of
a K−factor that is the ratio of the NLO cross section to the LO one.

hadron-collider process scale Tevatron LHC
W production mW 1.33 1.15

top pairs mt 1.08 1.40

W + 1 jet (pjet
T

> 20 GeV, |ηjet| < 2.5) mW 1.24 1.31

weak boson fusion (mH=120 GeV) mH 1.07 1.23

The K-factor depends upon the process and the collider. For more complicated
processes it also depends upon the cuts used to define the lowest order cross
section.
The value also depends upon input parameters such as masses and parton
distribution functions. In particular, it is common practice to use leading order
PDF’s (αs and evolution) in the denominator and NLO PDF’s in the numerator (as
in the table above).

USE WITH CARE!
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Kinematic features

The use of a K-factor completely washes out the important kinematic effects that
the inclusion of NLO corrections introduces.

For instance, consider the pT of a W produced at the Tevatron.

Both the LO and VIRTUAL contributions have 2 → 1 kinematics. The W boson
does not acquire any transverse momentum because the initial state has none.

In the REAL calculation, some of the contributions are 2 → 2 processes in which
the W boson transverse momentum balances against a hard parton.

This is a trivial example, but clearly no K-factor can account for the richer
kinematic structure encountered at NLO.
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More complex processes

For more complicated processes and observables, the phase space is extended
but in less drastic ways.

Consider a final state consisting of a W boson and one hard jet with a pT above
20 GeV. At the LHC, the W boson pT in these events is shown below.

Just as before, the W boson acquires a pT by balancing the hard jet; clearly this
precludes the region below 20 GeV at LO. At NLO, the real contribution contains
configurations where the W boson balances against the vector sum of two
partons, with |~p 1

T
+ ~p 2

T
| < 20 GeV, but p1

T
,p2

T
> 20 GeV.

The alarming behaviour which occurs as the LO phase space boundary is
approached indicates the existence of a large logarithm which should be
resummed. Away from this region, the NLO enhancement depends upon the pT .
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Renormalization and factorization scales

Both of these scales (µR, µF ) are introduced in order to calculate predictions in
QCD perturbatively. The full result to all orders (if it could be calculated) does not
depend on the values that they take.

The renormalization scale is needed to redefine “bare” fields in terms of physical
ones.

In hadronic collisions, the factorization scale appears when absorbing collinear
divergences into the parton densities. One can think of this scale as separating the
soft physics inside the protons from the hard process represented by the partonic
matrix elements.

Usually both scales are chosen based on a hard scale present in the process - for
example mW , pmin

T
, or some factor thereof. Any reasonable value is allowed

though and other strategies for choosing the scale are sometimes favoured.

By truncating the perturbative expansion at a given order, residual dependence
upon the values of µR, µF remains.
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Scale example

The single jet inclusive distribution at the
Tevatron. The dominant lowest order dia-
grams at high ET are shown here.

u

ū

u

ū

The NLO prediction can be written schematically as,

dσ

dET

=

"

α2
s(µR)A + α3

s(µR)
“

B + 2b0 log(µR/ET )A− 2Pqq log(µF /ET )A
”
#

⊗fq(µF ) ⊗ fq̄(µF ).

where b0 = (33 − 2nf )/6π and Pqq is the Altarelli-Parisi splitting function.

In this expression, the explicit logarithms involving the renormalization and
factorization scales have been exposed. The remainder of the O(α3

s) corrections
lie in the function B.

Using the running of the coupling αs and the DGLAP equation describing the
evolution of the splitting functions,

∂αs(µR)

∂ log µR

= −b0α2
s(µR)+O(α3

s) ,
∂fi(µF )

∂ log µF

= αs(µR)Pqq⊗fi(µF )+O(α2
s).

the NLO result is independent of µR, µF up to (unspecified) higher order terms.
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LO scale dependence

The distribution at the Tevatron, for ET = 100 GeV. The factorization scale is kept
fixed at µF = ET and the ratio µR/ET varied about a central value of 1.

At lowest order, the behaviour is dominated by the running of αs. The prediction
varies considerably as µR is changed so that the normalization of the cross
section is unreliable.
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NLO scale dependence

At NLO, the growth as µR is decreased is softened by the logarithm that appears
with coefficient α3

s. The resulting turn-over is typical of a NLO calculation.

As a result, the range of predicted values at NLO is much reduced and the first
reliable normalization is obtained.
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NNLO scale dependence

The NNLO calculation for this process is not yet complete, but one can see the
effect of reasonable guesses for the single unknown coefficient.

Typical theoretical error estimate of a few percent, which is the level required for
many LHC analyses.
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Jet structure

At lowest order, each jet in the final state is modelled by a single parton.

In the detector, a jet is the result of the
combination of many tracks and has a def-
inite size, for instance the radius of a cone
in (η, φ) space.

At next-to-leading order, a similar proce-
dure is used to combine the partons. The
additional parton present in the real cor-
rections can lie outside the original cone,
or inside it.

ET scale: 436 GeV

-3.7 3.7

Run 178796 Event 67972991 Fri Feb 27 08:34:15 2004

Thus, successive orders in αs begin to build up the picture that we observe in the
detectors, with multiple partons inside the jets. As a result, they become much
more sensitive to the details of the jet-clustering algorithm, in particular the way
the partons are combined and the size of the cone.
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Additional initial states

As well as the “obvious” extensions of the leading order diagrams, at a hadron
collider the NLO real corrections also contain crossed diagrams. Returning to the
Drell-Yan process, an example of such a diagram is:

W+

u

dg

g + u → W + d

The process now depends upon the gluon distribution at NLO, while it was
completely insensitive to it at leading order.

One can view this diagram as a gluon splitting into a dd̄ pair and then the d̄

participating in the reaction d̄u → W . This “factorized” approach is most accurate
when the splitting is a collinear one; this is the basis of parton shower approaches
to initial-state radiation.

However, the full matrix elements included at NLO can describe the more general
case when this is not true.
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Warning signs

Sometimes the inclusion of these NLO terms can drastically change the behaviour
of the cross section.

An example of this is provided by the production of a W boson and two b-quarks at
the LHC.
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NLO (a) (b) (c)

Diagrams by MadGraph
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It is a warning sign that the LO cross section may not be the basic process of
interest.

Naively one would expect that σ(Wbb̄ + jet) < σ(Wbb̄), but this is not the case
(for this definition of a jet, pT > 20 GeV) because of the high gluon flux at the
LHC. The Wbb̄ final state is very likely to be accompanied by additional hadronic
activity at the 20 GeV level.
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Summary of NLO advantages

More accurate normalization of the cross section, which is in general larger than
the LO result.

? This is not always true – especially in restricted kinematic regions.

? Sometimes the scale dependence increases, so that either we change our
view of the process, or must move to NNLO.

Begin to model initial-state radiation and the effects of a jet-finding algorithm in the
final state.

The phase space available to observables is often extended at NLO, enabling
comparison with a wider range of experimental data.

Large corrections can help to identify regions in which a large logarithm exists and
can be resummed. By matching with a NLO calculation, this gives an even more
powerful prediction.
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HEPCODE database

A new initiative to maintain a list of available Monte Carlo codes, including lowest
order, NLO and resummed predictions.

Eventual aim is to produce a searchable database in collaboration with the CEDAR
project (http://www.cedar.ac.uk/).

http://www.ippp.dur.ac.uk/˜wjs/HEPCODE/

HEPCODE PROGRAMME LISTING

Theideaof makinga comprehensivedatabaseof programmesfor crosssection
calculationsandeventsimulationsaroseoutof a discussionat theColliderPhysics
Conferenceat theKITP, SantaBarbarain January2004. Thedatabasewill eventuallybe
integratedinto theHEPDATAdatabasesin Durham, andwill incorporatea "search"
facility thatwill enableusersto identify a setof availableprogrammessimplyby entering
thedetailsof a particularscatteringprocess. In themeantime, weneedto build upa
comprehensivelist of all availablecodes. Theemphasissofar is onhadron-collider
processes, but it is hopedto eventuallyincludealsoa comprehensivelist for other
colliders.

Commentsonthelist below(for example, if yourprogrammeis listedbut theinformationis
incomplete/incorrect) andparticularlysuggestionsfor newentriesareverywelcomeand
shouldbesentto JamesStirling (IPPP, Durham) atw.j.stirling@durham.ac.uk, usingthe
automatedsubmissiontool.

(Thanksto: JohnCampbell, GuentherDissertori, ThomasGehrmann, Bill Kilgore, AdrianSigner)

Key

ee, ep, ppareusedasshorthandfor electron-positron, lepton-hadron, andproton-
(anti)protoncollisionsrespectively

V =W or Z, andsometimesalsoaDrell-Yanvirtual photon, g = realphoton, l =
lepton, H = Higgsboson

j = light (u,d,s,c?)quarkor gluonjet; Q = genericheavy(c?,b,t) quark

TL = treelevel; PS= partonshower; NLO = NLOQCD, NNLO = NNLO QCD;
NLOEW= NLO electroweak, RS=resummed

F = Fortran, C= C++

Name/
description processes

order code ? authors comments

VECBOS pp V + <=4j TL yes F W. Giele

ALPGEN pp
V + QQbar+
<=4j
V + <=6j
V + c + <=5j

TL yes F M. Mangano
M. Moretti
F. Piccinini
R. Pittau
A. Polosa

a collectionof
codesfor the
generationof multi-
partonprocessesin
hadroniccollisions

nV + mH + <=3j
QQbar+ <=6j
QQbar+ Q'Q'bar
+ <=4j
QQbar+ H +
<=4j
<=6j
ng+ mj,
n+m<=8, m<=6

basedontheAlpha
matrixelement
generator

MADEVENT TL yes F T. Stelzer
F. Maltoni

combines
MADGRAPH
matrixelement
calculationswith
phasespace
integration

HELAC TL yes F C.
Papadopoulos

AMEGIC++ TL yes C F. Krauss

GRACE TL yes F

GR@PPA pp
bbbar+ bbbar
V + <=3j
VV'
ttbar
W + <=2g

TL yes F S. Tsuno
S. Shimma
J. Fujimoto
T. Ishikawa
Y. Kurihara
S. Odaka

anextensionof the
GRACEsystemto
hadroncollider
processes; includes
full decaysof vector
bosonsandtop
quarks; canbe
embeddedin
PYTHIA and
HERWIG

COMPHEP TL yes F A. Pukhov
E. Boos
M. Dubinin
V. Edneral
V. Ilyin
D. Kovalenko
A. Kryukov
V. Savrin
S. Shichanin
A. Semenov

AcerMC pp ... TL yes F B. Kersevan
E. Richter-
Was

generatesa variety
of StandardModel
background
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Comparison with parton showers

Unlike a parton shower such as Pythia or Herwig, NLO Monte Carlo programs do
not easily produce events with unit weight.

Moreover, the presence of the subtraction terms in the real contribution means that
some of the events have negative weight.

On top of this, the NLO real emission represents a contribution that is normally
(partially) included in the parton shower approach. Hence a straightforward
interface to provide a “NLO parton shower” is not possible.

A traditional NLO Monter Carlo therefore lacks some desirable features of parton
shower predictions.

? Limited to one addition radiated parton.

? No further showering and thus no hadronization.

? Hard to perform a detailed detector simulation.
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Monte Carlo at NLO

The first real merging of the NLO and parton shower approaches exists in the form
of MC@NLO. S. Frixione & B. Webber, hep-ph/0204244

Care must be taken to ensure that there is no double counting between the NLO
real emission and radiation in the shower (Herwig, in this case).

A special technique has been developed, but must be applied to each process
individually. This can be a painstaking process and often much of the NLO
calculation has to be redone.

As a result, the number of processes treated in this way is small, but steadily
growing – Drell-Yan, vector boson pairs, heavy quark pairs and single top.

The advantage is that is retains the good
features of both approaches – NLO nor-
malization and scale dependence, together
with the good infrared behaviour of the
shower.

This is exemplified by the pT distribution of
top pairs, for which the MC@NLO predic-
tion smoothly interpolates between the re-
sults from the two approaches.
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Summary

NLO Monte Carlo programs are more complicated than their LO counterparts but
can provide vital additional information.

This information is not limited to an overall normalization of a total cross section.
Often kinematic distributions are extended and their shapes changed at NLO.

Further benefits are (usually) reduced scale dependence and the first modelling of
jet structure in the final state.

NLO predictions are a vital counterpart to parton shower studies, but unfortunately
are limited to 2 → 3 processes at present. The predictions are available in a
number of different codes.
There has been much work recently on improved techniques that may enable the
treatment of 2 → 4 (and beyond) processes at NLO. These vary widely in style,
from twistor-inspired efficient matrix element calculations to semi-numerical
approaches.

NNLO calculations are already available for some of the simplest processes and
more will surely be available by the time the LHC turns on.
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Summary

NLO Monte Carlo programs are more complicated than their LO counterparts but
can provide vital additional information.

This information is not limited to an overall normalization of a total cross section.
Often kinematic distributions are extended and their shapes changed at NLO.

Further benefits are (usually) reduced scale dependence and the first modelling of
jet structure in the final state.

NLO predictions are a vital counterpart to parton shower studies, but unfortunately
are limited to 2 → 3 processes at present. The predictions are available in a
number of different codes.
There has been much work recently on improved techniques that may enable the
treatment of 2 → 4 (and beyond) processes at NLO. These vary widely in style,
from twistor-inspired efficient matrix element calculations to semi-numerical
approaches.

NNLO calculations are already available for some of the simplest processes and
more will surely be available by the time the LHC is taking data.
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Summary

NLO Monte Carlo programs are more complicated than their LO counterparts but
can provide vital additional information.

This information is not limited to an overall normalization of a total cross section.
Often kinematic distributions are extended and their shapes changed at NLO.

Further benefits are (usually) reduced scale dependence and the first modelling of
jet structure in the final state.

NLO predictions are a vital counterpart to parton shower studies, but unfortunately
are limited to 2 → 3 processes at present. The predictions are available in a
number of different codes.
There has been much work recently on improved techniques that may enable the
treatment of 2 → 4 (and beyond) processes at NLO. These vary widely in style,
from twistor-inspired efficient matrix element calculations to semi-numerical
approaches.

NNLO calculations are already available for some of the simplest processes and
more will surely be available by the time the LHC discovers the Higgs boson.
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