# Supersymmetry in Dark Matter allowed regions

#### **Alexander Belyaev**



#### OUTLINE

- The status of the Standard Model: problems and solutions
- Supersymmetry as one of the best candidate for underlying theory
  - status of the Supersymmetry: theory versus experiment
  - dark Matter motivated regions and collider phenomenology
  - complementarity of the ILC and Dark matter search experiments
  - motivations for non-minimal models: beyond mSUGRA and beyond MSSM
- Conclusions

## The present status of the SM

 Based on SU(3)xSU(2)<sub>L</sub>xU(1)<sub>Y</sub> gauge symmetry spontaneously broken down to SU(3)xU(1)<sub>e</sub>:



## The present status of the SM

- Based on SU(3)xSU(2)<sub>L</sub>xU(1)<sub>Y</sub> gauge symmetry spontaneously broken down to SU(3)xU(1)<sub>e</sub>:
- Matter: 3 generations of quarks and leptons



## The present status of the SM

- Based on SU(3)xSU(2)<sub>L</sub>xU(1)<sub>Y</sub> gauge symmetry spontaneously broken down to SU(3)xU(1)<sub>e</sub>:
- Matter: 3 generations of quarks and leptons
- One of the central role is played by Higgs field
  - one higgs doublet, interacts with all fields
  - develops condensate
  - W,Z bosons, lepton and quarks and Higgs field itself acquires mass



#### Higgs boson is the most wanted particle! The present Higgs mass limit is M<sub>H</sub>>114.4 GeV from LEP2

# SM describes perfectly almost all data ...



- Experimental problems
  - Dark Matter & Dark Energy problem



- Experimental problems
  - Dark Matter & Dark Energy problem
  - matter anti-matter asymmetry: baryogenesis problem



- Experimental problems
  - Dark Matter & Dark Energy problem
  - matter anti-matter asymmetry baryogenesis problem
  - the origin of EWSB is still unknown Higgs boson is not found yet ...





SM describes perfectly almost all data ... but has serious problems

- Experimental problems
  - Dark Matter & Dark Energy problem
  - matter anti-matter asymmetry: baryogenesis problem
  - the origin of EWSB is still unknown Higgs boson is not found yet ...
- Theoretical problems
  - the problem of large quantum corrections: fine-tuning problem

 $- \frac{f}{H} \frac{f}{f} - \frac{f}{H}$ 

 $\mathsf{SM}:\Delta M_{H}^{2}\sim\Lambda_{UV}^{2}$ 

 $M_{H}^{2} = M_{H^{0}}^{2} - \Delta M_{H}^{2},$ (100 GeV)<sup>2</sup> = (10<sup>16</sup> GeV)<sup>2</sup> - (10<sup>16</sup> GeV)<sup>2</sup> the cancellation is at the 28<sup>th</sup> digit for  $\Lambda_{UV} \sim 10^{16}$  GeV

#### SM describes perfectly almost all ♂ data ... but has serious problems ♀

#### Experimental problems

- Dark Matter & Dark Energy problem
- matter anti-matter asymmetry: baryogenesis problem
- the origin of EWSB is still unknown.
   Higgs boson is not found yet ...
- Theoretical problems
  - the problem of large quantum corrections: fine-tuning problem
  - at very high energy forces start to behave similar log<sub>10</sub>Q due to effect of different 'running' of coupling constants for abelian and non-abelian fields. But unification is not exact!



- boson-fermion symmetry aimed to unify all forces in nature  $Q|BOSON\rangle = |FERMION\rangle, \quad Q|FERMION\rangle = |BOSON\rangle$
- extends Poincare algebra to Super-Poincare Algebra: the most general set of space-time symmetries! (1971-74)



Golfand and Likhtman'71; Ramond'71; Neveu,Schwarz'71; Volkov and Akulov'73; Wess and Zumino'74

- boson-fermion symmetry aimed to unify all forces in nature  $Q|BOSON\rangle = |FERMION\rangle, \quad Q|FERMION\rangle = |BOSON\rangle$
- extends Poincare algebra to Super-Poincare Algebra: the most general set of space-time symmetries! (1971-74)

 $\{f,f\}=0, \ \ [B,B]=0, \ \ \{Q_{lpha},ar{Q}_{eta}\}=2\gamma^{\mu}_{lphaeta}P_{\mu}$ 

Golfand and Likhtman'71; Ramond'71; Neveu,Schwarz'71; Volkov and Akulov'73; Wess and Zumino'74



- boson-fermion symmetry aimed to unify all forces in nature  $Q|BOSON\rangle = |FERMION\rangle, \quad Q|FERMION\rangle = |BOSON\rangle$
- extends Poincare algebra to Super-Poincare Algebra: the most general set of space-time symmetries! (1971-74)

 $\{f,f\}=0, \ \ [B,B]=0, \ \ \{Q_{lpha},ar{Q}_{eta}\}=2\gamma^{\mu}_{lphaeta}P_{\mu}$ 

Golfand and Likhtman'71; Ramond'71; Neveu,Schwarz'71; Volkov and Akulov'73; Wess and Zumino'74



- boson-fermion symmetry aimed to unify all forces in nature  $Q|BOSON\rangle = |FERMION\rangle, \quad Q|FERMION\rangle = |BOSON\rangle$
- extends Poincare algebra to Super-Poincare Algebra: the most general set of space-time symmetries! (1971-74)

 $\{f,f\}=0, \ \ [B,B]=0, \ \ \{Q_{lpha},ar{Q}_{eta}\}=2\gamma^{\mu}_{lphaeta}P_{\mu}$ 

Golfand and Likhtman'71; Ramond'71; Neveu,Schwarz'71; Volkov and Akulov'73; Wess and Zumino'74



**MSSM Higgs sector: two Higgs doublets** 

provide masses for up- and down-type fermions, cancellation of anomalies

→ 5 Higgs bosons h,H,A,H<sup>+/-:</sup>  $M_A$ ,  $tan\beta = v_u/v_d$  define Higgs sector at tree-level

#### SUSY invented more then 30 years ago has 'little' problem

#### SUSY invented more then 30 years ago has 'little' problem it has not been found yet! Why it is still so attractive?



#### **Consequences of SUSY**

- Provides good DM candidate LSP
- CP violation can be incorporated baryogenesis via leptogenesis
- Radiative EWSB
- Solves fine-tuning problem
- Provides gauge coupling unification
- local supersymmetry requires spin 2 boson – graviton!
- allows to introduce fermions into string theories

 $\frac{h}{h_{t}} \frac{(TOP)}{h_{t}} \frac{h}{h_{t}} \frac{(STOP)}{h_{t}} \frac{h}{h_{t}}$   $\frac{h}{h_{t}^{2}} \frac{h}{h_{t}^{2}}$   $\Delta M_{H}^{2} \sim M_{SUSY}^{2} \log(\Lambda/M_{SUSY})$ 



#### SUSY was not deliberately designed to solve the SM problems!

## SUSY is not observed, it must be broken



Gravity mediation Gauge mediation Anomaly mediation Gaugino mediation

$$\mathcal{L}_{soft}^{MSSM} = \underbrace{\sum_{i,j} B_{ij} \mu_{ij} S_i S_j}_{bilinear \ terms} + \underbrace{\sum_{ij} m_{ij}^2 S_i S_j^{\dagger}}_{scalar \ mass \ terms} + \underbrace{\sum_{i,j,k} A_{ijk} f_{ijk} S_i S_j S_k}_{trilinear \ scalar \ interactions} + \underbrace{\sum_{A,\alpha} M_{A\alpha} \overline{\lambda}_{A\alpha} \lambda_{A\alpha}}_{gaugino \ mass \ terms}$$

### Minimal Supergravity Model (mSUGRA)

- visible-Hidden sectors interact with each other via gravity
- weak scale model constructed via RGE evolution, assuming:



#### **Crucial constraint from Cosmology: DM candidate should be** heavy, neutral, stable, non-baryonic Dark Matter candidate



#### SUSY has a perfect DM candidate, but this is only a beginning of the story ...

# **Evolution of neutralino relic density**



relic density depends crucially on  $\langle \sigma_A v \rangle$ thermal equilibrium stage:  $T > m_{\chi}, \quad \chi \chi \leftrightarrow f \bar{f}$ universe cools:  $T \leq m_{\chi}, \quad \chi \chi \not\leftrightarrow f \bar{f}$ ,  $n = n_{eq} \sim e^{-m/T}$ neutralinos "freeze-out" at  $T_F \sim m/25$ 

ISARED code: complete set of processes Baer, A.B., Balazs '02 exact tree-level calculations using CompHEP



## Neutralino relic density in mSUGRA

most of the parameter space is ruled out!  $\Omega h^2 \gg 1$ special regions with high  $\sigma_A$  are required to get  $0.094 < \Omega h^2 < 0.129$ 



## Neutralino relic density in mSUGRA

most of the parameter space is ruled out!  $\Omega h^2 \gg 1$ special regions with high  $\sigma_A$  are required to get  $0.094 < \Omega h^2 < 0.129$ 















# **Collider signatures in DM allowed regions**

 DM allowed regions are difficult for the observation at the colliders: stau(stop) co-annihilation , FP region: small visible energy release



#### Why FP region is important

- small value of |µ|-parameter: mixed higgsino-bino LSP
- Light mass spectum of chargino and neutralinos
- low value of |μ|-parameter was advocated as "fine-tuning" measure Chan, Chattopadhyay,Nath '97; Feng, Matchev, Moroi '99; Baer, Chen,Paige,Tata '95
- DM motivated mSUGRA region with 'natural' neutralino mass ~100 GeV !
- ILC connection: the signal observation at the LHC is crucial for the fate of ILC





A. Belyaev Supersymmetry in Dark Matter Allowed Regions

IPPP, Durham, November 23

#### **Recent Studies in FP region**



#### 'Far' FP analysis at the LHC

A.B, Genest, Leroy, Mehdiyev'07

- 'far' FP region dominated by EW chargino-neutralino production requires special cuts/analysis
- the signal observation in the 'far' FP region could be crucial for the fate of ILC



A. Belyaev Supersymmetry in Dark Matter Allowed Regions

IPPP, Durham, November 23

#### **Relative contributions of SUSY subprocesses (before cuts)**

|                             | $[3500,600]  { m GeV}$                       | $[4670,975]  { m GeV}$                       |
|-----------------------------|----------------------------------------------|----------------------------------------------|
| Produced sparticles         | Fraction of SUSY $\operatorname{events}(\%)$ | Fraction of SUSY $\operatorname{events}(\%)$ |
| $\tilde{W}_1 + \tilde{W}_1$ | 16.42                                        | 15.78                                        |
| $\tilde{W}_2 + \tilde{W}_2$ | 5.88                                         | 4.46                                         |
| $\tilde{W}_1 + \tilde{W}_2$ | 0.68                                         | 0.22                                         |
| $\tilde{Z}_1 + \tilde{W}_1$ | 8.48                                         | 8.66                                         |
| $\tilde{Z}_1 + \tilde{W}_2$ | 0.02                                         | 0.04                                         |
| $\tilde{Z}_2 + \tilde{W}_1$ | 21.36                                        | 25.88                                        |
| $\tilde{Z}_2 + \tilde{W}_2$ | 0.56                                         | 0.20                                         |
| $\tilde{Z}_3 + \tilde{W}_1$ | 20.10                                        | 22.48                                        |
| $\tilde{Z}_3 + \tilde{W}_2$ | 0.56                                         | 0.16                                         |
| $\tilde{Z}_4 + \tilde{W}_2$ | 10.34                                        | 6.98                                         |
| $\tilde{Z}_4 + \tilde{W}_1$ | 0.46                                         | 0.26                                         |
| $\tilde{Z}_1 + \tilde{Z}_1$ | 0.02                                         | 0.02                                         |
| $\tilde{Z}_1 + \tilde{Z}_2$ | < 0.02                                       | 4.46                                         |
| $\tilde{Z}_1 + \tilde{Z}_3$ | 3.72                                         | < 0.02                                       |
| $\tilde{Z}_2 + \tilde{Z}_3$ | 8.72                                         | 10.20                                        |
| $\tilde{Z}_2 + \tilde{Z}_4$ | < 0.02                                       | 0.04                                         |
| $\tilde{Z}_3 + \tilde{Z}_4$ | 0.34                                         | 0.02                                         |
| $\tilde{g} + \tilde{g}$     | 2.12                                         | 0.06                                         |

#### **Signal and Backgrounds**

signature  $1\ell + jets + \not\!\!E_T$ signal  $[m_0,m_{1/2}] = [3500,600] \longrightarrow ~240 \text{ fb}$   $t\bar{t}$  background  $\longrightarrow ~20.7 \text{ pb}$ W+jets background  $\longrightarrow ~366 \text{ pb}$ 

- $p_T^e > 20 \ GeV, \ p_T^\mu > 10 \ GeV$
- $p_T^J > 40 \ GeV \ within \ |\eta| < 3.0$
- Number of jets to be  $\geq 4$
- Number of leptons = 1
- $p_T^{J_1} \ge 500 \ GeV$
- $p_T^{J_2} \ge 300 \ GeV$
- $\Delta \phi(p_T^{lep}, E_T) \ge 20^\circ$



W+jets is dominant: PYTHIA W+jets underestimates BG by factor>3 as compared to Madgraph W+4jets which is used in our study

#### **Improved strategy: softer preselection + new kinematical cuts**



#### **Improved strategy: softer preselection + new kinematical cuts**



5

#### **Further analysis of kinematical variables and correlations**



#### **Significance optimization**



For SUSY datapoint  $[m_0,m_{1/2}]=[3500,600]$  GeV produced in ISAJET v7.72, the statistical significance of the signal observation is shown as a function of the cut values for i) maximum R (with preselection cuts only), ii) maximum  $M_T$  (for preselection cuts only). The arrows represent the chosen cut values.

#### **Signal and background efficiencies**

|                | Pre-cuts | $p_T^{lep} < 200 \mathrm{GeV}$ | $M_T \ge 160$ | $R \le 1.5 { m ~GeV}$ | All cuts                 |
|----------------|----------|--------------------------------|---------------|-----------------------|--------------------------|
| $[3500,\!600]$ | 2.65     | 97.01                          | 39.21         | 91.14                 | 0.92                     |
| v7.72          |          |                                |               |                       |                          |
| [4000,700]     | 1.19     | 94.39                          | 34.41         | 93.93                 | 0.36                     |
| v7.72          |          |                                |               |                       |                          |
| $t\bar{t}$     | 0.075    | 95.13                          | 0.027         | 66.67                 | $1.3 \mathrm{x} 10^{-5}$ |
| W+jets         | 0.09     | 85.01                          | 0.27          | 20.0                  | $4.0 \mathrm{x} 10^{-5}$ |

#### **Relative contributions of SUSY subprocesses (before/after cuts)**

|                             | $[3500,600]  { m GeV}$                       | $[4670,975]  { m GeV}$                       |
|-----------------------------|----------------------------------------------|----------------------------------------------|
| Produced sparticles         | Fraction of SUSY $\operatorname{events}(\%)$ | Fraction of SUSY $\operatorname{events}(\%)$ |
| $\tilde{W}_1 + \tilde{W}_1$ | 16.42                                        | 15.78                                        |
| $\tilde{W}_2 + \tilde{W}_2$ | 5.88                                         | 4.46                                         |
| $\tilde{W}_1 + \tilde{W}_2$ | 0.68                                         | 0.22                                         |
| $\tilde{Z}_1 + \tilde{W}_1$ | 8.48                                         | 8.66                                         |
| $\tilde{Z}_1 + \tilde{W}_2$ | 0.02                                         | 0.04                                         |
| $\tilde{Z}_2 + \tilde{W}_1$ | 21.36                                        | 25.88                                        |
| $\tilde{Z}_2 + \tilde{W}_2$ | 0.56                                         | 0.20                                         |
| $\tilde{Z}_3 + \tilde{W}_1$ | 20.10                                        | 22.48                                        |
| $\tilde{Z}_3 + \tilde{W}_2$ | 0.56                                         | 0.16                                         |
| $\tilde{Z}_4 + \tilde{W}_2$ | 10.34                                        | 6.98                                         |
| $\tilde{Z}_4 + \tilde{W}_1$ | 0.46                                         | 0.26                                         |
| $\tilde{Z}_1 + \tilde{Z}_1$ | 0.02                                         | 0.02                                         |
| $\tilde{Z}_1 + \tilde{Z}_2$ | < 0.02                                       | 4.46                                         |
| $\tilde{Z}_1 + \tilde{Z}_3$ | 3.72                                         | < 0.02                                       |
| $\tilde{Z}_2 + \tilde{Z}_3$ | 8.72                                         | 10.20                                        |
| $\tilde{Z}_2 + \tilde{Z}_4$ | < 0.02                                       | 0.04                                         |
| $\tilde{Z}_3 + \tilde{Z}_4$ | 0.34                                         | 0.02                                         |
| $\tilde{g} + \tilde{g}$     | 2.12                                         | 0.06                                         |

#### **Relative contributions of SUSY subprocesses (before/after cuts)**

|                             | $[3500,600]  { m GeV}$                       | [4670,975] GeV                               |
|-----------------------------|----------------------------------------------|----------------------------------------------|
| Selected sparticles         | Fraction of SUSY $\operatorname{events}(\%)$ | Fraction of SUSY $\operatorname{events}(\%)$ |
| $\tilde{W}_1 + \tilde{W}_1$ | 8.25                                         | 12.60                                        |
| $\tilde{W}_2 + \tilde{W}_2$ | 13.59                                        | 19.60                                        |
| $\tilde{W}_1 + \tilde{W}_2$ | < 0.49                                       | 0.35                                         |
| $\tilde{Z}_1 + \tilde{W}_1$ | 2.43                                         | 4.90                                         |
| $\tilde{Z}_1 + \tilde{W}_2$ | < 0.49                                       | < 0.35                                       |
| $\tilde{Z}_2 + \tilde{W}_1$ | 6.31                                         | 14.00                                        |
| $\tilde{Z}_2 + \tilde{W}_2$ | < 0.49                                       | 0.30                                         |
| $\tilde{Z}_3 + \tilde{W}_1$ | 7.77                                         | 12.90                                        |
| $\tilde{Z}_3 + \tilde{W}_2$ | 0.97                                         | 0.35                                         |
| $\tilde{Z}_4 + \tilde{W}_2$ | 26.21                                        | 31.50                                        |
| $\tilde{Z}_4 + \tilde{W}_1$ | 1.94                                         | 0.70                                         |
| $\tilde{Z}_1 + \tilde{Z}_1$ | < 0.49                                       | < 0.35                                       |
| $\tilde{Z}_1 + \tilde{Z}_2$ | < 0.49                                       | < 0.35                                       |
| $\tilde{Z}_1 + \tilde{Z}_3$ | 0.49                                         | < 0.35                                       |
| $\tilde{Z}_2 + \tilde{Z}_3$ | 0.49                                         | 0.70                                         |
| $\tilde{Z}_2 + \tilde{Z}_4$ | < 0.49                                       | 0.35                                         |
| $\tilde{Z}_3 + \tilde{Z}_3$ | < 0.49                                       | < 0.35                                       |
| $\tilde{g} + \tilde{g}$     | 29.61                                        | 1.40                                         |

#### **Extended LHC reach**



#### **Extended LHC reach**



#### **Complementarity of Direct and Indirect DM search**





#### LEP2 constraints

**Light Higgs mass and LEP2 constraints**:  $M_H^{SM} > 114$  GeV pushes SUSY scale to 1TeV  $M_h^2 = \frac{1}{2} \left[ m_A^2 + M_Z^2 - \sqrt{(M_A^2 + M_Z^2)^2 - 4m_A^2 M_Z^2 \cos^2 2\beta} \right] \Rightarrow M_h \simeq M_Z |\cos 2\beta| \text{ for } M_a \gg M_Z$ Top-stop Radiative corrections to the light Higgs mass drive its mass up!  $\delta M_h = \frac{3g^2 m_t^4}{8\pi^2 m_W^2} \left[ \ln\left(\frac{M_S^2}{m_t^2}\right) + x_t^2 \left(1 - \frac{x_t^2}{12}\right) \right] \qquad \frac{h}{h_t} \begin{pmatrix} \text{TOP} & h & (\text{STOP}) \\ h_t & h & (\text{STOP}) \\ h$  $M_h \leq 135$  GeV for  $M_S \sim 1$  TeV, for  $x_t = \sqrt{6}$  (max mixing) Top-quark mass and EW fit:  $m_t : 170.9 \rightarrow 178.0 \text{ GeV} \Rightarrow M_H : 76 \rightarrow 117.0 \text{ GeV}$ LEP2 SUSY particle search

• pair slepton production:  $e^+e^- \rightarrow \tilde{\ell}^+_{L,R}\tilde{\ell}^-_{L,R} \rightarrow \ell^+\tilde{Z}_1\ell^-\tilde{Z}_1$  $\Rightarrow m_{\tilde{e}} > 99.6 \,\text{GeV}, \, m_{\tilde{\mu}} > 94.6 \,\text{GeV}, \, m_{\tilde{\tau}} > 85.9 \,\,\text{GeV}$ 

• pair chargino production:  $e^+e^- \rightarrow \widetilde{W}_1^+ \widetilde{W}_1^-$ ,  $\widetilde{W}_1 \rightarrow \widetilde{Z}_1 \ell \nu(\widetilde{Z}_1 q q')$ ,  $\Rightarrow m_{\widetilde{W}_1} \gtrsim 100 \text{GeV}$ 

amplitude for H-mediated decay grows as  $tan\beta^3$  (!)  $\Rightarrow$  relevant to high  $tan\beta$  scenario [Babu,Kolda; Dedes,Dreiner,Nierste; Arnowitt,Dutta,Tanaka; Mizukoshi,Tata,Wang]

## **mSUGRA: combined constraints**



Baer, A.B., Krupovnickas, Mustafayev hep-ph/0403214

## **mSUGRA:** $\chi^2 = \chi^2_{\delta a_{\mu}} + \chi^2_{\Omega h^2} + \chi^2_{b \to s \gamma}$ analysis



Baer, A.B., Krupovnickas, Mustafayev hep-ph/0403214

## **Global CMSSM fit**

68% (dotted) and 95% (solid) confidence level regions



O. Buchmueller, R. Cavanaugh, A. De Roeck, S. Heinemeyer, G. Isidori, P. Paradisi, F. Ronga, A. Weber, G. W. '07



## **NMH: SUSY spectra and LHC signatures**



#### Scenario with non-universal Higgs masses (NUHM)

- universality of m<sub>0</sub> is motivated by the need to suppress unwanted flavor changing processes (generation blind mech for matter scalars in SUSY GUTs)
- ▶ this does not apply to soft breaking Higgs masses. In SO(10) SUSY GUTs:  $(10 + \overline{5} + \overline{\nu}) \in \hat{\psi}(16), (5_H, \overline{5}_H) \in \hat{\phi}(10)$ , different repres  $\Rightarrow$  SUSY breaking scalar mass terms for  $\hat{\psi}(16)$  and  $\hat{\phi}(10)$  are not expected to be the same

#### Scenario with non-universal Higgs masses (NUHM)

- universality of m<sub>0</sub> is motivated by the need to suppress unwanted flavor changing processes (generation blind mech for matter scalars in SUSY GUTs)
- ► this does not apply to soft breaking Higgs masses. In SO(10) SUSY GUTs: (10 + 5̄ + ν̄) ∈ ψ̂(16), (5<sub>H</sub>, 5̄<sub>H</sub>) ∈ φ̂(10), different repres ⇒ SUSY breaking scalar mass terms for ψ̂(16) and φ̂(10) are not expected to be the same

the minimal non-universal Higgs extension of mSUGRA  $\Rightarrow$  NUHM1:  $m_0, m_{\phi}, m_{1/2}, A_0, \tan\beta$  and  $sign(\mu)$  $m_{\phi} = sign(m_{H_u,d}^2) \cdot \sqrt{|m_{H_{u,d}}^2|}$  $m_{H_u,d}^2$  are allowed to be negative

- $\mu$  becomes small for  $m_{\phi} > m_0$   $\Rightarrow$  FP! can be reached even for low  $m_0$  and  $m_{1/2}$ !
- $\begin{tabular}{ll} \hline M_A \ decrease \ down \ to \ 2m_{\widetilde{Z}_1} \ for \\ m_\phi \ going \ down \Rightarrow \ Funnel! \ Even \\ for \ low \ tan \ \beta! \ Requires \ m_\phi^2 < 0. \end{tabular}$

Baer, A.B., Mustafayev, Profumo, Tata '05

 $m_0 = 300 \text{GeV}, m_{1/2} = 300 \text{GeV}, \tan\beta = 10, A_0 = 0, \mu > 0, m_r = 178 \text{GeV}$ 



# **Collider signatures for NUMH1 scenario**



Tevatron:  $3\ell$  from  $p\bar{p} \to W_1Z_2X$  followed by  $\widetilde{W}_1 \to \ell \nu_\ell \widetilde{Z}_1$  and  $\widetilde{Z}_2 \to \ell \overline{\ell} \widetilde{Z}_1$ . When  $m_\phi > m_0$  and  $|\mu|$  is small  $\Rightarrow$  improved prospects for clean  $3\ell$ (no dominant events with tau leptons)

LHC: similar reach (in terms of  $m_{\tilde{q}}$  and  $m_{\tilde{g}}$ parameters) in the mSUGRA and NUHM1 models, but detailed gluino and squark cascade decays will change! H and AHiggs could be much lighter  $\Rightarrow$  direct production followed by  $H, A \rightarrow \tau \bar{\tau}$ .

**ILC:** In addition to "standard" mSUGRA FP signatures,  $H^0Z^0$ ,  $A^0h$  (possibly a good determ of  $\tan \beta$ ),  $H^+H^-$  become accessible to study;  $\tilde{Z}_1\tilde{Z}_3$ ,  $\tilde{Z}_1\tilde{Z}_4$ ,  $\tilde{Z}_2\tilde{Z}_2$ ,  $\tilde{Z}_2\tilde{Z}_3$ ,  $\tilde{Z}_2\tilde{Z}_4$  and even  $\tilde{Z}_3\tilde{Z}_4$  as well as  $\tilde{W}_1^{\pm}\tilde{W}_2^{\mp}$ are kinematically accessible.

SUSY spectroscopy would become a reality!

# **Conclusions**

- SUSY is very compelling theory
- CDM constraints are crucial
- LHC: covers funnel region and stau-coannihilation region, just small portion of FP/HB is covered
- ILC: greatly extends LHC reach in FP/HB
- Extention of LHC reach in FP region could be crucial for ILC fate,
  - 2.4 TeV gluino mass is (indirectly) accessible with new analysis!
- direct/indirect DM search experiments: high degree of complementarity to LHC/ILC
- combined constraints: mSUGRA is practically excluded!
- one step beyond the universality solves many problems: NMH, NUMH, non-universal gauginos; motivated by SUSY GUTS

Present constraints/data, especially CDM one give a good idea how SUSY should look like at the upcoming experiments aimed to finally hunt down EW scale Supersymmetry!

## **Appendix**

# Sparticle reach of LHC for 100 fb<sup>-1</sup>



# **Sparticle reach of LHC various luminosities**





## **FP Region**

HB/FP region for  $m_{1/2} = 225$  GeV,  $\tan \beta = 30$ ,  $A_0 = 0$ ,  $\mu > 0$ :  $\sqrt{s} = 500$  GeV



#### **Simulations**

#### ATLFAST $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$ • Leptons $-2.5 < \eta < 2.5$ $0.1/\sqrt{E}(GeV) \bigoplus 0.007$ $E_T > 5 \text{ GeV}$ $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ • Jets $-2.5 < \eta < 2.5$ $0.5/\sqrt{E(GeV)} \oplus 0.03$ $E_T > 20 \text{ GeV}$ $\Delta R = 0.4$

## **SUSY GUTs**

Gauge couplings unifi cation in the MSSM is the compelling hint for SUSY GUTs

- **SU(5)**[Georgi, Glashow(1974)] : { $Q = (u d), e^c, u^c$ }  $\in \mathbf{10} \{d^c \ L = (v e)\} \in \mathbf{5}$ Higgs doublets have color triplet SU(5) partners:  $(H_u T), (H_d T) \in \mathbf{5}_{\mathbf{H}}, \mathbf{\overline{5}}_{\mathbf{H}}$
- **SO**(10)[Georgi,Glashow;Fritzsch,Minkowski(1974)] : gauge and family AND two Higgs multiplet unifi cation:  $(10 + \overline{5} + \overline{v}) \in 16$ ,  $(5_H, \overline{5}_H) \in 10_H$

SO(10) SUSYGUT models are particularly intriguing:

- unify all matter of a single generation into the 16-d spinorial multiplet of SO(10)
- The 16 of SO(10) contains a gauge singlet  $v_R$  convenient for giving neutrinos mass (sea-saw:  $m_{v_{\tau}} \simeq 0.03 \text{ eV} \Rightarrow M_N \sim 10^{14} \text{ GeV}$ )
- SO(10) explains the cancellation of triangle anomalies
- Neutrino sector of SO(10) models lends itself to a theory of baryogenesis via leptogenesis
- Minimal SO(10) SUSYGUT: SM Higgs doublets are both 10d Higgs multiplet  $\Rightarrow$ Yukawa coupling unification:  $f_t = f_b = f_{\tau}$ ,  $W \ni f\hat{\psi}(\mathbf{16})^T\hat{\psi}(\mathbf{16})\hat{\phi}(\mathbf{10}) + \cdots$

However, 4D SUSY GUTs models have problems: large Higgs reps – cumbersome; spectrum of SM matter fi elds; rapid proton decay and doublet-triplet splitting problem.

## **SUSY GUTs**

Recent progress in constructing SUSY GUT in 5+ space-time: GUT symmetry can be broken by compactifi cation of the extra dimensions on an appropriate topological manifold, such as an S<sub>1</sub>/(Z<sub>2</sub> × Z'<sub>2</sub>) orbifold [Kawamura; Hall,Nomura; Altarelli,Feruglio; Kobakhidze; Hebecker,March-Russel; Asaka,Buchmuller,Covi; Dermisek,Mafi ; Hall,Nomura,Okui,Smith]

Maintain positive features of 4D SUSYGUTS and solve many problems

Reduction of the gauge group upon breaking  $SO(10) \Rightarrow D$ -term For  $SO(10) \rightarrow SU(5) \times U(1)_X \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y$  one has:  $m_Q^2 = m_E^2 = m_U^2 = m_{16}^2 + M_D^2$ ,  $m_D^2 = m_L^2 = m_{16}^2 - 3M_D^2$ ,  $m_N^2 = m_{16}^2 + 5M_D^2$ ,  $m_{H_{u,d}}^2 = m_{10}^2 \mp 2M_D^2$  Parameters:  $m_{16}$ ,  $m_{10}$ ,  $M_D^2$ ,  $m_{1/2}$ ,  $A_0$ ,  $sign(\mu)$ 

results for SO(10) Yukawa unifi ed models: [Auto,Baer,Balazs,AB,Ferrandis,Tata; Blazek,Dermisek,Raby; Tobe,Wells] very specifi c param space and strong correlations

- $\tan \beta \sim 50$ ,  $m_{16} \gtrsim 5$  TeV,  $m_{1/2} \lesssim 100 150$  GeV light charginos and neutralinos may be accessible at Tevatron!
- $m_{10} \simeq \sqrt{2}m_{16}$ ,  $A_0 \simeq -2m_{16}$ ,  $M_D/M16 \simeq 0.33$ , radiatively driven inverted scalar mass hierarchy regime [Bagger et al.]

#### **Results for SO(10) model**



A. Belyaev Supersymmetry in Dark Matter Allowed Regions

IPPP, Durham, November 23

## SO(10): DT (D-term) and HS (Higgs-split) models



