

Top mass measurement using B hadron decay length

ATLAS-UK Physics Meeting 19 September 2006

D. Typaldos

University of Birmingham

Outline

- Method description
- Analysis details
- Results
- Background contributions
- Top mass sensitivity
- Systematic effects
- Conclusions

- Method proposed by C.S Hill, J. R. Incandela and J. M.Lamb (University of California Santa Barbara - hep-ex/0501043)
- B quark momentum sensitive gauge for the top quark mass measurement
- top mass direct measurement through the b jet energy jet energy scale uncertainty
- top mass measurement
 - based on charged track reconstruction by correlating the B hadron decay length to the top mass (mass estimator)
- B hadron decay length average (transverse) distance of the displaced vertices of the b hadrons
- Various systematics uncertainties
 - factors affecting both top quark momentum and b hadron decay length, light jet mistagging, tracking performance, background etc.

Analysis details

Dileptonic decay channel

- From reduced background and combinatorics more efficient track and secondary vertex reconstruction expected
- Disadvantage: Branching ratio only ~5% (400K ttbar events per year @ L= 10 fb⁻¹)
- Only electrons and muons considered

Initial phase of analysis

- Private production of 20K ttbar events (PYTHIA)
- Settings following basic configuration from Rome dataset details
- Athena Release 10.0.1
- PYTHIA v. 6.2
- Top quark constrained in W decay to e/mu only

Current datasets

- ~ 15K ttbar with TopRex
- Athena Release 11.0.41

Event selection

- Initially cut selection soft (avoiding biasing effects)
- At least 2 leptons with Pt > 25 GeV & |Eta| < 2.5
- 'isEM' condition + EtCone20 < 10. GeV for electrons</p>
- No more than 4 neighbouring tracks (pt> 5GeV/c) to leptons
- Lepton pair Z boson VETO ($\Delta m=2$ GeV)
- 2 highest Pt leptons having opposite charge (reordering allowed)
- Jets with Pt> 15 GeV && |Eta|<2.1</p>
- Pt_{mis} > 40 GeV
- b-tagging algorithms with not optimised weight cut
- [For the b-signal study] b jets match a B hadron (R-cone =0.3)]

B hadron decay length

• Lepton pt reorder: 5.8%

• Lepton truth match: 93.4% correctly to a truth W boson as a mother particle

• **b jets efficiency : 45.6 %** (#tag b-jets / # b-labelled jets)

• Decay vtx: VkalVrt algorithm - SV1 tagger (while with Athena rel. 10.0.1 SVBU tagging algorithm was used)

• Low length range:

probably deviation due to negative values of decay length

Background: Diboson samples

Preliminary study on background contribution using Rome datasets :

- WW [rome.004130.recov10.McAtNlo_WW_Jim_leplep] @ 30K
 ZW⁺ [rome.004135.recov10.McAtNlo_ZW+_Jim_leplep] @ 27K
- ZW⁻ [rome.004134.recov10.McAtNlo_ZW-_Jim_leplep] @ 6K
- ZZ [rome.004160.recov10.McAtNlo_ZZ_Jim_leplep] @ 20K

Lower statistics: only one boson constrained to decay decaying leptonically

$\sigma_{_{ m WW>leplep}}$	= 12.0 ± 0.17 pb
$\sigma_{zz - > leplep}$	= 0.5 ± 0.01 pb
σ_{zw}^{+} > leplep	= 7.1 ± 0.09 pb
σ_{zw}^{-} >leplep	= 4.4 ± 0.04 pb
$\sigma_{ ext{tt->leplep}}$	= 22.0 ± 0.15 pb

		ZZ	ZW-	ZW+
Total Event Number in dataset	28975	19220	6231	26777
Dibosons decay>leplep (effective)		1157	1302	5937
2 High Pt leptons	2028	858	790	3393
Lepton pair Z peak veto	1980	453	552	2290
Opposite charge leptons	1665	293	326	1369
Jets passing Pt/Eta cut	2022	520	526	2107
TAGGING				
[Likelihood > 0.9]	49	12	15	59
[Weight > 3]				
IP2D	67	19	21	63
IP3D	72	16	23	61
SV1+IP3D	65	12	18	51
LF2D	<mark>. 21</mark>	8	11	25
			COF	CO7
# Events expected at 10 fb ⁻¹ (1 b jet,@ leas	st) 1241	56	605	607
Nb ttbar Events expected at 10 fb ⁻¹		200K -	300 K	
	Hig	Higher background contribution from diboson samples		
			Son Su	

Drell-Yan

In Athena rel. 11.0.41 the next csc datasets are analyzed:

csc11.005110.JimmyZeeLowM.recon.AOD.v11004107 csc11.005112.JimmyZeeHighM.recon.AOD.v11004107 csc11.005191.JimmyZmumuRadiative.recon.AOD.v11004205 csc11.005141.JimmyZmumu.recon.AOD.v11004204 (previous analysis)

Dataset	Int Lum.(pb ⁻¹)	#Events	Norm @ L= 10 fb ⁻¹	%	
5110	165.6	29K	664	<<1	
5112	12.7	10K	787	<<1	
5191	65.4	7K	4961	1.5	
5141	77.7	46K	9402	2.9	

The most 'dangerous' Drell-Yan dataset : Z/ $\gamma^* \dots > \mu\mu$

Top mass sensitivity

Start of fitting range decay Distance comparison

- Results from previous work: (Athena rel. 11.0.41)
- TOPREX/PYTHIA Fast Simulation 125K events
- top mass range (175 ± 5 GeV)
- Variation left edge of the fit range
- Fitting function : pure exponential
- Fairly good sensitivity of the top mass independently of the start point
- Unfortunately this introduce another systematic uncertainty to control and minimize

B hadron lifetime {i}

Four most frequent B hadron flavors considered: ${f B^0}$, ${f B^\pm}$, ${f B_s}$ and ${\Lambda_b^0}$

		B^0	B^{\pm}	$B_s^{\ 0}$	$\Lambda_b^{\ 0}$
Lifetime (ps)		1.536	1.671	1.461	1.229
Uncertainty on lifetime (ps)		0.014	0.018	0.057	0.080
Correction factor $1\pm(\Delta\tau/\tau)$		+: 1.009 -: 0.991	+: 1.011 -: 0.989	+: 1.039 -: 0.961	+:1.065 -: 0.935
Mass (MeV)		5279.4	5279.0	5369.6	5624.0
Mass value	B entries	Specific ha	dron's entries in s	ample (% rel. con	tribution)
170 GeV	97.6 %	41158 (39.1)	41293 (39.3)	12491 (11.9)	7696 (7.3)
	of 105138				
175 GeV	97.6 %	41774 (39.2)	41657 (39.1)	12758 (12.0)	7748 (7.3)
	of 106441				
180 GeV	97.6 %	42241 (39.1)	42407 (39.3)	12863 (11.9)	7868 (7.3)
	of 107859				

Study on the effect of a correlated variation on the B hadron lifetime to the top mass sensitivity

B hadron lifetime variation in 2 ways with use of :

Individual B hadron's τ
Average B hadron lifetime (ADMIXTURE MEAN LIFE-PDG)

B hadron lifetime {ii}

Pessimistic scenario : distinct B hadron flavor lifetime variation

ATLAS-UK Physics Meeting -- D.Typaldos

B Fragmentation

- Preliminary aspects (Athena rel. 10.0.1)
- B Fragmentation effect on decay length for fast simulated data (PYTHIA - 120K)
- Standard top mass value (175 ± 5 GeV/c²)
- Variation of Peterson parameter around the default value ($\Delta \epsilon = 0.0025$)
- Analytical solution from ε to ε + :
 - ~ 2 GeV/c² (central region)

Conclusions

- B hadron secondary vertex reconstruction Fairly good agreement with truth
- The most significantly contributing background Diboson: WW
 Drell-Yan: Z/γ* ---> μμ
- Top mass sensitivity
 Positive in variation of the left edge for
 the fitting range systematic effect to control
- Systematics uncertainties (I: B hadron lifetime effect) Correlated variation of B hadron lifetime:
 - individual B flavor [higher effect on top mass]
 - with average lifetime value [top mass uncertainty reduced]
- Systematics uncertainties (II: B fragmentation) Top mass uncertainty at ~ 2 GeV/c² (central top mass values)

STILL A LOT OF THINGS TO DO ...

Analysis to be updated (lepton identification/isolation) Vertex resolution Extension of analysis on further systematics Track reconstruction and ID efficiency Use of new csc datasets

Thank you for your attention !