

Search for anomalous

FCNC single top quark production with ATLAS

Teh Lee Cheng Royal Holloway, University of London 19 Sep 2006 ATLAS UK Physics meeting IPPP, Durham

Motivation

- At the LHC, top physics is important:
 - Check SM prediction (e.g. single top, quantum no.)
 - Good understanding essential (top as background)
 - Probing new physics
- In SM, <u>flavour-changing neutral current</u> (FCNC) involving top quarks is extremely suppressed; occurs only at one-loop order due to GIM mechanism, e.g. B(t → cg) ~ 10⁻¹².
- Many new physics model predicts <u>much larger</u> FCNC interaction rate – a few orders of magnitude.
- Hence there's an increase in the top production cross section as well as FCNC decay branching.

Ref [1], q = u,c	SM	2-Higgs doublet model	MSSM	.∦K-MSSM
$B(t \rightarrow q g)$	5 x 10 ⁻¹²	~ 10 ⁻⁴	~ 10 ⁻⁴	~ 10 ^{−3}
$B(t \rightarrow q \gamma)$	5 x 10 ^{−14}	~ 10 ⁻⁷	~ 10 ^{−6}	~ 10 ^{−5}
$B(t \rightarrow q Z)$	~ 10 ^{−14}	~ 10 ^{−6}	~ 10 ^{−6}	~ 10 ^{−4}

[1] hep-ph/0605003

- My study: to estimate sensitivity of ATLAS detector to anomalous FCNC single top production $u(c) + g \rightarrow t$.
- Tools:
 - TopReX 4.10, Pythia 6.2
 - ATLFAST

(Athena 10.0.1)

Model independent approach

- Since we don't know which model is correct, a useful way is to adopt a <u>model-independent</u> approach using effective Lagrangians.
- For anomalous couplings of top to gluon and up/charm quarks, the strength is given by κ/Λ as in

$$\mathcal{L}_{tq}^{g} = -g_{s} \frac{\kappa_{tq}^{g}}{\Lambda} \bar{t} \sigma^{\mu\nu} T^{a} (f_{tq}^{g} + ih_{tq}^{g} \gamma_{5}) q G_{\mu\nu}^{a} + \text{H.c.}$$

 κ_{qg} = anomalous coupling strength Λ = scale of new physics

Current constraints

	LEP2	Tevatron	HERA	
$B(t \rightarrow q g)$	< 17 %	< 29%	< 13% [2]	
$B(t \rightarrow q \gamma)$	< 3.2%	< 3.2% (CDF)	< 0.66%	
$B(t \rightarrow q Z)$	< 7%	< 32% (CDF)	-	

[2] hep-ph/0604119

Signal

• Signal at tree level: $ug/cg \rightarrow t \rightarrow bW \rightarrow b\ell v$.

- After reconstructing the top, <u>count top event</u> within a mass window, e.g. 140–190 GeV (adopted here). Look for excess.
- For $\kappa_{qq}/\Lambda = 0.1 \text{ TeV}^{-1}$ (used in simulation):
 - $\sigma(u + g \rightarrow t) \approx 76 \text{ pb (incl. t)}$
 - $\sigma(c + g \rightarrow t) \approx 15 \text{ pb}$
- Cross section scales as $(\kappa/\Lambda)^2$ for κ_{gq}/Λ < ~0.2 TeV⁻¹

Background

- Background:
 - W + n jets (n=1,2,3,...)
 - EW t-chan. single top
- Less problematic:
 - Wbb
 - t t
 - Wcc
- Negligible:
 - Wt- and s-channels single top

Event selection

Basic cuts

- Exactly 1 isolated lepton (e/mu), pT > 20 GeV
- Exactly 1 b-tagged jet, pT > 30 GeV (and leading)
- Missing pT > 20 GeV

Further, optimized cuts

- B-jet pT > 40 GeV
- Reconstructed top, pT < 20 GeV</p>
- Inv. mass (bjet,lep) > 55 GeV
- HT (Scalar sum of pT of lepton, all jets, ptmiss) < 270 GeV
- W pT > 30 GeV
- ∆R (b,W^{rec}) < 4.0

Kinematics plots

After basic cuts...

mtop window 140-190 GeV

After cuts...

Process	Accept. eff.	σ (before) pb	σ (after)	n/10fb ⁻¹	
ug	1.04 %	76.12	0.80	8022	S ~10k
cg	1.74 %	15.33	0.27	2701	B ~100k
W+j	0.09 %	8971.00	7.68	76805	81 %
ewt-t	0.38 %	246.60	0.94	9407	10 %
Wbb	0.57 %	71.14	0.41	4073	4 %
tt	0.03 %	886.00	0.23	2320	2 %
Wcc	0.07 %	263.20	0.17	1729	2 %
ewt-tW	0.13 %	51.57	0.06	646	0.7 %
ewt-s	0.25 %	10.65	0.03	261	0.3 %

Note: Cross section for W+j, Wbb, Wcc include B(W->e/mu)

Sensitivity

- Sensitivity of ATLAS is estimated for 10 fb⁻¹ (1 yr LHC, 10³³ cm²s⁻¹) assuming equal anomalous coupling for top-gluon to u and c quarks.
- Estimator for signal significance = S/\sqrt{B} .
- 5σ discovery is possible if κ_{qg}/Λ is as large as 0.038 TeV⁻¹, corresponding to FCNC branching of 2.60 x 10⁻³.
- In absence of signal, we can set an upper limit, $\kappa_{qg}/\Lambda < 0.022$ TeV⁻¹ at 95% CL, corr. to FCNC branching of 8.56 x 10⁻⁴.

	5 σ	95 %CL	
к (gq) /Л	> 0.038 TeV ⁻¹	< 0.022 TeV ⁻¹	
$B(t \rightarrow qg)$	> 2.60 x 10 ⁻³	< 8.56 x 10⁻₄	Current lim
			< 13%

it:

Systematic uncertainties

- Physics + modelling
 - Q-scales dependence
 - Choice of PDF
 - Input top mass
 - ISR/FSR
 - B-quark fragmentation
- Detector performance
 - B-tagging
 - Jet energy scales (JES)
- Other systematic effects
 - Pile up
 - Luminosity measurement ΔL

 $\succ \Delta \sigma$, rate only

Cross section uncertainty, $\Delta\sigma$

PS MC with LO ME

NLO σ

ug	cg	VVj	Wbb	Wcc	tW	t	S	tt
+16.4	+16.9	+15.4	+28.4	+28.8	+29.2	+3.76	+6.08	+12.3
-15.4	-16.3	-14.3	-22.4	-22.8	-29.2	-4.12	-6.03	-12.3
%	%	%	%	%	%	%	%	%

Systematics	∆BR		
$\Delta \sigma$ (signal)	+ 16.6%		
	- 15.6%		
Δσ (bgnd)	+ 6.6%		
	- 6.2%		
∆ lumi. (±5%)	± 2.5%		
ISR (20% on/off)	± 3.6%		
FSR (20% on/off)	± 6.0%		
B-fragmentation	± 1.0%		
(ε _b = - 0.0035)			
B-tag (±10%)	+ 12.8%		
	- 4.8%		
JES (b-jet, ±3%)	+ 1.6%		
	- 0.8%		
JES (light-jet, ±1%)	± 0.0%		
Pile up (low lumi.)	+ 8.0%		
Total sys. unc.	+ 24.6%		
	- 19.0%		

rate only

rate + shape

Result on ΔBR

B(t→qg) <8.56x10⁻⁴ (95%CL) Δ B(sys) = (+2.1-1.6)x10⁻⁴ Δ B(MC stat) = 0.64% = ± 0.055 x 10⁻⁴ (smaller for real data)

Note: $\Delta \kappa$ is half as B ~ κ^2

Conclusion

 This fast simulation study suggests that, given 10 fb⁻¹, ATLAS can set limit on FCNC top decay:

B(t→qg) < 8.56 ± 0.055 (MC stat) +2.1−1.6 (sys) x 10⁻⁴ @ 95%CL

i.e. 2 orders of magnitude better than current limit (< 0.13).

- Results reported in comm. <u>ATL-COM-PHYS-2006-056</u>; waiting for approval, comments welcomed!
- Cf. result from top FCNC decay in tt: B(t→qg) < 1.4 x 10⁻³ @ 95%CL [ATL-PHYS-PUB-2005-009]
- Follow-up work needed (any interest?):
 - Full detector simulation
 - More sophisticated analysis technique beyond simple-cuts: statistical techniques (e.g. maximum likelihood), sideband.
 - NLO (i.e. $2 \rightarrow 2$) simulation for signal processes.