WW Cross Section Measurement and $H\rightarrow WW$ Search

Chris Hays,
Oxford University

- CDF WW Cross Section
- ATLAS WW Cross Section
- ME Method for Signal Extraction
- Higgs Search and Challenges

UK ATLAS Meeting Durham, England September 18, 2006

WW Cross Section

First step in Higgs search

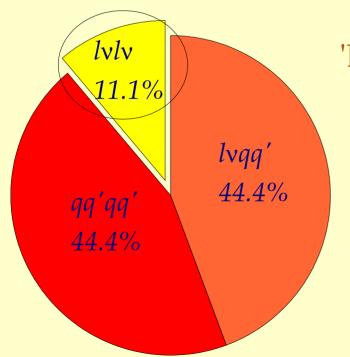
- * Establish standard model process
- * Understand detector and backgrounds
- * Constrain theoretical uncertainties (PDFs, NLO QCD)

Sensitive to new physics

- * New energy regime gives immediate sensitivity to anomalous couplings at multi-TeV scale
- * Other new physics (SUSY, LED, ...) can contribute to this final state

First year potential at ATLAS

- * Cross section: 5.4 5.8 pb
- * Acceptance: 5 15%
- * $\sim 250 750 WW \text{ events/fb}^{-1}$
- ~5% statistical uncertainty with 1 fb⁻¹


CDF WW Production Cross Section

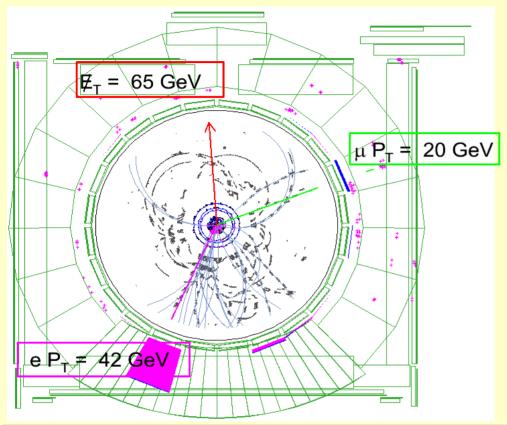
CDF analysis a useful guide to LHC analysis

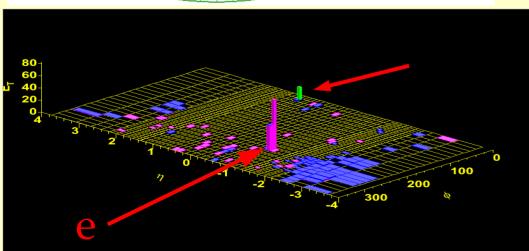
* Many overlapping backgrounds & acceptance issues

NLO cross section: $\sigma(p\bar{p} \rightarrow WW) = (12.4 \pm 0.8) \text{ pb}$

WW decay modes

'Dilepton' channel:


- * Low hadronic-jet background
- * First observed in ~200 pb⁻¹ in Run 2 (CDF evidence in Run 1)


o CDF: 17 events, 5.2 background

o DØ: 25 events, 8.0 background

 5.2σ significiance

WW Candidate Selection

Two leptons ($E_T > 20 \text{ GeV}$)

Large transverse energy imbalance $(\rlap/E_{_T} > 25 \text{ GeV})$

Remove *Z*, *jet* events:

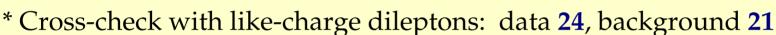
* If
$$76 < m_{ll} < 106 \text{ GeV}$$
, $E_T / \sqrt{\Sigma E_T} > 3$

* If
$$E_T < 50 \text{ GeV}$$
,

minimum $\Delta \phi(\cancel{E}_{\tau}, l, \text{ jet}) > 20^{\circ}$

Remove $t\bar{t}$ events:

* **No jets** ($E_T > 15 \text{ GeV in } |\eta| < 2.5$)

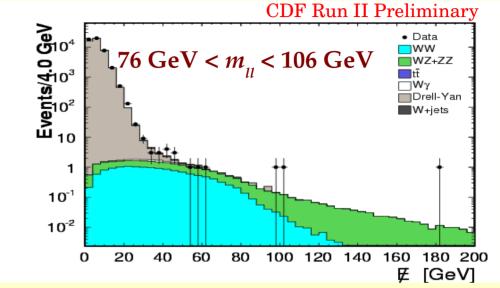

WW Backgrounds and Acceptance

Z:

- * Use MC to model high E_{τ} tail
- * Cross-check ($\not\!\!E_T^{sig} < 3$): data **18**, bd **15.4**

W + jet:

- * Measure jet→lepton rate
- * Apply rate to jet in *W* + jet events


* Photon conversion in detector mimics dilepton + \mathbb{E}_{τ} final state

Acceptance and uncertainties:

Two leptons ($e \mid \eta \mid < 2, \mu \mid \eta \mid < 1$): 1/5

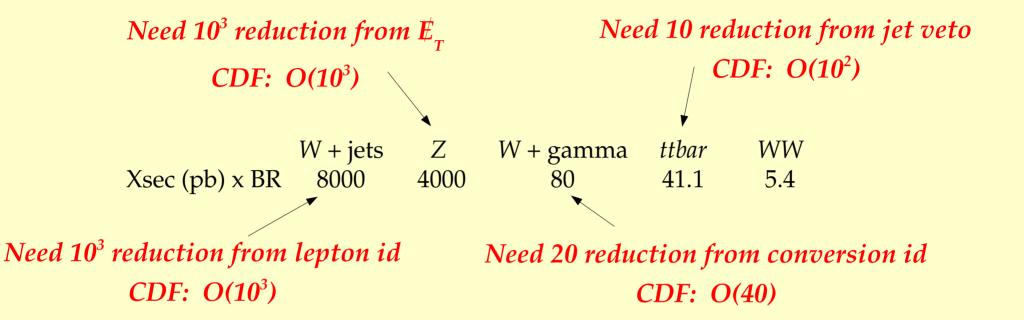
Other cuts: 1/2

Jet Rejection	± 7.8%
Trigger Efficiency	± 2%
PDF	± 1.7%
Electron Identification	± 1%

WW Cross Section Results

Expected signal and backgrounds:

CDF Run II Preliminary


Mode	ee	еµ	μμ	11
WW	$12.8 \pm 0.1 \pm 1.1$	$28.8 \pm 0.1 \pm 2.4$	$10.7 \pm 0.1 \pm 0.9$	$52.4 \pm 0.1 \pm 4.3$
Drell-Yan	$5.0 \pm 0.5 \pm 1.3$	$3.8 \pm 0.4 \pm 1.0$	$3.0 \pm 0.4 \pm 0.8$	$11.8 \pm 0.8 \pm 3.1$
W+jets	$3.0 \pm 0.2 \pm 0.7$	$6.7 \pm 0.4 \pm 2.0$	$1.3 \pm 0.2 \pm 0.5$	$11.0 \pm 0.5 \pm 3.2$
WZ + ZZ	$3.6 \pm 0.0 \pm 0.4$	$0.9 \pm 0.0 \pm 0.1$	$3.4 \pm 0.0 \pm 0.3$	$7.9 \pm 0.0 \pm 0.8$
$W\gamma$	$3.6 \pm 0.1 \pm 0.7$	$3.2 \pm 0.1 \pm 0.7$	$0.0 \pm 0.0 \pm 0.0$	$6.8 \pm 0.2 \pm 1.4$
$t\bar{t}$	$0.1 \pm 0.0 \pm 0.0$	$0.1 \pm 0.0 \pm 0.0$	$0.0\pm0.0\pm0.0$	$0.2 \pm 0.0 \pm 0.0$
Sum Bkg	$15.2 \pm 0.6 \pm 1.7$	$14.8 \pm 0.6 \pm 2.3$	$7.8 \pm 0.4 \pm 1.0$	$37.8 \pm 0.9 \pm 4.7$
Expected	$28.0 \pm 0.6 \pm 2.0$	$43.7 \pm 0.6 \pm 3.3$	$18.5 \pm 0.4 \pm 1.3$	$90.2 \pm 0.9 \pm 6.4$
Data	29	47	19	95

$$\sigma_{WW} = 13.6 \pm 2.3 \text{ (stat)} \pm 1.6 \text{ (sys)} \pm 1.2 \text{ (lum)} \text{ pb}$$

Measurement accuracy ~20% in 825 pb⁻¹ (from ~40% in 200 pb⁻¹)

* 10σ significance

Background Reduction at ATLAS

CDF: signal to background O(1)

Could be worse for LHC

- * $t\bar{t}$ much larger relative cross section
- * more tracker material: higher $\gamma \rightarrow e$ misidentification rate Can ATLAS do better with lepton id and E_{τ} ?

Steps to Background Reduction

W + *jets* production:

- * Understand sources of $jet \rightarrow$ lepton misidentification
- * Can multivariate techniques reduce rates?

Z production:

- * Understand detector sources of large missing energy
- * Methods to target and reduce sources?

*W*γ production:

- * Study conversion-finding efficiency
- * Road search to improve efficiency?

tt production:

* Compare recoil cut to jet cut: theoretical uncertainties vs rejection factor

Signal Acceptance

Theoretical issues:

- * $WW p_T$ distribution and N_{jets} spectrum
- * PDF acceptance uncertainties

Experimental issues:

- * Lepton identification efficiency
- * Uncertainty of E_T cut
- * Luminosity
- * Quote ratio of WW to Z cross sections to reduce uncertainty?

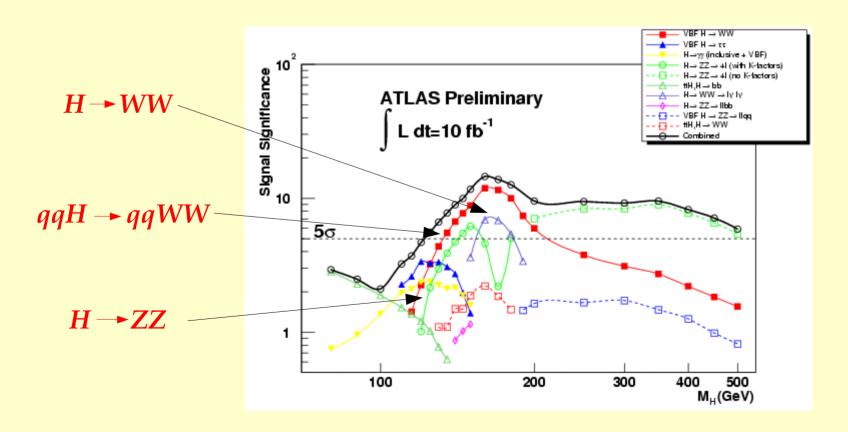
Matrix-Element-Based Searches

Determine a per-event probability for signal based on the matrix element and measured quantities

Output equivalent to a neural network

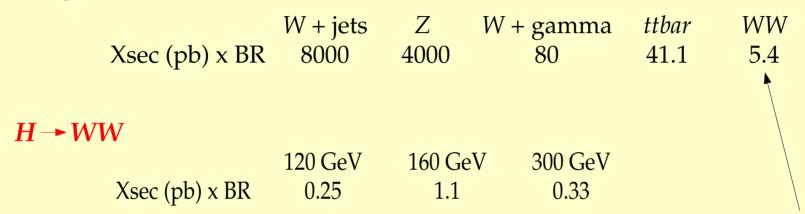
→ But uses the matrix element rather than an empirical training procedure from fully-simulated events

Can determine probability for each Higgs mass hypothesis

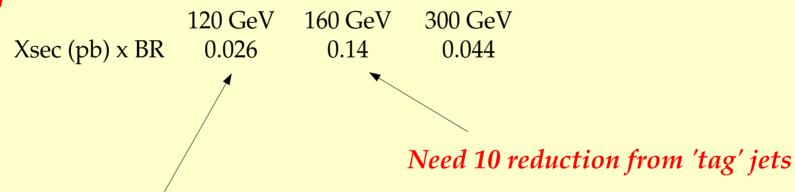

After discovery, use method to measure the Higgs mass

Technique originally developed at Fermilab to measure the top quark mass * Now being applied to single-top search (results this fall) and Higgs to WW search (results next spring)

Higgs → WW Search Challenges


Best sensitivity for $m_{_H} \sim 160 \text{ GeV}$

- * Good lepton id for $p_{\scriptscriptstyle T}$ ~ 10 GeV can extend down to $m_{\scriptscriptstyle H}$ ~ 140 GeV
- * Gain sensitivity at low masses through vector-boson fusion channel


Higgs → WW Search Challenges

Backgrounds

Need 5 reduction from ME technique

Need extra 4 reduction for low-mass Higgs

Summary

WW channel promising for Higgs discovery

* Staged approach:

Measure WW cross section with 1 fb⁻¹

Discover Higgs with 10 fb⁻¹

Matrix-element approach

* Physics-based method to maximize statistical power for discovery

Challenges:

* Maintain high S/B for WW cross section

Need good lepton id & conversion rejection; small \mathbb{E}_{τ} tails

* Obtain sensitivity to low $m_{_H}$ through low- $p_{_T}$ lepton id

Backup

Anomalous Triple-Gauge Couplings

Parametrize new physics in effective Lagrangian:

$$L_{WWV}/g_{WWV} = ig_{1}^{V}(W^{\dagger}_{\mu\nu}W^{\mu}V^{\nu} - W^{\dagger}_{\mu}V_{\nu}W^{\mu\nu}) + i\kappa_{\nu}W^{\dagger}_{\mu}W_{\nu}V^{\mu\nu} + i\lambda_{\nu}M_{W}^{2}W^{\dagger}_{\lambda\mu}W^{\mu}_{\nu}V^{\nu\lambda}$$

$$SM: g_{1}^{\gamma} = g_{1}^{Z} = 1 \qquad SM: \kappa_{\gamma} = \kappa_{Z} = 1 \qquad SM: \lambda_{\gamma} = \lambda_{Z} = 0$$

$$AC: \Delta g_{1}^{Z} (= g_{1}^{Z} - 1) \qquad AC: \Delta \kappa_{Z}, \Delta \kappa_{\gamma} (= \kappa_{V} - 1) \qquad AC: \lambda_{Z}, \lambda_{\gamma}$$

Impose unitarity by introducing a 'new physics' energy scale:

$$\alpha(s) = \alpha_0 / (1 + s/\Lambda^2)^2$$

Anomalous couplings increase as new physics scale approaches Manifested in additional cross section at high boson $p_{\scriptscriptstyle T}$ in WW/WZ events