

Theoretical Developments Beyond the Standard Model

by

Ben Allanach (DAMTP, Cambridge University)

Talk outline

- Bestiary of some relevant models
- SUSY dark matter
- Spins and alternatives

Hadronic SUSY Measurements

Q: Can we measure enough of these to pin SUSY down

ambride Orking grow

Shapes

Shape of invariant mass distribution obviously difficult due to detector effects. There are now analytical expressions: Miller, Osland, Raklev, hep-ph/0510356

- Some anti-SM cuts distort analytical shape
 - Shape largely *survives* modelled detector effects
- Feet are dangerous

Whine gro

R-Parity Violation

There are now some R-parity violating mSUGRA benchmarks^a

- $\tilde{\tau}/\tilde{\nu}$ LSP
- 2 or 4-body decays. Lots of τ s
- One benchmark with cm decay length
- One benchmark with jets

http://hepforge.cedar.ac.uk/~allanach/rpv/

All benchmarks pass current experimental constraints.

^aBCA, Bernhardt, Dreiner, Kom, Richardson, coming very soon

SUSY Dark Matter

Constraints on SUSY Models

mSUGRA well-studied in literature a: eg Ellis, Olive *et al*

PLB565 (2003) 176; Baltz, Gondolo, JHEP 0410 (2004) 052

^aBCA, Lester hep-ph/0507283, hep-ph/0601089

Dark Matter Caveats

- Implicitly assumed that LSP constitutes *all* of dark matter
- Assumed radiation domination in post-inflation era. No clear evidence between freeze-out+BBN that this is the case (t_{eq} changes).
- Examples of non-standard cosmology that would change the prediction:
 - Extra degrees of freedom
 - Low reheating temperature
 - Extra dimensional models
 - Anisotropic cosmologies
 - Non-thermal production of neutralinos (late decays?)

Collider SUSY Dark Matter Production

Strong sparticle production and decay to dark matter particles.

Q: Can we measure enough to predict σ ?

Collider SUSY Dark Matter Production

Strong sparticle production and decay to dark matter particles.

Any dark matter candidate that couples to hadrons can be produced at the LHC

Collider SUSY Dark Matter Production

Strong sparticle production and decay to dark matter particles.

Don't know lifetime - need confirmation from direct de-

tection

Theory Overview: SUSY/Exotics

PP•\RC

Ofking group

Cosmological Constant

Cosmological constant $\Lambda \sim (10^{-3} eV)^4$ provides a much *worse* hierarchy than Higgs fine tuning. Perhaps same thing that solves cosmological constant fine-tuning solves Higgs fine-tuning *- a logical possibility* eg string landscape. Some of Suggestion is to have all scalars except Higgs at say $M_{GUT} \sim 10^{16}$ GeV but light gauginos to:

- Preserve gauge unification
- Have WIMP candidate
- Solve SUSY flavour problem, proton decay etc
 Q: Throw away SUSY altogether?

Split SUSY

Q

 $\Gamma \propto rac{1}{m_{ ilde{a}}^4}$

Gluinos are *quasi-stable* and form R-hadrons: neutral or charged .

 \tilde{g} \tilde{q} χ_1^0 χ_1^q Look like a slow heavy muon that loses some of its energy in interactions with the detector. Charginos/neutralinos decay through *mixing effects*. Kilian *et al*, hep-ph/0408088, Kraan hep-ex/0404001

UED

- 5D model compactified on 1 TeV S_1/Z_2 : everything in bulk
- Get KK copies of SM separated by TeV: KKparity $(-1)^n$. $m_n^2 = \sqrt{(n/R)^2 + m_{SM}^2}$
- Probably only the first level will be measurable at LHC, and they cascade decay down to the LKP copy of the photon (a dark matter candidate!)
- Earned UED the title "bosonic supersymmetry", worried that it could be confused with SUSY model through cascade decays through the various *KK* modes.

Spins at LHC

Crucial check of SUSY is spin (cf UED). Consider $\tilde{q}_L \rightarrow q l \tilde{l}: m \equiv m_{ql}/m_{ql}(max) = \sin \theta/2$

$$\frac{dP(l^+q/l^-\bar{q})}{dm} = 4m^3, \qquad \frac{dP(l^-q/l^+\bar{q})}{dm} = 4m(1-m^2)$$

whereas pure PS is always 2m. Seems hopeless, since we cannot tag quarks vs anti-quarks (average is PS). pp collider leads to spin-generated lepton charge asymmetry

$$A^{+-} = \frac{m_{jl^+} - m_{jl^-}}{m_{jl^+} + m_{jl^-}}$$

Barr, hep-ph/0405052 Smillie, Webber, hep-ph/0507170

B.C. Allanach – p.12/18

Theory Overview: SUSY/Exotics

Spins at LHC

Crucial check of SUSY is spin (cf UED). Consider $\tilde{q}_L \rightarrow q l \tilde{l}: m \equiv m_{ql}/m_{ql}(max) = \sin \theta/2$

$$\frac{dP(l^+q/l^-\bar{q})}{dm} = 4m^3, \qquad \frac{dP(l^-q/l^+\bar{q})}{dm} = 4m(1-m^2)$$

whereas pure PS is always 2m. Seems hopeless, since we cannot tag quarks vs anti-quarks (average is PS). pp collider leads to spin-generated lepton charge asymmetry

Gluino spin+di-leptons Alves, Éboli, Plehn, hep-ph/0605067 $\tilde{g} \rightarrow \tilde{b}_1 \rightarrow \chi_2^0 \rightarrow \tilde{l} \rightarrow \chi_1^0$ tag charge of *b*'s

Spins at LHC

Crucial check of SUSY is spin (cf UED). Consider $\tilde{q}_L \rightarrow q l \tilde{l}: m \equiv m_{ql}/m_{ql}(max) = \sin \theta/2$

$$\frac{dP(l^+q/l^-\bar{q})}{dm} = 4m^3, \qquad \frac{dP(l^-q/l^+\bar{q})}{dm} = 4m(1-m^2)$$

whereas pure PS is always 2m. Seems hopeless, since we cannot tag quarks vs anti-quarks (average is PS). pp collider leads to spin-generated lepton charge asymmetry

More general spins Athanasiou, Lester, Smillie, Webber, hep-ph/0605286; ibid hep-ph/0606212

B.C. Allanach – p.12/18

Theory Overview: SUSY/Exotics

ambridg

Ofking ground

Higgsless Models

Unitarity violation through longitudinal weak boson scattering:

$$-(c^2 - 9c - 4)M_W^s E^2] + g_3^2 \frac{M_Z^4(1-c)}{2M_W^2} E^2 +$$

Higgs not Theory Overview: SUSY/Exotics

Higgs normally gets rid of $E^{2,4}$ terms.

B.C. Allanach – p.13/18

Unitarity

is lost at $\Lambda \sim 4\pi M_W/g \sim 1.8$ TeV. Precision EW constraints usually rule out strongly interacting physics at this scale. However, can *increase* this scale by adding extra W' bosons if $g_4 = g_3^2 + \sum_i g_{i3}'^2$

 $(2(g_4 - g_3^2)(M_W^2 + M_Z^2) + g_3^2 M_Z^4/M_W^2 =$ $\sum g_{i3}^{\prime 2} [3M_i^{\prime 2} - (M_Z^2 - M_W^2)^2 / M_i^{\prime 2}]$

ambridge

Orking grow

Unitarity Cancellation

In KK theories summing up infinite number of modes yields the relations *exactly* because of 5D gauge symmetry. However, strong coupling scale provides another cut off but can be increase Λ a factor of 10 and pass the EW constraints.

Little Higgs

Global $SU(5) \rightarrow SO(5)$ non linear sigma model broken by 24. Gauged subgroup $(SU(2) \otimes U(1))^2 \rightarrow SU(2)_L \otimes U(1)_Y$. The "pions" are:

 $1_0 \oplus 3_0 \oplus H \sim 2_{1/2} \oplus 3_{\pm 1}$

 1_0 , 3_0 eaten when gauge group broken. Gauge generators embedded such that if we "globalise" an initial $SU(2) \otimes U(1)$ by $g \rightarrow 0$, H would be an exact Goldstone boson, i.e. massless. Mass terms generated at one-loop are only log divergent: hierarchy only a problem if $\Lambda > 10$'s of TeV. *Q*: SUSY?

PP•\RC

Cambridge

Orking grow

B.C. Allanach – p.16/18

T-Parity

Original model had problems with T parameter. T-Parity swaps the two $SU(2) \otimes U(1)$ groups and protects W', Z' (T = -1) from tree-level interactions with W, Z (T = +1). Also, protects the triplet (T = -1) from getting a VEV, since H is T = +1. Add additional vector-like representations of singlet

double fermions for each EW doublet to cancel quartic and one-loop quadratic divergences. T-parity relieves the tuning associated with original little Higgs models in order to be compatible with *T*-parameter.

PP•\RC

Lightest T-odd particle can be hypercharge boson prime: forms dark matter candidate.

Theory Overview Subsylexotics and Low, hep-ph/0405243; Hubisz et al, hep-ph/0506042p.17/1

Final Slide

- An additional parity (*R*, *T* or *KK*) in order to keep lightest parity-odd partner *stable*
- Associated dark matter candidate
- As long as it's lighter than a few TeV and couples to hadrons, we'll be producing it at the LHC: this would be a fantastic collider window into cosmology!