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Goals of Higgs Physics

Higgs Search = search for dynamics of SU(2)×U(1) breaking

•• Discover the Higgs boson

•• Measure its couplings and probe
mass generation for gauge bosons and fermions

Fermion masses arise from Yukawa couplings via Φ†→(0, v+H√
2

)

LYukawa = −Γ i j
d Q̄′ iLΦd′ jR − Γ

i j∗
d d̄′ iRΦ

†Q′ jL + . . . = −Γ i j
d

v + H√
2
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= −∑
f

m f f̄ f
(
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H
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•• Test SM prediction: f̄ f H Higgs coupling strength = m f /v

•• Observation of H f f̄ Yukawa coupling is no proof that v.e.v exists
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Higgs coupling to gauge bosons

Kinetic energy term of Higgs doublet field:

(DµΦ)† (DµΦ) =
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•• W, Z mass generation: m2
W =

( gv
2
)2, m2

Z =
(g2+g′2)v2

4

•• WWH and ZZH couplings are generated

•• Higgs couples propotional to mass: coupling strength = 2 m2
V/v ∼ g2 v within SM

Measurement of WWH and ZZH couplings is essential for identification of H as agent of
symmetry breaking: Without a v.e.v. such a trilinear coupling is impossible at tree level

Dieter Zeppenfeld Higgs at LHC 2



Feynman rules

H
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i g 1
cosθW

mZ gµν

Verify tensor structure of HVV couplings. Loop induced couplings lead to HVµνVµν effective
coupling and different tensor structure: gµν → q1 · q2 gµν − q1νq2µ
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The MSSM Higgs sector

The SM uses the conjugate field Φc = iσ2Φ
∗ to generate down quark and lepton masses. In

supersymmetric models this must be an independent field

LYukawa = −ΓdQ̄LΦ1dR − Γe L̄LΦ1eR + h.c.

−ΓuQ̄LΦ2uR + h.c.

Two complex Higgs doublet fields Φ1 and Φ2 receive mass and v.e.v.s v1, v2 from generalized
Higgs potential. Mass eigenstates constructed out of these 8 real fields are

Neutral sector:
2 CP even Higgs bosons: h and H
1 CP odd Higgs boson: A
1 Goldstone boson: χ0

Charged sector:
charged Higgs bosons: H±

charged Goldstone boson: χ±

Goldstone bosons absorbed as longitudinal degrees of freedom of Z, W±

Dieter Zeppenfeld Higgs at LHC 4



Couplings of the MSSM neutral Higgses: h, H, A

Fermions
Two doublet fields Φ1,Φ2 mix, two v.e.v’s v1 = v cosβ, v2 = v sinβ:

LYuk. = −Γb b̄LΦ
0
1bR − Γt t̄LΦ

0
2uR + h.c.

= −Γb b̄L
v1 + H cosα − h sinα + iA sinβ√

2
bR − Γt t̄L

v2 + H sinα + h cosα + iA cosβ√
2

tR + . . .

Expressed in terms of masses the Yukawa Lagrangian is

LYuk. = −mb
v

b̄
(

v + H
cosα
cosβ

− h
sinα
cosβ

− iγ5 A tanβ
)

b− mt
v

t̄
(

v + H
sinα
sinβ

+ h
cosα
sinβ

− iγ5 A cotβ
)

t

=⇒ coupling factors compared to SM h f f coupling −i m f /v

Gauge Bosons
extra coupling factors for hVV and HVV couplings as compared to SM

hVV ∼ sin(β−α) HVV ∼ cos(β−α)
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SM Higgs mass fit to EW precision data

mH = 91+45
−32 GeV

Including theory uncertainty

mH < 186 GeV (95% CL)

Does not include
Direct search limit from LEP

mH > 114 GeV (95% CL)

Renormalize probability for
mH > 114 GeV to 100%:

mH < 219 GeV (95% CL)
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Total SM Higgs cross sections at the LHC

σ(pp → H + X) [pb]
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Decay of the SM Higgs

Higgs decay width and branching fractions within the SM

Γ(H) [GeV]

MH [GeV]
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H→γγ

H

g

g

γ

γ

W/tt

7 BR(H→γγ) ≈ 10−3

7 large backgrounds from qq̄→γγ
and gg→γγ

3 but CMS and ATLAS will have ex-
cellent photon-energy resolution
(order of 1%)

3 Look for a narrow γγ invariant
mass peak

3 extrapolate background into the
signal region from sidebands.
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H→ ZZ→ `+`−`+`−

3 invariant mass of the charged leptons
fully reconstructed
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For mH ≈ 0.6–1 TeV, use the “silver-plated” mode H→ ZZ→νν̄`+`−

3 BR(H→νν̄`+`−) = 6 BR(H→ `+`−`+`−)

3 the large missing ET allows a measurement of the transverse mass
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H→WW→ `+ν̄`−ν

H

g

g

ν

l-

l+

ν
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W+

3 Exploit `+`− angular correlations

3 measure the transverse mass with a Jaco-
bian peak at mH

mT =
√

2 p``T /ET (1− cos (∆Φ))

7 background and signal have similar
shape =⇒ must know the background
normalization precisely

ATLAS TDR
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Weak Boson Fusion

p
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[Eboli, Hagiwara, Kauer, Plehn, Rainwater, D.Z. . . . ]

Most measurements can be performed at the LHC with statistical accuracies on the measured
cross sections times decay branching ratios,σ× BR, of order 10% (sometimes even better).
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WBF signature

pp

J1J2
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e-

ϕ

θ1θ2
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∆ϕjj
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Characteristics:
•• energetic jets in the forward and backward directions (pT > 20 GeV)

•• large rapidity separation and large invariant mass of the two tagging jets

•• Higgs decay products between tagging jets

•• Little gluon radiation in the central-rapidity region, due to colorless W/Z exchange
(central jet veto: no extra jets with pT > 20 GeV and |η| < 2.5)
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Example: Parton level analysis of H→WW

Near threshold: W and W∗ almost at
rest in Higgs rest frame =⇒ use mll ≈
mνν for improved transverse mass cal-
culation:

ET,ll =
√

p2
T,ll + m2

ll

/ET =
√

p/2
T + m2

νν ≈
√

p/2
T + m2

ll

MT =
√

(/ET + ET,ll)2 − (pT,ll + p/T)2

Observe Jacobian peak below
MT = mH

Kauer, Plehn, Rainwater, D.Z. hep-ph/0012351
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Higgs discovery potential

S√
B

1

10

10 2

100 120 140 160 180 200
 mH (GeV/c2)

 S
ig

na
l s

ig
ni

fic
an

ce

 qqH   →  qq WW(*)

 qqH   →  qq ττ
 VBF, combined
 VBF, + γγ + ttH(bb) + ZZ*

  ∫ L dt = 10 fb-1

 (no K-factors)
ATLAS

1

10

10 2

100 120 140 160 180 200
 mH (GeV/c2)

 S
ig

na
l s

ig
ni

fic
an

ce  H  →  γ γ 
 ttH (H  →  bb)
 H   →  ZZ(*)   →  4 l
 H   →  WW(*)   →  lνlν
 qqH   →  qq WW(*)

 qqH   →  qq ττ

Total significance

  ∫ L dt = 30 fb-1

 (no K-factors)
ATLAS



QCD corrections for Higgs production

Measurement of partial widths at 10–20% level or couplings at 5–10% level requires
predictions of SM production cross sections at 10% level or better
=⇒ need QCD corrections to production cross sections. Much progress in recent years

•• gg→H (all but NLO in mt→∞ limit)

– NLO for finite mt: Graudenz, Spira, Zerwas (1993)

– NNLO: Harlander, Kilgore (2001); Anastasiou, Melnikov (2002); Ravindran, Smith, van
Neerven (2003)

– NNLL: Catani, de Florian, Grazzini, Nason (2003)

– N3LO in soft approximation: Moch, Vogt (2005)

•• H j j by gluon fusion at NLO: Campbell, Ellis, Zanderighi (2005)

•• weak boson fusion

– total cross section at NLO: Han, Willenbrock (1991)

– distributions at NLO: Figy, Oleari, D.Z (2003); Campbell, Ellis, Berger (2004)

•• t̄tH associated production at NLO: Beenakker et al.; Dawson, Orr, Reina, Wackeroth (2002)

•• b̄bH associated production at NLO: Dittmaier, Krämer, Spira; Dawson et al. (2003)



QCD corrections to gg→H

Moch & Vogt, hep-ph/0508265
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3 Remaining scale uncer-
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cross section with cuts?
Most problematic: cen-
tral jet veto against t̄t
background for H→WW
search
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H j j cross section for gluon fusion

Calculation of H j j cross section at NLO in mt→∞ limit by Campbell, Ellis, Zanderighi, hep-ph/0608194

•• Modest increase of cross section at 1-loop: K-factor of order 1.2 - 1.4

•• Reduced scale dependence at NLO: remaining scale uncertainty ≈ ±20%



NLO QCD corrections to VBF

3 Small QCD corrections of
order 10%

3 Tiny scale dependence of
NLO result

- ±5% for distributions

- < 2% for σtotal

3 K-factor is phase space
dependent

3 QCD corrections under
excellent control

7 Need electroweak correc-
tions for 5% uncertainty mH = 120 GeV, typical VBF cuts

NLO QCD correction for VBF now available in VBFNLO: Figy, Hankele, Jäger, Klämke, Oleari, DZ, ...

parton level Monte Carlo for H j j, W j j, Z j j, W+W− j j, ZZ j j production
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NLO QCD corrrections to bb̄H production
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•• Discovery channel for H/A in the MSSM
at sizeable tanβ

•• NLO corrections known for b̄bH final
state

•• b-quarks at low pT : effective process is
b̄b→H: cross section known at NNLO
Harlander, Kilgore (2003)

Dittmaier, Krämer, Spira hep-ph/0309204
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Tensor structure of the HVV coupling

Most general HVV vertex Tµν(q1, q2)

(a) (b)

g

Q

V

q2
H

Q Q

H

Q

q q q q

V

q1
q1

q2

µ

ν ν

µ

Tµν = a1 gµν +

a2
(
q1 · q2 gµν − qν1 qµ2

)
+

a3 ε
µνρσ q1ρq2σ

The ai = ai(q1, q2) are scalar form factors

Physical interpretation of terms:

SM Higgs LI ∼ HVµVµ −→ a1

loop induced couplings for neutral scalar

CP even Le f f ∼ HVµνVµν −→ a2

CP odd Le f f ∼ HVµνṼµν −→ a3

Must distinguish a1, a2, a3 experimentally
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Azimuthal angle correlations

Tell-tale signal for non-SM coupling is azimuthal angle between tagging jets

Dip structure at 90◦ (CP even) or 0/180◦ (CP odd) only depends on tensor structure of HVV
vertex. Very little dependence on form factor, LO vs. NLO, Higgs mass etc.



Azimuthal angle distribution and Higgs CP properties

Kinematics of H j j event:

Define azimuthal angle between jet momenta j+ and j− via

εµνρσ bµ+ jν+bρ− jσ− = 2pT,+ pT,− sin(φ+ −φ−) = 2 pT,+ pT,− sin∆φ j j

•• ∆φ j j is a parity odd observable

•• ∆φ j j is invariant under interchange of beam directions (b+, j+)↔ (b−, j−)

Work with Vera Hankele, Gunnar Klämke and Terrance Figy: hep-ph/0609075



Signals for CP violation in the Higgs Sector
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Azimuthal angle correlations in gluon fusion

Effective Hgg vertex is induced via top-quark loop

CP− even : i
mt
v
→ H Ga

µνGµν,a coupling

CP− odd :
mt
v
γ5 → H Ga

µν G̃µν,a coupling

Consider H j j production via gluon fusion, e.g.

H

(a)

Parton level analysis with relevant backgrounds
(Hankele, Klämke, DZ, hep-ph/0605117)

=⇒ Difference visible in H j j, H→WW→l+l−p/T events at
mH ≈ 160 GeV with 30 fb−1 at 6σ level

Method can be generalized for any Higgs mass. Problem
is lower signal rate for h→ττ or h→γγ
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Early measurements for Higgs physics

Discovery of Higgs boson may take 5–10 fb−1, perhaps more . . .
It certainly requires a well understood and calibrated detector

•• optimistic case: mH ≈ 160 GeV, H→WW

•• challenging case: mH ≈ 120 GeV, Hττ and Hbb couplings substantially enhanced
by large tanβ effects

=⇒ no visible H→γγ, H→ZZ or H→WW signals

=⇒must search in VBF channel qq→qqH, H→ττ or in tt̄H, H→bb̄

Early data will settle many open questions

•• underlying event structure and pile-up at high luminosity

=⇒ does forward jet tagging work at high luminosity?

•• measure dominant backgrounds: tt̄, jets, DY+jets, . . .

•• study actual event characteristics





Gluon radiation in Z j j events

Analyze Z j j, Z→µ+µ−, e+e− events with 2 well separated jets: pT j > 40 GeV, |η j1 − η j2 | > 4.4

•• VBF: Gluon radiation is
forward/backward

•• QCD: central gluons
dominate

•• Probability for gluon
emission is much larger
in QCD processes due
to t-channel color octet
exchange

=⇒ probe these predictions
experimentally

VBF Z j j signal vs.QCD Z j j bckground; hep-ph/9605444

QCD predictions are LO only: large uncertainties for probability to see additional jets
=⇒ need data to judge effectiveness of central jet veto
LHC measurements can be made in phase space region relevant for VBF with ≈ 1 fb−1 of data



Central jet veto: contn’d

•• Hard gluon radiation in H j j signal
sufficiently rare to allow for low pT
threshold for jet veto

•• Example:

mH = 120 GeV Higgs signal

pT,tag > 30 GeV, |η j1 − η j2 | > 4

veto jet of pT > pT,veto between tag-
ging jets at parton level

Limiting factors for central jet veto expected from soft hadron activity

•• fake jets from underlying event

•• fake jets from pile-up LHC data must provide answers! Use to tune PYTHIA, Herwig, . . .

How low a pT cutoff is possible for central jets? When does signal efficiency suffer?



τ+τ− invariant mass measurement

H→τ+τ− in VBF is one of the most important search channels for the Higgs because it is robust
against possible enhancements of H f f couplings compared to the SM

τ+τ− invariant mass can be reconstructed in τ+τ−→l+l−p/T or τ+τ−→h±l∓p/T events:
p/T comes from neutrinos alligned with charged τ decay products

Use Z j events of moderate pT j >∼ 100 GeV to study invariant mass resolution of Z→ττ : high
statistics sample can be collected early on

Problem: Resolution of reconstructed mττ crucially depends on missing pT resolution of detector

Measure τ identification efficiency by comparing with Z j events decaying via Z→µ+µ−



Conclusions

•• LHC will observe a SM-like Higgs boson in multiple channels, with
5 . . . 20% statistical errors
=⇒ great source of information on Higgs couplings

•• NLO QCD corrections and improved simulation tools are impor-
tant for precise measurements with full LHC data.

•• Higgs boson CP properties and structure of the HVV and Hgg
vertices from jet-angular correlations in WBF and gluon fusion

•• Early LHC data will sharpen our strategies for Higgs search with
crucial information on soft physics.
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