Parton level	Parton to hadron level	Results with SHERPA	Conclusions

MC tools for the LHC

Frank Krauss

Institute for Theoretical Physics TU Dresden

IPPP Durham, 18.9.2006

イロン イロン イヨン イヨン

-2

TUD

	Parton level	Parton to hadron level	Results with SHERPA	Conclusions
Outline				

- Introduction: The need for event generators
- Signals & backgrounds at the parton level
- 3 From parton level to exclusive studies at hadron level
- 4 Results with SHERPA

Reminder: Physics @ LHC

- Many interesting signals: Higgs (or alternative EWSB), SUSY, ED's, ...
- But: Severe backgrounds in nearly all channels,

(almost always with large influence of QCD)

< ロ > < 同 > < 三 > < 三

 \Longrightarrow depend on detailed understanding of QCD.

- Examples:
 - Central jet-veto in VBF (Higgs)
 - Multi-jet backgrounds for SUSY (e.g. Z+jets)
- Todays signals = tomorrows backgrounds.

Central jet veto in VBF

- Signal/background ratio depends on central jet veto. (rapidity gap between two "tagging jets", ⇒ beautiful signal at leading order)
- But: How many jets come at higher orders?

イロト イ団ト イヨト イヨト

 \implies currently studied.

Quick Discovery?

メロトメ団トメミトメミト ミニクへの

F. Krauss MC tools for the<u>LHC</u>

(Rates @ pessimistic
$$\mathcal{L} = 10^{33}/\text{cm}^2 \text{ s.}$$
)

<ロト <回ト < 回ト < 回ト

3

Simulation's paradigm

Basic strategy

Divide event into stages, separated by different scales.

• Signal/background:

Exact matrix elements.

• QCD-Bremsstrahlung:

Parton showers (also in initial state).

• Multiple interactions:

Beyond factorization: Modeling.

• Hadronization:

Non-perturbative QCD: Modeling.

Sketch of an event

TUD

New tools needed

Why does anyone write a new event generator?

- Increased needs (precision, new physics, etc.):
 - \longrightarrow getting rid of old errors (having new ones)
 - → incorporate new, better methods!
- Enhanced flexibility, modularity, capability:

 \longrightarrow improved maintenance

- Object-orientation, the new paradigm
 - \longrightarrow "industrial" relevance of education
- New tools on the market:

Pythia8 (Pythia7 died), Herwig++, Sherpa

< 口 > < 同 > < 三 > < 三

Automatic cross section calculators

Calculating cross sections @ LO

- Multi-particle final states for signals & backgrounds.
- Need to evaluate $d\sigma_N$:

$$\int_{\text{cuts}} \left[\prod_{i=1}^{N} \frac{\mathrm{d}^{3} q_{i}}{(2\pi)^{3} 2 E_{i}} \right] \delta^{4} \left(p_{1} + p_{2} - \sum_{i} q_{i} \right) |\mathcal{M}_{p_{1}p_{2} \to N}|^{2}$$

- Problem 1: Factorial growth of number of amplitudes.
- Problem 2: Complicated phase-space structure.
- Solutions: Numerical methods.

Automatic cross section calculators

Helicity method

 Tame factorial growth by factoring out common parts:

- Fully automated tools:
 - MadGraph

F.Maltoni and T.Stelzer, JHEP **0302** (2003) 027

Amegic
 F.K., R.Kuhn and G.Soff,
 JHEP 0202 (2002) 044

Recursion methods

- No Feynman diagrams
- Tame factorial growth by recursion:
 - One-particle off-shell Green's functions
 - MHV amplitudes (on-shell building blocks)

(日) (同) (三) (三)

- Fully automated tools:
 - HELAC
 A.Kanaki and C.Papadopoulos,
 CPC 132 (2000) 306
 - AlpGen M.L.Mangano et al., JHEP 0307 (2003) 001

Automatic cross section calculators

Monte Carlo integration

• Basic problem: Large fluctuations in integrand f

(mostly due to near-by poles in the propagators)

 \implies Error estimate remains large.

A (1) > A (2) > A

- Solution: Analytically smooth out fluctuations.
- Method of choice: Multi-channeling. Idea: "Know your singularities".
 - Each Feynman diagram \leftrightarrow one integration channel.
 - Interplay of channels used to minimize error estimate: Channels with large fluctuations get more impact.
 - "Best channels" further improved by VEGAS (or similar).

From partons to hadrons

Why is this important?

- Experimental definition of jets based on hadrons.
- But: Hadronization through phenomenological models

(need to be tuned to data).

• Wanted: Universality of hadronization parameters

(independence of hard process important).

A (1) > A (2) > A

• Link to fragmentation needed: Model softer radiation

(inner jet evolution).

From partons to hadrons

Parton showers

• Universal pattern of soft & collinear radiation:

$$\mathrm{d}\sigma_{N+1} \sim \mathrm{d}\sigma_N \, \sum_{a \in N} \, \frac{\mathrm{d}t_a}{t_a} \, \alpha_s \, \mathrm{d}z \, P_{a \to bc}(z) \, .$$

- Introduce "resolution of partons" (e.g. p_{\perp}^{\min}) \implies Large logarithms at each emission.
- Resummation of soft & collinear logs in Sudakov form factor:

$$\Delta_{a}(t, t_{0}) = \exp\left[-\int_{t_{0}}^{t} \frac{\mathrm{d}t'}{t'} \int_{z_{-}}^{z_{+}} \mathrm{d}z \,\alpha_{s} \,P_{a \to bc}(z)\right]$$

• Interpretation: No-emission probability (\rightarrow simulation).

F. Krauss

Dealing with the large logs

Different ways to express collinear variable

- Same form for any $t \propto \theta^2$:
 - Transverse momentum $k_{\perp}^2 pprox z^2 (1-z)^2 E^2 heta^2$
 - Invariant mass $q^2 pprox z(1-z)E^2 heta^2$

$$rac{\mathrm{d} heta^2}{ heta^2} pprox rac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} pprox rac{\mathrm{d}q^2}{q^2}$$

 Integration over dθ², dz with lower cuts → logarithms: Leading logarithms of same form, but important subleading differences!

Different parton shower codes use different ways of expressing θ^2

New shower formulations (based on k_{\perp})

S.Gieseke, P.Stephens, and B.Webber JHEP 0312 (2003) 045

T.Sjostrand and P.Skands Eur.Phys.J. C39 (2005) 129

Example: Herwig++

- Improved soft region
- No overlap
- Treatment of heavy guarks (No dead "dead-cone")

Herwig++: 1st results p_{\perp} of Z at Tevatron

• • • • • • • • • • • • •

From partons to hadrons

ME vs. PS

- Matrix elements good for: hard, large-angle emissions; take care of interferences.
- Parton shower good for: soft, collinear emissions; resums large logarithms.
- Want to combine both! Avoid double-counting.

Correcting the parton shower

e.g. G.Corcella and M.Seymour Nucl.Phys.B565 (1999) 227

・ロト ・回ト ・ヨト

F. Krauss MC tools for the LHC TUD

イロン 不通 と 不可 と イヨン

Practicalities of ME-corrections

Limitations

- Obviously, ME < PS not always fulfilled.
- Could enhance PS expression by a (large) factor
- Therefore: realised in few processes only: Best-known: $ee \rightarrow q\bar{q}, q\bar{q} \rightarrow V, t \rightarrow bW$

Power shower

Can use ME corrections for "power shower":

- In $q\bar{q}
 ightarrow V$, start parton shower @ $s_{
 m pp}$.
- Effect: More hard radiation through showering.
- Not very well controlled.

Matching MEs & PS: MC@NLO

S.Frixione, B.R.Webber, JHEP **0206** (2002) 029 S.Frixione, P.Nason, B.R.Webber, JHEP **0308** (2003) 007

(ロ) (四) (三) (三)

Basic principles

- Want:
 - NLO-Normalization and first (hard) emission correct,
 - Soft emissions correctly resummed in PS.
- Method:
 - Modify subtraction terms for real infrared divergences,
 - use first order parton shower-expression,
 - this is process-dependent!
- In practise much more complicated.
- Implemented for DY, W-pairs, $gg \rightarrow H$, Q-pairs.

F Krauss

Matching MEs & PS: MC@NLO

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣A@

TUD

MC tools for the LHC

F. Krauss

• • • • • • • • • • • •

Combining MEs & PS: LO-Merging

S.Catani, F.K., R.Kuhn and B.R.Webber, JHEP **0111** (2001) 063 F.K., JHEP **0208** (2002) 015

Basic principles

- Want:
 - All jet emissions correct at tree level + LL,
 - Soft emissions correctly resummed in PS
- Method:
 - Separate Jet-production/evolution by $Q_{\rm jet}$ (k_{\perp} algorithm).
 - Produce jets according to LO matrix elements
 - $\bullet\,$ re-weight with Sudakov form factor + running α_{s} weights,
 - veto jet production in parton shower.
- Process-independent implementation.

Simple MEs & PS: MLM merging

How it works

"Intuitive" approach

(not as systematic)

Idea:

- Produce parton configuration with ME
- Reweight with α_s
- Run shower veto full events if wrong jets.
- No "second chance".

Example results

 E_T of jets in W+ jets at Tevatron

(日) (同) (三) (三)

MC@NLO vs. MLM merging

$t\bar{t}$ production

・ロト・日本・日本・日本・日本・ション

Combining MEs & PS: LO+LL

Algorithm as scale-setting prescription

- Example: p_{\perp} distribution of jets @ Tevatron
- Consider exclusive W + 1- and W + 2-jet production

Comparison with MCFM; J.Campbell and R.K.Ellis, Phys. Rev. D 65 (2002) 113007 in : F.K., A.Schälicke, S.Schumann and G.Soff, Phys. Rev. D 70 (2004) 114009

Combining MEs & PS: Independence on Q_{jet}

F.K., A.Schälicke, S.Schumann and G.Soff, Phys. Rev. D 70 (2004) 114009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

Example results

Introducing SHERPA

T.Gleisberg, S.Höche, F.K., A.Schälicke, S.Schumann and J.C.Winter, JHEP 0402 (2004) 056

- New event generator, written from scratch in C++.
- Matrix elements from AMEGIC, combined with own parton shower implementation

(F.K., A.Schälicke and G.Soff, arXiv:hep-ph/0503087; similar to shower in PYTHIA)

 Hadronization of Pythia interfaced, will be replaced by own cluster model

(J.Winter, F.K. and G.Soff, Eur. Phys. J. C36 (2004) 381)

イロト イポト イヨト イヨト

• Underlying event according to old Pythia model, write-up for new model in preparation.

3

Azimuthal decorrelations of jets at the Tevatron

Idea

• Check QCD radiation pattern

Distributions @ Run II

Comparison with other codes

F.K., A.Schälicke, S.Schumann and G.Soff, Phys. Rev. D 70 (2004) 114009

- イロト (個) (注) (注) (注) - シック

Comparison with other codes

F.K., A.Schälicke, S.Schumann and G.Soff, Phys. Rev. D 70 (2004) 114009

- イロト イロト イヨト イヨト 三回 - わえで

・ロト・日本・日本・日本・ 日本・ シック

TUD

- イロ・ イヨ・ イヨ・ イロ・

F. Krauss MC tools for the <u>LHC</u>

- ▲ ロ ト ▲ 聞 ト ▲ 国 ト ▲ 国 ト クタウ

TUD

TUD

Extrapolation to LHC

- Influence of more jets.
- Displayed here: x-sections.
- Difference in shape & x-sec.

Summary & outlook

Summary: QCD & simulation tools

- Many interesting signals at LHC "spoiled" by QCD.
- Simulation tools mandatory for success of LHC
- Time to validate essential tools is now!
- Various new OO-projects in C++.
- New methods of merging of ME& PS extremely powerful.

Advertisement

- EU network on Monte Carlo tools to be launched.
- Many short-term positions for PhD students.

(日) (同) (三) (三)