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The strong CP problem

• limit on neutron electric dipole moment:

2

2 Models

A classic review of models for axions in particle physics and string theory is Ref. [9], where
many more details are given. A modern review of axions in string theory is Ref. [5], and
for pedagogical introductions and phenomenology see e.g. Refs. [17, 14]. This section is
intended only as an overview: we will wave our hands through the particle physics com-
putations, and wave them even more wildly through the string theory. This section is also
self-contained, and can be skipped for those interested only in cosmology and astrophysics.
The salient points for cosmology are repeated in Section 3.1.

2.1 The QCD Axion

2.1.1 The Strong-CP Problem and the PQ Solution

QCD su↵ers from the “strong-CP problem.” A topological (total derivative) term is allowed
in the Lagrangian:

L✓QCD =
✓QCD

32⇡2
Tr Gµ⌫G̃µ⌫ , (2)

where Gµ⌫ is the gluon field strength tensor, G̃µ⌫ = ✏µ⌫↵�G↵�/2 is its dual, and the trace
is over the adjoint representation of SU(3) (a notation I drop from now on).1 This term
arises due to the so-called “✓-vacua” of QCD [18], which are discussed in Appendix A.

The ✓ term is CP violating and gives rise to an electric dipole moment (EDM) for the
neutron [19]:

dn ⇡ 3.6 ⇥ 10�16✓QCD e cm , (3)

where e is the charge on the electron. The (permanent, static) dipole moment is constrained
to |dn| < 2.9 ⇥ 10�26 e cm (90% C.L.) [20], implying ✓QCD . 10�10.

This is a true fine tuning problem, since ✓QCD could obtain an O(1) contribution from
the observed CP -violation in the electroweak (EW) sector [21], which must be cancelled to
high precision by the (unrelated) gluon term. Specifically, the measurable quantity is

✓QCD = ✓̃QCD + arg detMuMd , (4)

where ✓̃ is the bare quantity and Mu, Md are the quark mass matrices.2

The QCD axion is the dynamical pseudoscalar field coupling to GG̃, proposed by Peccei
and Quinnn (PQ) [3], which dynamically sets ✓QCD = 0 via QCD non-perturbative e↵ects
(instantons) [23]. The simple idea is that there is a field, �, which enjoys a shift symmetry,
with only derivatives of � appearing in the action. Taking ✓QCD = C�/fa, where � is the
canonically normalized axion field, fa is the axion decay constant and C is the “colour
anomaly” (discussed in Section 2.2), this is a symmetry under � ! � + const. Then, as
long as shift symmetry violation is induced only by quantum e↵ects as (C�/fa)GG̃, any
contribution to ✓QCD can be absorbed in a shift of �. The action, and thus the potential
induced by QCD non-perturbative e↵ects, only depends on the overall field multiplying GG̃.
If the potential for the shifted field is minimized at C�/fa = 0 mod 2⇡, then the strong CP
problem is solved. In fact, a theorem of Vafa and Witten [23] guarantees that the instanton
potential is minimized at the CP conserving value. We will discuss the instanton potential
in more detail in Section 2.2.

1I have chosen the normalization for the gluon field, Aµ, appropriate for the vacuum topological term,
which takes ✓QCD 2 [0, 2⇡]. In this normalization the gluon kinetic term is �Gµ⌫Gµ⌫/4g23 , where g3 is the
SU(3) gauge coupling constant.

2The phase of the quark mass matrix is not measured, but could be O(1). CP -violation in the standard
model leads to a calculable minimum value for ✓QCD even in the axion model (e.g. Ref. [22]).
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✓QCD . 10�10

•requires cancellation between bare angle and 
contribution from quark masses at the 10-10 level.
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Axion solution
Selection of DM candidates Axions

T. Schwetz 77

• introduce a global U(1)  
symmetry (PQ)

• gets broken at high  
scale fPQ

• axion is the p-Goldstone  
of the U(1)

• receives a mass by  
non-perturbative QCD instanton effects

• axion potential drives the theta-angle dynamically to zero

3

plots from G. Raffelt
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The QCD Axion

• mass determined by PQ breaking scale: 
 
 

• all interactions with SM suppressed by 

• single parameter model!

4

1 Introduction

The QCD axion [1,2] remains to be one of the most attractive candidates for the dark matter
in the Universe. It is the Goldstone mode related to a U(1) symmetry which is sponaneously
broken at the Peccei Quinn (PQ) scale f

PQ

[3, 4], much larger than the electro-weak scale.
Around the QCD scale the symmetry is explicitly broken by the potential created by QCD
instanton e↵ects. Axions are produced by various mechanisms in the early Universe and
hence they can potentially account for the dark matter, see Refs. [5, 6] for reviews of axion
cosmology.

One of the ways to generate a cosmological axion density is the so-called re-alignment
mechanism: when the PQ symmetry is broken at temperatures T ⇠ f

PQ

the axion field A

takes random values in causally disconnected regions. Being a Goldstone mode, A can be
associated to an angular field ✓ = A/f

PQ

, which can take values between zero and 2⇡. When
the potential for ✓ is generated at the QCD scale at tempertaures T ⇠ 1 GeV, the field starts
to oscillate around the minimum of the potential defined by QCD e↵ects. The corresponding
energy density is proportial to the square of the mis-match between the initial value of ✓
and the QCD minimum – the so-called mis-alignment angle.

If the PQ symmetry is broken before the end of inflation, the axion field is homogenized
over the Hubble volume and takes on a constant value ✓ through-out the whole observable
Universe. The corresponding energy density at late times as a function of the cosmic scale
factor a can be estimated as [7–10] (see for instance Refs. [11–13] for more recent treatments)

⇢(a) ⇠ f 2

PQ

m(a⇤)m0

✓
2

⇣a⇤
a

⌘
3

. (1)

Here m(a) denotes the temperature dependent axion mass as a function of the corresponding
cosmic scale factor, whereasm

0

is the zero-temperature axion mass, and a⇤ is the cosmic scale
factor defined by the moment when the axion mass becomes equal to the Hubble parameter,
i.e., m(a⇤) = H(a⇤), which happens at temperatures T ⇠ 1 GeV. The zero-temperture mass
is related to f

PQ

by

m
0

' m
⇡

f
⇡

f
PQ

p
m

u

m
d

m
u

+m
d

' 10�4 eV
6⇥ 1010 GeV

f
PQ

. (2)

For mis-alignment angles ✓ ⇠ 1, Eq. (1) leads to a cold dark matter abundance comparble
to the observed one if m

0

⇠ 10�4 eV or f
PQ

⇠ 1011 GeV.
strings [14, 15] [16, 17]
QCD [18–20]
reviews:
mini cluster [21] [22, 23] [24, 25] [26]

2 White noise initial conditions

In the scenario where PQ symmetry breaking happens after inflation, the axion field takes
random values in causally disconnected regions with a flat distribution for ✓, since at tem-
peratures above the QCD scale the axion feels no potential and all values for ✓ are equally

2

fPQ
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Introduction The QCD Axion

Axion parameter space

– 11–
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 �� = 1/2.

We translate the conservative constraint, Equation 12, on

GA�� to fA > 3.4 � 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 � 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <� mA <� 150 meV

(0.21 eV <� mA <� 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

February 8, 2016 19:55

experimentally excluded, astro/cosmo excluded, 
sensitivity of planned experiments, „preferred“ region 
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Axion cosmology

6

Introduction Axion cosmology

I the action (ignoring gravity for the moment)

S = f 2

a

⁄
d4x

Ô
≠g

5
≠1

2gµ‹ˆµ◊ˆ‹◊ ≠ V (◊, T )
6

I equation of motion

◊̈ + 3H ◊̇ ≠ Ò2

a2

◊ + V Õ(◊, T ) = 0

I for small ◊ we have V Õ ¥ m2◊ æ EOM for Fourier modes:

◊̈
k

+ 3H(T )◊̇
k

+ Ê2◊
k

= 0 Ê2 = k2

a2

+ m(T )2

T. Schwetz 8

� = fa✓
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Axion cosmology
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• periodic potential V (✓, T ) = m2
(T )(1� cos ✓)

• harmonic approximation  
 
→ Fourier-modes evolve independently

V (✓, T ) ⇡ 1

2
m2(T )✓2

� = fa✓
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Introduction Axion cosmology

◊̈
k

+ 3H(T )◊̇
k

+ Ê2◊
k

= 0 Ê2 = k2

a2

+ m(T )2

I modes outside the horizon 3H(T ) > Ê:
over-damped oscillator, field frozen: ◊

k

= const
I modes inside the horizon 3H(T ) < Ê:

oscillator with frequency Ê, amplitude decays with expansion
relativistic modes are red shifted relative to non-relativistic modes
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Introduction Axion cosmology

Axion energy denstiy

fl(x̨) = f 2

a

2

C

◊̇2 ≠ (Ǫ̀◊)2
a2

+ m2(T )◊2

D

Example:
I homogeneous field (no gradient terms), adiabatic evolution

◊ ≥ ◊

a3/2

cos[m(T )t]

I late time energy density:

fl ≥ f 2

a

m(T
osc

)m
0

3a
osc

a

4
3

◊
2 m(T

osc

) = 3H(T
osc

)

behaves as cold dark matter (also true in perturbation theory)
T. Schwetz 10

Axion energy density
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Initial conditions
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Introduction Axion cosmology

On the initial conditions

pre-inflation case: PQ phase transition before end of inflation ∆
constant initial field value ◊ œ [≠fi, fi] in whole observable Universe

�
a

h2 ¥ 0.24 ◊
2g(◊)

3 f
a

1012 GeV

4
7/6

¥ 0.13 ◊
2g(◊)

A
10≠5 eV

m
0

B
7/6

g(◊) anharmonic correction Gondolo, Visinelli, 09

I m
0

π 10≠5 eV: tune ◊ to small values
I m

0

∫ 10≠5 eV: not enough dark matter
I possibly constrained from isocurvature perturbations
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possibly constrained by iso-curvature perturbations
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J. Redondo

Introduction Axion cosmology

On the initial conditions
post-inflation case: PQ phase transition after end of inflation ∆
random field value ◊ œ [≠fi, fi] in causally disconnected regions

I string network (one string per Hubble
volume)

I evolution from PQ PT (1012 GeV) to
QCD PT (1 GeV) of massless field:

◊̈ + 3H ◊̇ ≠ Ò2

a2

◊ = 0

I gradient terms lead to homogenization
within Hubble volume

��

�

�
After inflation, PQ phase transition, misaligned patches

J. Redondo

I before axion mass turns on: random field values ◊ œ [≠fi, fi] in regions of
order of horizon size at QCD epoch æ order one density fluctuations
∆ axion minicluster
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Axion minicluster

• PQ symmetry breaking after inflation: Axion field takes 
random values in different Hubble volumes 

•  O(1) density fluctuations when Axion mass switches on

• expect gravitationally bound objects with  
size ~ Hubble volume @ QCD PT

Figure 5. Dimensionless minicluster mass function XM ⌘ M2/⇢(dn/dM) for three choices of
f
PQ

. The di↵erent line-styles indicate the mass function at di↵erent times: dotted x = 0.2, dashed
x = 0.5, solid x = 1, dot-dashed x = 5, where x = a/a

eq

.

Estimates of the minicluster mass in the previous literature assume that a minicluster

is made out of all axions inside the Hubble horizon dH at the time the field oscillations

commence [7]: M ⇠ 4⇡
3 d3H(Tosc)⇢(Tosc). Using dH ⇠ 1/H, this leads to (see e.g., Refs. [12,

17]) M ⇠ 10�12M�(fPQ/1011GeV)2. While our results show a similar dependence on fPQ,

the values for Mpeak obtained from fig. 5 are about two orders of magnitude smaller. This

follows from the fact that the characteristic size of the density fluctuations is smaller than

the Hubble horizon at Tosc, see figs. 2 and 3, and therefore we obtain lighter miniclusters.

Note that Ref. [15] obtains an even larger minicluster mass, since their definition of the

“Hubble volume” di↵ers by a factor ⇡ from the above estimate dH ⇠ 1/H.

Let us now discuss the size of the miniclusters. The quantity shown on the vertical

axes of fig. 4 is not very intuitive: it corresponds to the co-moving size of the over-density

at the initial time T? = 100 MeV relative to the co-moving Hubble radius at 1 GeV. In
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Axion minicluster

• PQ symmetry breaking after inflation: Axion field takes 
random values in different Hubble volumes 

•  O(1) density fluctuations when Axion mass switches on

• expect gravitationally bound objects with  
size ~ Hubble volume @ QCD PT
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3 d3H(Tosc)⇢(Tosc). Using dH ⇠ 1/H, this leads to (see e.g., Refs. [12,

17]) M ⇠ 10�12M�(fPQ/1011GeV)2. While our results show a similar dependence on fPQ,

the values for Mpeak obtained from fig. 5 are about two orders of magnitude smaller. This

follows from the fact that the characteristic size of the density fluctuations is smaller than

the Hubble horizon at Tosc, see figs. 2 and 3, and therefore we obtain lighter miniclusters.

Note that Ref. [15] obtains an even larger minicluster mass, since their definition of the

“Hubble volume” di↵ers by a factor ⇡ from the above estimate dH ⇠ 1/H.

Let us now discuss the size of the miniclusters. The quantity shown on the vertical

axes of fig. 4 is not very intuitive: it corresponds to the co-moving size of the over-density

at the initial time T? = 100 MeV relative to the co-moving Hubble radius at 1 GeV. In

order to convert this into a more useful quantity, we calculate now the physical size of an

over-density of given mass, at the time when it decouples from the Hubble flow, i.e., at

turn-around, denoted by rta. In the notation of section 4.1, it is given by

rta = ⇠taataR , (4.18)

where R is the initial co-moving radius. By using eq. (4.3) and solving eq. (4.2) numerically

one can get ⇠ta and ata. An approximate analytic expression can be obtained by using [39]
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From the PQ PT down to the QCD PT

• random values of periodic field → 
cosmic strings 

• Kibble mechanism:  
`scaling´ of string network: roughly 
one string per Hubble volume during 
expansion of Universe

• Before onset of QCD PT remains one 
string per Hubble volume and 
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�⇡

✓

⇡
After inflation, PQ phase transition, misaligned patches

J. Redondo
value of any quantity Y (✓) is given by hY i =

R

d✓ f(✓)Y (✓). In particular, it implies for

the mean and the variance:

h✓(~x)i = 0 , h✓(~x)2i = ⇡2/3 . (3.1)

Let us now consider the Fourier transform

✓k =

Z

V
d3x ✓(~x)ei

~k~x , ✓(~x) =
1

(2⇡)3

Z

d3k ✓ke
�i~k~x . (3.2)

The integral over d3x is taken over a large volume V , such that the integral is finite, and

~x and ~k are co-moving coordinate and momentum, respectively. We have h✓ki = 0, and

✓�k = ✓⇤k since ✓(~x) is real. Due to statistical homogeneity and isotropy the correlation

function in Fourier space can be written as

h✓k✓⇤k0i = (2⇡)3 �3(~k � ~k0)P✓(k) , (3.3)

where P✓(k) denotes the power spectrum for the field, which is the Fourier transform of

the 2-point correlation function ⇠(|~r|) = h✓(~x)✓(~x+ ~r)i. We follow the conventions for the

power spectrum of Ref. [26].

We can now use the shape of the power spectrum to implement that causally discon-

nected regions should be uncorrelated. Let us introduce a characteristic wave number

K = aiHi , (3.4)

where ai is the scale factor at our initial time ti and Hi is the Hubble rate at that time.

The axion field should be uncorrelated at co-moving distances larger than 1/K. Note that

there is an ambiguity in this definition. Alternatively we could use the association of wave

number and co-moving distance as k = ⇡/R, which would lead to an additional factor ⇡ in

eq. (3.4) for R = 1/(aiHi). In general, K is defined only up to factors of order one, which

unfortunately introduces a large uncertainty, since K enters in many quantities of interest

with third power.

The normalization of the power spectrum is fixed by requiring h✓(~x)2i = ⇡2/3 according

to eq. (3.1). The shape of the power spectrum should be determined by the evolution of

the field from the PQ scale down to the QCD scale. In absence of a full simulation over so

many orders of magnitude, we are forced to make some (physically motivated) guesses. A

reasonable assumption seems to be a white noise (i.e., flat) power spectrum with a sharp

cut-o↵ at co-moving wave number K (“top-hat”):

PTH
✓ (k) =

2⇡4

K3
⇥(K � k) . (3.5)

This means that fluctuations for each mode up to K are equally likely. However, the

finite cut-o↵ leads to an oscillating two-point correlation function ⇠(r) which decreases

only with the inverse of the distance-squared, and hence, implies long-range correlations in

to unphysical implications of the zero mode.

– 5 –
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FIG. 2: Visualization of one realization of the simulation. In this figure, we take the box size as L = 15 and N = 256, which is
smaller than that shown in Table I. Other parameters are fixed so that � = 1.0, � = 3.0, � = 2.0, and � = 0.4. The white lines
correspond to the position of strings, while the blue surfaces correspond to the position of the center of domain walls.

The stretching process of walls reduces the value of A, but might not a�ect the length of strings (i.e. the value of �).
Later, stretched walls pull the strings attached on their boundaries, which causes the reduction of �.

We also calculated the spectrum of axions radiated from strings and domain walls, using the method described in
the previous section. Figure 5 shows the spectra of free axions evaluated at t1 and td. The basic behavior of the
spectrum evaluated at t1 is similar to that obtained in Ref. [20]. This spectrum is dominated by the contribution of
axions produced by strings. However, the population of axions with high momenta increases after the decay of domain
walls (t = td). The final form of the spectrum, obtained by subtracting the components of radiations produced before
t1, is shown in Fig. 6. The spectrum has a peak at the low momentum. This disagrees with the result of Chang,
Hagmann, and Sikivie [24], which claims that the radiated axions have a spectrum proportional to 1/k. Note that,
however, there is a high frequency tail in the spectrum, which has a cuto� at the momentum corresponding to (twice
the size of) the width of strings k � (2�/2�s)R(td) � 64.4 (for � = 0.3). This feature might be interpreted in terms
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String-domain wall network at QCD PT
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in the following:
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focus on re-alignment mechanism
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Initial condition
• axion field smooth on scales < horizon  

uncorrelated on scales > horizon

• assume power spectrum for axion field 
w Gaussian cut-off

16

configuration space beyond the horizon. Therefore we consider as alternative a Gaussian

suppression of high wave numbers:

PG
✓ (k) =

8⇡4

3
p
⇡K3

exp

✓

� k2

K2

◆

, (3.6)

which leads to exponential suppression of correlations also in configuration space. There-

fore, the Gaussian power spectrum seems to be physically better motivated and we adopt

it as our default assumption. We will, however, also study the k-space top-hat power spec-

trum, since it provides a sharp cut-o↵ to all the integrals in the following, making the e↵ect

of the scale K more transparent.

Equation (3.3) together with our assumptions on the power spectrum, eq. (3.6) re-

spectively eq. (3.5), serve as initial condition for the field evolution which we consider in

the following. Before proceeding let us comment on the choice of our initial time ti, or the

corresponding temperature Ti. We want to set Ti above the scale when the axion mass

becomes important, in order to capture this process correctly by solving the equation of

motion. On the other hand, we cannot set Ti much higher, since our formalism does not

describe the e↵ect of the topological strings, which are essential for describing the random

massless field. Therefore, we chose to set Ti = 3Tosc, with Tosc determined by eq. (2.6).

The actual value depends on the chosen axion mass, but typical values are Tosc ' 1 GeV.

Since this energy scale appears profusely in our calculations, we will present our results in

units of the wavenumber K1 = a1H1 or the co-moving distance R1 = K�1
1 , where a1 and

H1 are evaluated at the temperature of 1 GeV.

3.2 The average energy density

Sticking to the quadratic potential, the energy density of the axion field is given by

⇢(~x) =
f2
PQ

2



✓̇2 � 1

a2
(~r✓)2 +m2 (T ) ✓2

�

. (3.7)

Since the evolution equation is linear in the harmonic approximation, the Fourier modes

evolve independent according to eq. (2.5) and we can write
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value of any quantity Y (✓) is given by hY i =
R

d✓ f(✓)Y (✓). In particular, it implies for

the mean and the variance:

h✓(~x)i = 0 , h✓(~x)2i = ⇡2/3 . (3.1)

Let us now consider the Fourier transform

✓k =

Z

V
d3x ✓(~x)ei

~k~x , ✓(~x) =
1

(2⇡)3

Z

d3k ✓ke
�i~k~x . (3.2)

The integral over d3x is taken over a large volume V , such that the integral is finite, and

~x and ~k are co-moving coordinate and momentum, respectively. We have h✓ki = 0, and

✓�k = ✓⇤k since ✓(~x) is real. Due to statistical homogeneity and isotropy the correlation

function in Fourier space can be written as

h✓k✓⇤k0i = (2⇡)3 �3(~k � ~k0)P✓(k) , (3.3)

where P✓(k) denotes the power spectrum for the field, which is the Fourier transform of

the 2-point correlation function ⇠(|~r|) = h✓(~x)✓(~x+ ~r)i. We follow the conventions for the

power spectrum of Ref. [26].

We can now use the shape of the power spectrum to implement that causally discon-

nected regions should be uncorrelated. Let us introduce a characteristic wave number

K = aiHi , (3.4)

where ai is the scale factor at our initial time ti and Hi is the Hubble rate at that time.

The axion field should be uncorrelated at co-moving distances larger than 1/K. Note that

there is an ambiguity in this definition. Alternatively we could use the association of wave

number and co-moving distance as k = ⇡/R, which would lead to an additional factor ⇡ in

eq. (3.4) for R = 1/(aiHi). In general, K is defined only up to factors of order one, which

unfortunately introduces a large uncertainty, since K enters in many quantities of interest

with third power.

The normalization of the power spectrum is fixed by requiring h✓(~x)2i = ⇡2/3 according

to eq. (3.1). The shape of the power spectrum should be determined by the evolution of

the field from the PQ scale down to the QCD scale. In absence of a full simulation over so

many orders of magnitude, we are forced to make some (physically motivated) guesses. A

reasonable assumption seems to be a white noise (i.e., flat) power spectrum with a sharp

cut-o↵ at co-moving wave number K (“top-hat”):

PTH
✓ (k) =

2⇡4

K3
⇥(K � k) . (3.5)

This means that fluctuations for each mode up to K are equally likely. However, the

finite cut-o↵ leads to an oscillating two-point correlation function ⇠(r) which decreases

only with the inverse of the distance-squared, and hence, implies long-range correlations in

to unphysical implications of the zero mode.
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✓̈ + 3H(T )✓̇ � r2

a2
✓ + V 0(✓, T ) = 0 . (2.1)

Here the dot denotes derivative with respect to time, r is the derivative with respect to co-

moving coordinates, H(T ) = ȧ/a is the expansion rate with the cosmic scale factor a, and

V (✓, T ) is the temperature dependent axion potential, and the prime denotes derivative

with respect to ✓. The potential is related to the topological susceptibility of QCD, �(T ),

by

V (✓, T ) =
�(T )

f2
PQ

(1� cos ✓) . (2.2)

For small ✓ the cosine can be expanded and we obtain the temperature dependent axion

mass in terms of the susceptibility:

V (✓, T ) ⇡ 1

2
m2(T )✓2 , m2(T ) =

�(T )

f2
PQ

. (2.3)

For T . 100 MeV, �(T ) becomes constant and the axion reaches its zero-temparature mass

m0. Approximately we have [1]

m0 '
m⇡f⇡
fPQ

p
mumd

mu +md
' 5.7⇥ 10�6 eV

1012GeV

fPQ
, (2.4)

with m⇡ and f⇡ being the pion mass and decay constant, respectively, and mu,d are the

up, down quark masses.

Below we will allways assume the small ✓ expansion. This is a crucial ingredient of

our calculations, since it leads to a linear equation of motion. It is clear that our results

will not include anharmonic e↵ects when the field takes on values close to ✓ ' ±⇡. In

the context of miniclusters those field values may lead to very dense objects [8, 9], which

will not be contained in the mass function derived below and need to be considered as a

correction to our results.

In the harmonic limit the equation of motion for the Fourier modes of the field decouple:

✓̈k + 3H(T )✓̇k + !2
k✓k = 0 , !2

k ⌘ k2

a2
+m(T )2 . (2.5)

Qualitatively, we see that super-horizon modes with !k ⌧ 3H are frozen, ✓k = const,

whereas they start to oscillate once they enter the horizon. We define Tosc as the temper-

ature where the zero-mode (i.e., the homogeneous field) starts to oscillate by the equation

3H(Tosc) = m(Tosc) . (2.6)

The corresponding time and scale factors are denoted by tosc and aosc, respectively. Non-

zero k modes will start to oscillate somewhat earlier. The redshifting of non-zero k modes

is encoded by the 1/a2 factor in the expression for !k in eq. (2.5). For su�ciently late

times the mass term will dominate for all modes and the energy density will behave like

cold dark matter.

There are two main goals of this work:

– 3 –

• harmonic approximation of axion potential

• equation of motion including gradient terms:

structure 
formation
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• harmonic approximation of axion potential

• equation of motion including gradient terms:

structure 
formation

• solve EoM to calculate axion energy density and  
density power spectrum 
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configuration space beyond the horizon. Therefore we consider as alternative a Gaussian

suppression of high wave numbers:

PG
✓ (k) =

8⇡4

3
p
⇡K3

exp

✓

� k2

K2

◆

, (3.6)

which leads to exponential suppression of correlations also in configuration space. There-

fore, the Gaussian power spectrum seems to be physically better motivated and we adopt

it as our default assumption. We will, however, also study the k-space top-hat power spec-

trum, since it provides a sharp cut-o↵ to all the integrals in the following, making the e↵ect

of the scale K more transparent.

Equation (3.3) together with our assumptions on the power spectrum, eq. (3.6) re-

spectively eq. (3.5), serve as initial condition for the field evolution which we consider in

the following. Before proceeding let us comment on the choice of our initial time ti, or the

corresponding temperature Ti. We want to set Ti above the scale when the axion mass

becomes important, in order to capture this process correctly by solving the equation of

motion. On the other hand, we cannot set Ti much higher, since our formalism does not

describe the e↵ect of the topological strings, which are essential for describing the random

massless field. Therefore, we chose to set Ti = 3Tosc, with Tosc determined by eq. (2.6).

The actual value depends on the chosen axion mass, but typical values are Tosc ' 1 GeV.

Since this energy scale appears profusely in our calculations, we will present our results in

units of the wavenumber K1 = a1H1 or the co-moving distance R1 = K�1
1 , where a1 and

H1 are evaluated at the temperature of 1 GeV.

3.2 The average energy density

Sticking to the quadratic potential, the energy density of the axion field is given by

⇢(~x) =
f2
PQ

2



✓̇2 � 1

a2
(~r✓)2 +m2 (T ) ✓2

�

. (3.7)

Since the evolution equation is linear in the harmonic approximation, the Fourier modes

evolve independent according to eq. (2.5) and we can write

✓k(a) = ✓k fk(a) . (3.8)

Here ✓k ⌘ ✓k(ai) denotes the initial condition for the field at the time ti and fk(a) is a real

function encoding the time (or a) dependence obtained from solving the equation of motion

with the initial condition fk(ai) = 1. The random properties of the field characterized by

Eq. (3.3) are thus encoded in the initial conditions ✓k. We solve eq. (2.5) numerically

for a large set of modes, for details see appendix A. We use the susceptibility �(T ) as

well as the e↵ective number of degrees of freedom as a function of temperature needed to

determine H(T ) from the QCD calculations from Ref. [27], see also Refs. [28, 29] for similar

calculations.

With this notation we obtain for the energy density

⇢(~x) =
1

(2⇡)6
f2
PQ

2

Z

d3kd3k0 ✓k✓
⇤
k0F (k, k0)e�i~x(~k�~k0) , (3.9)
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Figure 1. Contributions to the average energy density according to Eq. (3.13) when using the
top-hat (TH) (blue) respectively the Gaussian (G) (red) power spectrum for the axion field. For
the plot we chose f

PQ

= 1012 GeV.

where we have defined

F (k, k0) = ḟkḟk0 +

 

~k · ~k0

a2
+m2 (T )

!

fkfk0 . (3.10)

The average energy density is obtained by using the correlator from eq. (3.3) as

⇢ ⌘ h⇢(~x)i = 1

2⇡2

f2
PQ

2

Z 1

0
dk k2 P✓(k)F (k, k) , (3.11)

with

F (k, k) = ḟ2
k + !2

kf
2
k , (3.12)

where !k has been defined in eq. (2.5) and it can be identified with the energy of the mode

with momentum ~k. Since the power spectrum suppresses modes with k > K, at su�ciently

late times, the term k2/a2 can be neglected compared to the zero-temperature mass m.

We say that all modes become non-relativistic.

Let us introduce the dimensionless wave number k̃ = k/K. It follows from the equation

of motion that once all relevant modes have become non-relativistic and m(T ) reached its

zero-temperature value, F , and consequently ⇢, scales as a�3, as it should for cold dark

matter. We factor out the a�3 dependence and use m2
0 in order to define a dimensionless

quantity F̃ through F = m2
0(a?/a)

3F̃ , with a? corresponding to T? = 100 MeV. Assuming

for illustration the top-hat power spectrum defined in eq. (3.5), we find

⇢ =
f2
PQ

2
m2

0

⇣a?
a

⌘3
⇡2

Z 1

0
dk̃ k̃2 F̃ (k̃, k̃) (PTH
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configuration space beyond the horizon. Therefore we consider as alternative a Gaussian

suppression of high wave numbers:

PG
✓ (k) =

8⇡4

3
p
⇡K3

exp

✓

� k2

K2

◆

, (3.6)

which leads to exponential suppression of correlations also in configuration space. There-

fore, the Gaussian power spectrum seems to be physically better motivated and we adopt

it as our default assumption. We will, however, also study the k-space top-hat power spec-

trum, since it provides a sharp cut-o↵ to all the integrals in the following, making the e↵ect

of the scale K more transparent.

Equation (3.3) together with our assumptions on the power spectrum, eq. (3.6) re-

spectively eq. (3.5), serve as initial condition for the field evolution which we consider in

the following. Before proceeding let us comment on the choice of our initial time ti, or the

corresponding temperature Ti. We want to set Ti above the scale when the axion mass

becomes important, in order to capture this process correctly by solving the equation of

motion. On the other hand, we cannot set Ti much higher, since our formalism does not

describe the e↵ect of the topological strings, which are essential for describing the random

massless field. Therefore, we chose to set Ti = 3Tosc, with Tosc determined by eq. (2.6).

The actual value depends on the chosen axion mass, but typical values are Tosc ' 1 GeV.

Since this energy scale appears profusely in our calculations, we will present our results in

units of the wavenumber K1 = a1H1 or the co-moving distance R1 = K�1
1 , where a1 and

H1 are evaluated at the temperature of 1 GeV.

3.2 The average energy density

Sticking to the quadratic potential, the energy density of the axion field is given by

⇢(~x) =
f2
PQ

2



✓̇2 � 1

a2
(~r✓)2 +m2 (T ) ✓2

�

. (3.7)

Since the evolution equation is linear in the harmonic approximation, the Fourier modes

evolve independent according to eq. (2.5) and we can write

✓k(a) = ✓k fk(a) . (3.8)

Here ✓k ⌘ ✓k(ai) denotes the initial condition for the field at the time ti and fk(a) is a real

function encoding the time (or a) dependence obtained from solving the equation of motion

with the initial condition fk(ai) = 1. The random properties of the field characterized by

Eq. (3.3) are thus encoded in the initial conditions ✓k. We solve eq. (2.5) numerically

for a large set of modes, for details see appendix A. We use the susceptibility �(T ) as

well as the e↵ective number of degrees of freedom as a function of temperature needed to

determine H(T ) from the QCD calculations from Ref. [27], see also Refs. [28, 29] for similar

calculations.

With this notation we obtain for the energy density

⇢(~x) =
1

(2⇡)6
f2
PQ

2

Z

d3kd3k0 ✓k✓
⇤
k0F (k, k0)e�i~x(~k�~k0) , (3.9)
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Figure 1. Contributions to the average energy density according to Eq. (3.13) when using the
top-hat (TH) (blue) respectively the Gaussian (G) (red) power spectrum for the axion field. For
the plot we chose f

PQ

= 1012 GeV.
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!
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The average energy density is obtained by using the correlator from eq. (3.3) as

⇢ ⌘ h⇢(~x)i = 1

2⇡2

f2
PQ

2

Z 1

0
dk k2 P✓(k)F (k, k) , (3.11)

with

F (k, k) = ḟ2
k + !2

kf
2
k , (3.12)

where !k has been defined in eq. (2.5) and it can be identified with the energy of the mode

with momentum ~k. Since the power spectrum suppresses modes with k > K, at su�ciently

late times, the term k2/a2 can be neglected compared to the zero-temperature mass m.

We say that all modes become non-relativistic.

Let us introduce the dimensionless wave number k̃ = k/K. It follows from the equation

of motion that once all relevant modes have become non-relativistic and m(T ) reached its

zero-temperature value, F , and consequently ⇢, scales as a�3, as it should for cold dark

matter. We factor out the a�3 dependence and use m2
0 in order to define a dimensionless

quantity F̃ through F = m2
0(a?/a)

3F̃ , with a? corresponding to T? = 100 MeV. Assuming

for illustration the top-hat power spectrum defined in eq. (3.5), we find
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Figure 1. Contributions to the average energy density according to Eq. (3.13) when using the
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~k · ~k0

a2
+m2 (T )

!

fkfk0 . (3.10)

The average energy density is obtained by using the correlator from eq. (3.3) as

⇢ ⌘ h⇢(~x)i = 1

2⇡2

f2
PQ

2

Z 1

0
dk k2 P✓(k)F (k, k) , (3.11)

with

F (k, k) = ḟ2
k + !2

kf
2
k , (3.12)

where !k has been defined in eq. (2.5) and it can be identified with the energy of the mode

with momentum ~k. Since the power spectrum suppresses modes with k > K, at su�ciently

late times, the term k2/a2 can be neglected compared to the zero-temperature mass m.

We say that all modes become non-relativistic.

Let us introduce the dimensionless wave number k̃ = k/K. It follows from the equation

of motion that once all relevant modes have become non-relativistic and m(T ) reached its

zero-temperature value, F , and consequently ⇢, scales as a�3, as it should for cold dark

matter. We factor out the a�3 dependence and use m2
0 in order to define a dimensionless

quantity F̃ through F = m2
0(a?/a)

3F̃ , with a? corresponding to T? = 100 MeV. Assuming

for illustration the top-hat power spectrum defined in eq. (3.5), we find

⇢ =
f2
PQ

2
m2

0

⇣a?
a

⌘3
⇡2

Z 1

0
dk̃ k̃2 F̃ (k̃, k̃) (PTH

✓ ) . (3.13)

– 7 –

Figure 1. Contributions to the average energy density according to Eq. (3.13) when using the
top-hat (TH) (blue) respectively the Gaussian (G) (red) power spectrum for the axion field. For
the plot we chose f

PQ

= 1012 GeV.

where we have defined

F (k, k0) = ḟkḟk0 +
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k + !2

kf
2
k , (3.12)

where !k has been defined in eq. (2.5) and it can be identified with the energy of the mode

with momentum ~k. Since the power spectrum suppresses modes with k > K, at su�ciently

late times, the term k2/a2 can be neglected compared to the zero-temperature mass m.

We say that all modes become non-relativistic.

Let us introduce the dimensionless wave number k̃ = k/K. It follows from the equation

of motion that once all relevant modes have become non-relativistic and m(T ) reached its

zero-temperature value, F , and consequently ⇢, scales as a�3, as it should for cold dark

matter. We factor out the a�3 dependence and use m2
0 in order to define a dimensionless

quantity F̃ through F = m2
0(a?/a)

3F̃ , with a? corresponding to T? = 100 MeV. Assuming

for illustration the top-hat power spectrum defined in eq. (3.5), we find

⇢ =
f2
PQ

2
m2

0

⇣a?
a

⌘3
⇡2

Z 1

0
dk̃ k̃2 F̃ (k̃, k̃) (PTH

✓ ) . (3.13)

– 7 –

• average energy density (without string contribution):

k
˜2

F
˜G

k
˜2

F
˜TH

0.05 0.10 0.50 1
10-9

10-8

10-7

k [K]

Figure 1. Contributions to the average energy density according to Eq. (3.13) when using the
top-hat (TH) (blue) respectively the Gaussian (G) (red) power spectrum for the axion field. For
the plot we chose f

PQ

= 1012 GeV.

where we have defined

F (k, k0) = ḟkḟk0 +
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With Wick’s Theorem one obtains

h✓k✓⇤k�q✓
⇤
k0✓k0�qi = h✓k✓⇤k�qih✓⇤k0✓k0�qi+ h✓k✓⇤k0ih✓⇤k�q✓k0�qi+ h✓k✓k0�qih✓⇤k�q✓

⇤
k0i (3.19)

= (2⇡)6P✓(|~k|)P✓(|~k � ~q|)
n

[�3(~k � ~k0)]2 + [�3(~k + ~k0 � ~q)]2
o

. (3.20)

where we have used eq. (3.3) and we have droped terms with �3(~q) by assuming q 6= 0. In

order to deal with the squares of the Dirac delta function we use �3(k = 0) = V/(2⇡)3.

The first term in the curle bracket of eq. (3.20) gives |F (k, k � q)|2. For the second term

we can use that F (q � k,�k) = F (k, k � q), which follows from fk = f⇤
�k. Hence the first

and second terms are equal and we obtain

h|⇢q|2i = 2
V

(2⇡)3

 

f2
PQ

2

!2
Z

d3k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2 (3.21)

Using eq. (3.11) for ⇢ this gives for the power spectrum

P (q) =
1

V

h|⇢q|2i
⇢2

= 2(2⇡)3
R

d3k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2
⇥
R

d3k P✓(k)F (k, k)
⇤2 . (3.22)

The function F (k, k0) defined in eq. (3.10) is obtained from solving the equation of

motion as described in appendix A and it depends on time. Once the axion has reached its

zero-temperature mass and all relativistic modes have been red-shifted away, F (k, k0) scales

as a�3, independent of k, k0. Hence the time dependence in numerator and denumerator

of eq. (3.22) cancels and the power spectrum becomes constant in time. Our numerical

calculation shows that for temperatures below

T? ⌘ 100MeV (3.23)

this is indeed the case. Since for the following considerations we only need the power

spectrum, we can stop the field evolution at that point. In the left panel of fig. 2 we plot

the power spectrum at T? for di↵erent choices of fPQ. We observe constant power at small

q (large scales), corresponding to white noise. Then the power drops at a characteristic

scale, corresponding roughly to the size of the miniclusters, and is suppressed for large

wave numbers (small scales) where fluctuations are erased by the gradient terms.

In the right panel of fig. 2 we show the dimensionless power spectrum

�2(q) =
q3

2⇡2
P (q) , (3.24)

which corresponds to the variance of the relative density perturbations per decade of q.

From the plot we see that relative density fluctuations are of order one, i.e., non-linear.

Furthermore, the peak in the relative density fluctuations is at a characteristic wave number

corresponding to a scale a few times smaller than the horizon at Tosc. This can be seen for

instance by considering the orange curve, corresponding to fPQ = 1012 GeV. For this case,

Tosc ⇡ 1 GeV, and hence K1 = a1H1 is the inverse of the horizon at Tosc. The peak for the

orange curve is around q ⇡ 4K1, and hence it corresponds to a size 4 times smaller than

– 9 –
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The density power spectrum
Fourier transform of the density:

fl
q

= 1
(2fi)3

f 2

PQ

2

⁄
d3k ◊

k

◊ú
k≠q

F (k, k ≠ q)

variance (use Wick’s theorem):

È|fl
q

|2Í =
C

1
(2fi)3
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D
2 ⁄

d3kd3k Õ È◊
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Õ◊
k

Õ≠q
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(2fi)3

A
f 2

PQ
2

B
2 ⁄

d3k P◊(|̨k|)P◊(|̨k ≠ q̨|) F (k, k ≠ q)2

this gives for the power spectrum

P(q) = È|”
q

|2Í
V = 1

V
È|fl

q

|2Í
fl2

= 2fi2

K 3

N (q)
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Figure 2. The axion energy density power spectrum P (q) (left) and the dimensionless power
spectrum �2(q) defined in eq. (3.24) (right), for di↵erent choices of f

PQ

. Solid curves in both
panels assume the Gaussian initial axion field correlator, eq. (3.6), and Ti = 3T

osc

. In the right
panel, the dashed-blue curve corresponds to Ti = 2T

osc

(Gaussian correlator) and the dash-dotted
orange curve corresponds to the top-hat (TH) correlator, eq. (3.5), and Ti = 3T

osc

.

the horizon at Tosc. For the other two curves, fPQ is smaller, which means larger Tosc, and

therefore the peak is shifted to smaller length scales accordingly.

Another interesting result is that the power spectrum has a cut-o↵ around 2K (instead

of the naively expected K). This is most transparent for the case when we consider a top-

hat initial correlator for the axion field according to eq. (3.5), where we have a sharp cut-o↵

in k-space. In this case we have K/K1 = aiHi/(a1H1) ⇡ a1/ai ⇡ 3, since Ti/(1 GeV) ⇡
Ti/Tosc = 3. Therefore, the value q/K1 ⇡ 6, at which the dash-dotted curve goes to zero

corresponds to 2K. This result follows directly from the way how the two P✓ factors in

eq. (3.22) depend on the wave number, and it implies that although modes with k > K

do not contribute to the energy density, there is power in fluctuations up to wave numbers

2K. Note that for the Gaussian correlator, eq. (3.6), which is our default assumption, the

cut-o↵ is smeared out.

The comparison of the blue solid and dashed curves in fig. 2 shows the impact of

changing our default assumption Ti = 3Tosc to Ti = 2Tosc. Note that this implies also a

change of the wave number cut-o↵, which we define as K = aiHi. As expected we observe

a shift of the peak towards smaler wave numbers.

A note on the normalization of our power spectrum is in order. We use ⇢ to normalize

the spectrum, which is the average density from the re-alignment mechanism. If there is

an additional contribution to the axion energy density (e.g., from the string and domain

wall decay) the power would be reduced accordingly, unless the additional component itself

introduces further fluctuations.

Our calculations so-far do not include the e↵ect of gravity on the axion over-densities,

therefore the expression for the power spectrum, eq. (3.22) remains constant after T?. In

the following we are going to “switch on” gravity for the axions, and develop a model to
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With Wick’s Theorem one obtains

h✓k✓⇤k�q✓
⇤
k0✓k0�qi = h✓k✓⇤k�qih✓⇤k0✓k0�qi+ h✓k✓⇤k0ih✓⇤k�q✓k0�qi+ h✓k✓k0�qih✓⇤k�q✓

⇤
k0i (3.19)

= (2⇡)6P✓(|~k|)P✓(|~k � ~q|)
n

[�3(~k � ~k0)]2 + [�3(~k + ~k0 � ~q)]2
o

. (3.20)

where we have used eq. (3.3) and we have droped terms with �3(~q) by assuming q 6= 0. In

order to deal with the squares of the Dirac delta function we use �3(k = 0) = V/(2⇡)3.

The first term in the curle bracket of eq. (3.20) gives |F (k, k � q)|2. For the second term

we can use that F (q � k,�k) = F (k, k � q), which follows from fk = f⇤
�k. Hence the first

and second terms are equal and we obtain

h|⇢q|2i = 2
V

(2⇡)3

 

f2
PQ

2

!2
Z

d3k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2 (3.21)

Using eq. (3.11) for ⇢ this gives for the power spectrum

P (q) =
1

V

h|⇢q|2i
⇢2

= 2(2⇡)3
R

d3k P✓(|~k|)P✓(|~k � ~q|)F (k, k � q)2
⇥
R

d3k P✓(k)F (k, k)
⇤2 . (3.22)

The function F (k, k0) defined in eq. (3.10) is obtained from solving the equation of

motion as described in appendix A and it depends on time. Once the axion has reached its

zero-temperature mass and all relativistic modes have been red-shifted away, F (k, k0) scales

as a�3, independent of k, k0. Hence the time dependence in numerator and denumerator

of eq. (3.22) cancels and the power spectrum becomes constant in time. Our numerical

calculation shows that for temperatures below

T? ⌘ 100MeV (3.23)

this is indeed the case. Since for the following considerations we only need the power

spectrum, we can stop the field evolution at that point. In the left panel of fig. 2 we plot

the power spectrum at T? for di↵erent choices of fPQ. We observe constant power at small

q (large scales), corresponding to white noise. Then the power drops at a characteristic

scale, corresponding roughly to the size of the miniclusters, and is suppressed for large

wave numbers (small scales) where fluctuations are erased by the gradient terms.

In the right panel of fig. 2 we show the dimensionless power spectrum

�2(q) =
q3

2⇡2
P (q) , (3.24)

which corresponds to the variance of the relative density perturbations per decade of q.

From the plot we see that relative density fluctuations are of order one, i.e., non-linear.

Furthermore, the peak in the relative density fluctuations is at a characteristic wave number

corresponding to a scale a few times smaller than the horizon at Tosc. This can be seen for

instance by considering the orange curve, corresponding to fPQ = 1012 GeV. For this case,

Tosc ⇡ 1 GeV, and hence K1 = a1H1 is the inverse of the horizon at Tosc. The peak for the

orange curve is around q ⇡ 4K1, and hence it corresponds to a size 4 times smaller than
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• density fluctuations of order one
• charact. size a few times smaller than horizon @ Tosc
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variable ⇠ to describe the deviation of the over-density from this expansion: r = ⇠rflow. KT

derived an equation of motion for ⇠:

x(1 + x)
d2⇠

dx2
+

✓

1 +
3

2
x

◆

d⇠

dx
+

1

2

✓

1 + �

⇠2
� ⇠

◆

= 0 , (4.2)

where x ⌘ a/aeq, with aeq being the scale factor at matter-radiation equality. The density

contrast � is the over-density at the initial time where we start the evolution. It is related

to M through

M =
4⇡

3
⇢ (1 + �) r3 , (4.3)

with r denoting the initial size of the over-dense region. Eq. (4.2) is valid both in the

radiation and matter radiation era. The solution ⇠(x) of eq. (4.2) can be used to identify

the time when an over-density collapses by requiring ṙ = 0, i.e., when the over-density

“turns around” and starts to contract. We have verified by numerically solving eq. (4.2)

the result of KT, namely that an initial over-density � at an early time will turn around at

x if � > �c with

�c(x) ⇡
0.7

x
. (4.4)

This result holds for x < 1 (radiation domination) as well as x > 1 (matter domination),

and is to good approximation independent of the initial time. As we have seen above,

the minicluster power spectrum remains constant shortly after all modes became non-

relativistic and the axion reaches its zero-temperature mass. Hence, the precise point when

we start the spherical collapse is not important as long as the corresponding temperature is

less than T? = 100 MeV. For definiteness, we set the initial time of the collapse calculation

to that temperature and denote initial quantities with the index ?.

4.2 Double di↵erential mass function

Let us consider the axion energy density contrast smoothed over a characteristic length

scale R:

�R(~x) =

Z

d3x0WR(~x� ~x0)�(~x0) , (4.5)

where WR(~x) is a filter function which goes to zero if x � R. Then the variance of the

smoothed density contrast is determined by the power spectrum:

�2
R ⌘ h�R(~x)2i =

1

2⇡2

Z 1

0
dk k2P (k)

�

�

�

W̃R(k)
�

�

�

2
, (4.6)

where W̃R(k) is the Fourier transform of the window function. We adopt a top-hat window

function in k space: W̃R(k) = ⇥(1�kR). We comment on the reason for this choice below.

As visible in fig. 3, �R has a step-like shape with the characteristic scale ranging from 3 to

10 times smaller than the horizon at T = 1 GeV, depending on the value of fPQ.

We are going to assume that �R(~x) is a random Gaussian variable with variance �2
R,

i.e., the probability to find a fluctuation in the smoothed energy density in the interval

[�, � + d�] is

fsm(�;R) =
1p
2⇡�R

exp

✓

� �2

2�2
R

◆

. (4.7)
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where W̃R(k) is the Fourier transform of the window function. We adopt a top-hat window

function in k space: W̃R(k) = ⇥(1�kR). We comment on the reason for this choice below.

As visible in fig. 3, �R has a step-like shape with the characteristic scale ranging from 3 to

10 times smaller than the horizon at T = 1 GeV, depending on the value of fPQ.

We are going to assume that �R(~x) is a random Gaussian variable with variance �2
R,

i.e., the probability to find a fluctuation in the smoothed energy density in the interval
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guess the solution. By di↵erentiating eq. (4.8) one obtains

fsm(�;R)



g0(R)� d log �R
dR

✓

1� �2

�2
R

◆

g(R)

�

= �f(�, R) (4.10)

Indeed, it is easy to show that g(R) = �R/�0 provides a solution, with �0 ⌘ �R=0 being

the variance without smooting. Using eq. (4.10) we obtain:

f(�, R) = � 1

�0

d�R
dR

�2

�2
R

fsm(�;R) , (4.11)

f(R) = � 1

�0

d�R
dR

. (4.12)

The result for the marginal distribution in eq. (4.12) has an intuitive interpretation: the

distribution of the size of the fluctuations is related to the change in the smoothing scale,

and if �R is constant at a given scale R, there are no fluctuations of size r = R at that

scale. We show some numerical examples of f(R) for the axion miniclusters in fig. 3.

Combining our result for f(�, r) with eq. (4.4), we can now proceed in analogy to the

PS formalism and estimate the double di↵erential mass function. We use that for fixed r,

eq. (4.3) relates the mass M to the over-density �. We denote by dn/dMdR the comoving

number density of collapsed objects with mass in [M,M + dM ] and size in [R,R+ dR]. It

is related to f(�, r) by

M

⇢

dn

dMdR
dMdR = 2 f(�, R) d�dR⇥[� � �c(x)] . (4.13)

The theta-function selects over-densities larger than �c(x), which are collapsed at the time

x. The factor of 2 is included here for the same reason as it appears in the original PS

formula. It takes into account the mass in under-dense regions; if all mass was bound in

collapsed objects (meaning �c = 0) the integral of the right-hand side of eq. (4.13) should

give 1, whereas without the factor 2 it would give only 1/2. Using eq. (4.3) we obtain our

final result for the double di↵erential mass function:

dn

dMdR
=

3

2⇡MR3
f(�, R)⇥[� � �c(x)] , (4.14)

where f(�, R) is given in eq. (4.11), � is considered as a function of M and R, � = �(M,R)

according to eq. (4.3), and the critical density �c(x) is given in eq. (4.4). The interpretation

of eq. (4.14) is as follows: dn/dMdR is the distribution of collapsed objects at a time

x = a/aeq, whereas f(�, R) is the distribution of the fluctuations at the initial time x?,

which can be calculated departing from the power spectrum at x? using eq. (4.11). The

total mass function dn/dM is obtained by integrating over R

dn

dM
=

3

2⇡M

Z Rc(M)

0

dR

R3
f [�(M,R), R] , (4.15)

where Rc for a given M can be derived from eq. (4.3) with � = �c(x).
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• Gaussian distribution for the smoothed contrast

• derive distribution in δ and R:
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Figure 4. Standard deviation of the smoothed density field (left) and relative derivative of the
standard deviation, �1/�

0

d�R/dR, (right) as a function of the smoothing scale R for di↵erent
choices of f

PQ

. The reference length scale is the co-moving size of the horizon at 1 GeV: R
1
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1
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4.2 Double di↵erential mass function

Let us consider the axion energy density contrast smoothed over a characteristic length

scale R:

�R(~x) =

Z

d3x0WR(~x� ~x0)�(~x0) , (4.5)

where WR(~x) is a filter function which goes to zero if x � R. Then the variance of the

smoothed density contrast is determined by the power spectrum:

�2
R ⌘ h�R(~x)2i =

1

2⇡2

Z 1

0
dk k2P (k)

�

�

�

W̃R(k)
�

�

�

2
, (4.6)

where W̃R(k) is the Fourier transform of the window function. We adopt a top-hat window

function in k space: W̃R(k) = ⇥(1�kR). We comment on the reason for this choice below.

As visible in fig. 4, �R has a step-like shape with the characteristic scale ranging from 3 to

10 times smaller than the horizon at T = 1 GeV, depending on the value of fPQ.

We are going to assume that �R(~x) is a random Gaussian variable with variance �2
R,

i.e., the probability to find a fluctuation in the smoothed energy density in the interval

[�, � + d�] is

fsm(�;R) =
1p
2⇡�R

exp

✓

� �2

2�2
R

◆

. (4.7)

Since �R is of order unity, large fluctuations are likely. The Gaussian shape implies then,

that the total density can become negative. However, below we will be interested only in

upward fluctuations � > 0, and therefore we are not applying eq. (4.7) in the potentially

unphysical region. Furthermore, the Gaussian assumption for the fluctuations is consistent

with using the harmonic potential. Large over-densities due to anharmonic e↵ects may

also lead to non-Gaussian tails of the distribution.

– 13 –
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following Kolb&Tkachev, 94

In sections 4.1 and 4.2 we present the spherical collapse model and our derivation of

the double di↵erential mass function under those requirements, with the main result for

dn/dMdR given in eq. (4.14). The reader mostly interested in the application of that result

to axions may directly skip to section 4.3, where we present the results of our calculation

for the minicluster distribution around matter-radiation equality.

4.1 Spherical collapse model

Kolb & Tkachev (KT) [40] provide a method to describe spherical collapse during and after

radiation domination. Here we do not repeat their calculation but just present briefly the

approach and state the results, which we are going to apply in the following. The equation

of motion for a spherical shell of matter, including a homogeneous radiation background

energy density, ⇢rad, is described by the di↵erential equation

r̈ = �8⇡G

3
⇢radr �

GM

r2
, (4.1)

where r is the physical radius and the total dark matter mass M enclosed in the sphere of

radius r is assumed to remain constant during collapse. Let us denote by rflow the physical

coordinate describing the background expansion. Then we introduce the dimensionless

variable ⇠ to describe the deviation of the over-density from this expansion: r = ⇠rflow. KT

derived an equation of motion for ⇠:

x(1 + x)
d2⇠

dx2
+

✓

1 +
3

2
x

◆

d⇠

dx
+

1

2

✓

1 + �

⇠2
� ⇠

◆

= 0 , (4.2)

where x ⌘ a/aeq, with aeq being the scale factor at matter-radiation equality. The density

contrast � is the over-density at the initial time where we start the evolution. It is related

to M through

M =
4⇡

3
⇢ (1 + �) r3 , (4.3)

with r denoting the initial size of the over-dense region. Eq. (4.2) is valid both in the

radiation and matter domination era. The solution ⇠(x) of eq. (4.2) can be used to identify

the time when an over-density collapses by requiring ṙ = 0, i.e., when the over-density

“turns around” and starts to contract. We have verified by numerically solving eq. (4.2)

the result of KT, namely that an initial over-density � at an early time will turn around at

x if � > �c with

�c(x) ⇡
0.7

x
. (4.4)

This result holds for x < 1 (radiation domination) as well as x > 1 (matter domination),

and is to good approximation independent of the initial time. As we have seen above,

the minicluster power spectrum remains constant shortly after all modes became non-

relativistic and the axion reaches its zero-temperature mass. Hence, the precise point when

we start the spherical collapse is not important as long as the corresponding temperature is

less than T? = 100 MeV. For definiteness, we set the initial time of the collapse calculation

to that temperature and denote initial quantities with the index ?.
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• over-density `turn around´ for

• an initial over-density δ(xi) is collapsed at x > xi if  
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less than T? = 100 MeV. For definiteness, we set the initial time of the collapse calculation

to that temperature and denote initial quantities with the index ?.

– 12 –

• EoM for spherical shell of matter on homogeneous 
radiation background

• holds for radiation as well as matter domination!
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guess the solution. By di↵erentiating eq. (4.8) one obtains

fsm(�;R)



g0(R)� d log �R
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R
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g(R)

�

= �f(�, R) (4.10)

Indeed, it is easy to show that g(R) = �R/�0 provides a solution, with �0 ⌘ �R=0 being

the variance without smooting. Using eq. (4.10) we obtain:

f(�, R) = � 1

�0

d�R
dR

�2

�2
R

fsm(�;R) , (4.11)

f(R) = � 1

�0

d�R
dR

. (4.12)

The result for the marginal distribution in eq. (4.12) has an intuitive interpretation: the

distribution of the size of the fluctuations is related to the change in the smoothing scale,

and if �R is constant at a given scale R, there are no fluctuations of size r = R at that

scale. We show some numerical examples of f(R) for the axion miniclusters in fig. 3.

Combining our result for f(�, r) with eq. (4.4), we can now proceed in analogy to the

PS formalism and estimate the double di↵erential mass function. We use that for fixed r,

eq. (4.3) relates the mass M to the over-density �. We denote by dn/dMdR the comoving

number density of collapsed objects with mass in [M,M + dM ] and size in [R,R+ dR]. It

is related to f(�, r) by

M

⇢

dn

dMdR
dMdR = 2 f(�, R) d�dR⇥[� � �c(x)] . (4.13)

The theta-function selects over-densities larger than �c(x), which are collapsed at the time

x. The factor of 2 is included here for the same reason as it appears in the original PS

formula. It takes into account the mass in under-dense regions; if all mass was bound in

collapsed objects (meaning �c = 0) the integral of the right-hand side of eq. (4.13) should

give 1, whereas without the factor 2 it would give only 1/2. Using eq. (4.3) we obtain our

final result for the double di↵erential mass function:

dn

dMdR
=

3

2⇡MR3
f(�, R)⇥[� � �c(x)] , (4.14)

where f(�, R) is given in eq. (4.11), � is considered as a function of M and R, � = �(M,R)

according to eq. (4.3), and the critical density �c(x) is given in eq. (4.4). The interpretation

of eq. (4.14) is as follows: dn/dMdR is the distribution of collapsed objects at a time

x = a/aeq, whereas f(�, R) is the distribution of the fluctuations at the initial time x?,

which can be calculated departing from the power spectrum at x? using eq. (4.11). The

total mass function dn/dM is obtained by integrating over R

dn

dM
=

3

2⇡M

Z Rc(M)

0

dR

R3
f [�(M,R), R] , (4.15)

where Rc for a given M can be derived from eq. (4.3) with � = �c(x).
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x = a/aeq, whereas f(�, R) is the distribution of the fluctuations at the initial time x?,

which can be calculated departing from the power spectrum at x? using eq. (4.11). The
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variable ⇠ to describe the deviation of the over-density from this expansion: r = ⇠rflow. KT

derived an equation of motion for ⇠:

x(1 + x)
d2⇠

dx2
+

✓

1 +
3

2
x

◆

d⇠

dx
+

1

2

✓

1 + �

⇠2
� ⇠

◆

= 0 , (4.2)

where x ⌘ a/aeq, with aeq being the scale factor at matter-radiation equality. The density

contrast � is the over-density at the initial time where we start the evolution. It is related

to M through

M =
4⇡

3
⇢ (1 + �) r3 , (4.3)

with r denoting the initial size of the over-dense region. Eq. (4.2) is valid both in the

radiation and matter radiation era. The solution ⇠(x) of eq. (4.2) can be used to identify

the time when an over-density collapses by requiring ṙ = 0, i.e., when the over-density

“turns around” and starts to contract. We have verified by numerically solving eq. (4.2)

the result of KT, namely that an initial over-density � at an early time will turn around at

x if � > �c with

�c(x) ⇡
0.7

x
. (4.4)

This result holds for x < 1 (radiation domination) as well as x > 1 (matter domination),

and is to good approximation independent of the initial time. As we have seen above,

the minicluster power spectrum remains constant shortly after all modes became non-

relativistic and the axion reaches its zero-temperature mass. Hence, the precise point when

we start the spherical collapse is not important as long as the corresponding temperature is

less than T? = 100 MeV. For definiteness, we set the initial time of the collapse calculation

to that temperature and denote initial quantities with the index ?.

4.2 Double di↵erential mass function

Let us consider the axion energy density contrast smoothed over a characteristic length

scale R:

�R(~x) =

Z

d3x0WR(~x� ~x0)�(~x0) , (4.5)

where WR(~x) is a filter function which goes to zero if x � R. Then the variance of the

smoothed density contrast is determined by the power spectrum:

�2
R ⌘ h�R(~x)2i =

1

2⇡2

Z 1

0
dk k2P (k)

�

�

�

W̃R(k)
�

�

�

2
, (4.6)

where W̃R(k) is the Fourier transform of the window function. We adopt a top-hat window

function in k space: W̃R(k) = ⇥(1�kR). We comment on the reason for this choice below.

As visible in fig. 3, �R has a step-like shape with the characteristic scale ranging from 3 to

10 times smaller than the horizon at T = 1 GeV, depending on the value of fPQ.

We are going to assume that �R(~x) is a random Gaussian variable with variance �2
R,

i.e., the probability to find a fluctuation in the smoothed energy density in the interval

[�, � + d�] is

fsm(�;R) =
1p
2⇡�R

exp

✓

� �2

2�2
R

◆

. (4.7)
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• given distribution in δ and R (before self-gravity becomes imporant):

• derive double-differential distribution of collapsed objects with 
mass M and size R using:
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Figure 4. Dimensionless double di↵erential distribution of collapsed objecs XMR ⌘
M2R/⇢(dn/dMdR) at matter-radiation equality for three choices of f

PQ

. The vertical axis shows
the co-moving size of the over-density at the initial time T? = 100 MeV relative to R

1

, the co-moving
Hubble radius at 1 GeV.

fPQ [GeV] Mpeak [M�] M range [M�] rpeakta [km] rta range [km]

1010 4⇥ 10�16 [2⇥ 10�17, 1⇥ 10�14] 4⇥ 104 [2⇥ 104, 2⇥ 105]

1011 2⇥ 10�14 [5⇥ 10�16, 3⇥ 10�13] 2⇥ 105 [4⇥ 104, 7⇥ 105]

1012 8⇥ 10�13 [6⇥ 10�14, 2⇥ 10�11] 2⇥ 106 [7⇥ 105, 7⇥ 106]

Table 2. For three example values of f
PQ

we give the minicluster mass for which the relative mass
function XM peaks, M

peak

, and the interval in masses, where the mass function XM is larger than
1% of the peak. The column “rpeak

ta

” gives the size of the over-density corresponding to M
peak

when
it decouples from the Hubble flow and starts to collapse (“turn-around”). The last column gives
the range of r

ta

corresponding to masses for which the mass function XM is larger than 1% of the
peak.

see some hierarchical collapsing at the high mass end. But we checked that the dash-dotted

curves (x = 5) are already close to the x ! 1 limit. This can be understood from the

analytic expression, eq. (4.15), in the limit �c ! 0.
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• MC masses span 3 orders, 
sizes span 1 order of magn.

• peak-masses 2 orders of mag. 
smaller than naive estimates  
 
 
(typical fluctuations smaller than 
horizon at Tosc) 

Figure 5. Dimensionless minicluster mass function XM ⌘ M2/⇢(dn/dM) for three choices of
f
PQ

. The di↵erent line-styles indicate the mass function at di↵erent times: dotted x = 0.2, dashed
x = 0.5, solid x = 1, dot-dashed x = 5, where x = a/a

eq

.

Estimates of the minicluster mass in the previous literature assume that a minicluster

is made out of all axions inside the Hubble horizon dH at the time the field oscillations

commence [7]: M ⇠ 4⇡
3 d3H(Tosc)⇢(Tosc). Using dH ⇠ 1/H, this leads to (see e.g., Refs. [12,

17]) M ⇠ 10�12M�(fPQ/1011GeV)2. While our results show a similar dependence on fPQ,

the values for Mpeak obtained from fig. 5 are about two orders of magnitude smaller. This

follows from the fact that the characteristic size of the density fluctuations is smaller than

the Hubble horizon at Tosc, see figs. 2 and 3, and therefore we obtain lighter miniclusters.

Note that Ref. [15] obtains an even larger minicluster mass, since their definition of the

“Hubble volume” di↵ers by a factor ⇡ from the above estimate dH ⇠ 1/H.

Let us now discuss the size of the miniclusters. The quantity shown on the vertical

axes of fig. 4 is not very intuitive: it corresponds to the co-moving size of the over-density

at the initial time T? = 100 MeV relative to the co-moving Hubble radius at 1 GeV. In

order to convert this into a more useful quantity, we calculate now the physical size of an

over-density of given mass, at the time when it decouples from the Hubble flow, i.e., at

turn-around, denoted by rta. In the notation of section 4.1, it is given by

rta = ⇠taataR , (4.18)

where R is the initial co-moving radius. By using eq. (4.3) and solving eq. (4.2) numerically

one can get ⇠ta and ata. An approximate analytic expression can be obtained by using [39]

⇠ ' 1 � �x/2, together with �xta ' 0.7. Introducing a minor fudge factor to fit numerics
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Figure 4. Dimensionless double di↵erential distribution of collapsed objecs XMR ⌘
M2R/⇢(dn/dMdR) at matter-radiation equality for three choices of f

PQ

. The vertical axis shows
the co-moving size of the over-density at the initial time T? = 100 MeV relative to R

1

, the co-moving
Hubble radius at 1 GeV.

fPQ [GeV] Mpeak [M�] M range [M�] rpeakta [km] rta range [km]

1010 4⇥ 10�16 [2⇥ 10�17, 1⇥ 10�14] 4⇥ 104 [2⇥ 104, 2⇥ 105]

1011 2⇥ 10�14 [5⇥ 10�16, 3⇥ 10�13] 2⇥ 105 [4⇥ 104, 7⇥ 105]

1012 8⇥ 10�13 [6⇥ 10�14, 2⇥ 10�11] 2⇥ 106 [7⇥ 105, 7⇥ 106]

Table 2. For three example values of f
PQ

we give the minicluster mass for which the relative mass
function XM peaks, M

peak

, and the interval in masses, where the mass function XM is larger than
1% of the peak. The column “rpeak

ta

” gives the size of the over-density corresponding to M
peak

when
it decouples from the Hubble flow and starts to collapse (“turn-around”). The last column gives
the range of r

ta

corresponding to masses for which the mass function XM is larger than 1% of the
peak.

see some hierarchical collapsing at the high mass end. But we checked that the dash-dotted

curves (x = 5) are already close to the x ! 1 limit. This can be understood from the

analytic expression, eq. (4.15), in the limit �c ! 0.
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Figure 6. Dimensionless minicluster mass function XM ⌘ M2/⇢(dn/dM) for three choices of
f
PQ

. The di↵erent line-styles indicate the mass function at di↵erent times: dotted x = 0.2, dashed
x = 0.5, solid x = 1, dot-dashed x = 5, where x = a/a

eq

.

fPQ [GeV] Mpeak [M�] M range [M�] rpeakta [km] rta range [km]

1010 4⇥ 10�16 [2⇥ 10�17, 1⇥ 10�14] 4⇥ 104 [2⇥ 104, 2⇥ 105]

1011 2⇥ 10�14 [5⇥ 10�16, 3⇥ 10�13] 2⇥ 105 [4⇥ 104, 7⇥ 105]

1012 8⇥ 10�13 [6⇥ 10�14, 2⇥ 10�11] 2⇥ 106 [7⇥ 105, 7⇥ 106]

Table 2. For three example values of f
PQ

we give the minicluster mass for which the relative mass
function XM peaks, M

peak

, and the interval in masses, where the mass function XM is larger than
1% of the peak. The column “rpeak

ta

” gives the size of the over-density corresponding to M
peak

when
it decouples from the Hubble flow and starts to collapse (“turn-around”). The last column gives
the range of r

ta

corresponding to masses for which the mass function XM is larger than 1% of the
peak.

The di↵erent line-styles in fig. 6 show the mass function at di↵erent times around

matter-radiation equality, ranging from x = 0.2 till x = 5. Note that with the normalization

of the distribution according to eq. (4.17) the expansion e↵ect is factored out and the plot

shows the change of the number of objects per co-moving volume. We find that the collapse

process largely finishes at matter-radiation equality (x = 1, solid curves). For late times we

see some hierarchical collapsing at the high mass end. But we checked that the dash-dotted

curves (x = 5) are already close to the x ! 1 limit. This can be understood from the

analytic expression, eq. (4.15), in the limit �c ! 0.

Estimates of the minicluster mass in the previous literature assume that a minicluster

is made out of all axions inside the Hubble horizon dH at the time the field oscillations

commence [7]: M ⇠ 4⇡
3 d3H(Tosc)⇢(Tosc). Using dH ⇠ 1/H, this leads to (see e.g., Refs. [12,
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Assumptions

• initial power spectrum: should follow from evolution 
of string network (Kibble mechanism)

• harmonic approximation: anharmonic effects may 
lead to spikes in axion density [Kolb, Tkachev, 93]

• contribution from string/domain wall decays: likely to 
introduce additional energy density & fluctuations

29
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cosmic string network (Kibble)  
~ one string per Hubble volume

collapse of overdensities 
formation of miniclusters

evolution of 
k-modes

• Do minicluster survive non-linear structure formation?

• Do they collapse to dense Axion-stars?  
Are Axion-stars stable?

structure 
formation
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Bad news for direct detection

• suppose a fraction fMC of DM is bound in objects of 
mass 10-13 Msolar

• the density in the Galaxy would be fMC/solar system

• such a clump would pass through the Earth with a 
frequency

31

with the variance determined by the power spectrum. The validity of this assumption

is not obvious, due to order-one size of the fluctuations as well as non-linear e↵ects

mentioned in the items above. Some non-linearity can be implemented in principle

in our formalism by considering higher-order correlation functions. But non-linear

e↵ects can lead to long non-Gaussian tails of the distribution, which can modify the

mass function, particularly at large masses.

In view of those points, our results should be considered as a step towards the goal

of obtaining a complete understanding of the minicluster distribution. It allows simple

estimates and parameter dependence studies under the stated limitations. Future work

will be dedicated to relaxing those assumptions.

5.2 Outlook and comments on observational consequences

An important open question is the subsequent evolution of the minicluster after turn-

around. The two extreme possibilities are that either axions within the minicluster decohere

and form a virialized system of dust-like particles [12], or the coherent field configuration

collapses and admits a stable solution of the field equation under self-gravity, forming a so-

called bose or axion star [41, 42], whose ultimate fate is currently under discussion, see e.g.,

Refs. [43–46]. While the investigation of the minicluster evolution after decoupling from

the Hubble flow is beyond the scope of this work, our results on the relevant distribution

of masses and sizes at turn-around provide useful input for such considerations.

Clearly the further evolution and the fate of miniclusters during the hierarchical for-

mation of dark matter halos and the large scale structures has important consequences for

axion dark matter searches. If we assume that a fraction fMC of the total dark matter

is in form of clumps with mass ⇠ 10�13M� their number density in our galaxy would be

fMC ⇥ 10�44 cm�3 ⇠ fMC ⇥ 10�5/(1 AU)3 ⇠ fMC/solar system. The flux on Earth would

be fMC ⇥ 10�37 cm�2 s�1, and the frequency with which such a clump passes through a

detector at Earth would be
fMC

tUniv

✓

clump size

106 km

◆2

(5.1)

with tUniv being the age of the Universe. Hence the dark matter component bound in such

objects is invisible to axion haloscopes such as the experiments described in Refs. [19, 20]

and their expected event rate would be suppressed by a factor (1 � fMC). On the other

hand, if the final state of axion miniclusters is only loosely bound, they might be tidally

disrupted in the galaxy, leading to potential signals in axion haloscopes [12]. The clumpy

structure of dark matter halos due to the presence of miniclusters may lead to observable

signals in femto-lensing [21] or micro-lensing [15, 16]. Again an important question to be

answered in this context is about the size and masses of those objects today.
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How large are Minicluster today?

• do axions (particles) virialize?  
Transition from classical field to collection of particles?

• virialized system would have a size ~ 104 — 106 km 

• do they survive hierarchical structure formation?

• may be disrupted and form tidal streams  
stream crossing 1/(20 yr) lasting for 2 to 3 days  
Tinyakov, Tkachev, Zioutas, 15  
Green, O’Hare, 17

32
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Do minicluster condense to bose stars?

• static solution of a scalar field coupled to gravity  
(Klein-Gordon — Einstein / Schrödinger — Poisson)

• large literature (very incomplete)

33

Ruffini, Bonazzola, 1969
Rindler-Daller, Shapiro, 10, 12, 14
Chavanis, 11,17
applied to QCD axion:
J. Barranco and A. Bernal, 2011  
J. Barranco, A. C. Monteverde and D. Delepine, 2013  
J. Eby, P. Suranyi, L. Wijewardhana et al., 14, 15, 16, 17 
Davidson, Schwetz, 2016 
Braaten, Mohapatra, Zhang, 15, 16, 16
Hertzberg, Schiappacasse 17
Baum, Freese, Redondo, Visinelli, Wilczek, 17
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Bose star — dimensional analysis

34

Implications

Bose stars - dimensional analysis
consider static solution of Euler equation, replace Ò æ 1/R:

1
2m2R2

≠ M
8f 2

a

m2R3

≠ G
N

M
R ƒ 0

balance quantum pressure, axion self-interactions, gravity

has a solution only if M < M
max

: Chavanis 2011; Davidson, TS, 16;...

M . M
max

≥ m
Pl

f
a

m , R ≥ m2

Pl

4m2M

putting numbers:

M
max

ƒ 10m
Pl

f
a

m ≥ 10≠13M§ (!)

R ≥ 100 km , fl ≥ 3 g cm≠3

3 f
a

1011 GeV

4
2

T. Schwetz 37
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FIG. 1. Line of equilibrium solutions of the non-relativistic
axion-star equations along the dilute branch for f = 1011 GeV
(blue), f = 1013 GeV (green), f = 1015 GeV (orange), con-
necting to the unstable branch along the critical line (red
dashed). Central density increases with the arrows. Also
shown is the meta-stable dense solution (dashed black). Note
that these results are obtained in the single-harmonic approx-
imation and thus the black dashed curve describing the dense
regime should not be trusted.

we can express the central amplitude as |⇥
0

|2 ⇠
M/(⇤4

R

3), and the total energy U can be rewritten as

U / �GM
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2

M
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2
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3

#
. (25)

In the last equality, we have used the scaling property of
the Schrödinger-Poisson equation, writing the mass and
the radius of the star in terms of dimensionless quantities,
M̃ = M(m/f

2) and R̃ = mR. The natural scale for the
mass and the radius of the axion star are then
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where M

�

and R

�

are respectively the mass and the ra-
dius of the Sun. The equilibrium configurations of the
axion star can be qualitatively obtained by minimizing
the energy density in Eq. (25) with respect to R̃, while
fixing the axion star mass or, equivalently, the total num-
ber of axions N = M/m. This gives a quadratic equation

whose solutions correspond to the radius of the star for
either the dilute branch (R̃

+

) or the critical branch (R̃
�

),
namely
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The stability of the solution is determined by the sign of
@

2

U/@R

2
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R=R±

. Solutions in the dilute branch (⇢̃
0

. �)

are stable, while those in the critical branch (� . ⇢̃

0

. 1)
are unstable. Matching onto our numerical results from
section IIIA, we obtain

↵k = 9.9, ↵

4

= 1.7, (29)

independent of the value of �.
The dilute branch of the axion star corresponds to the

equilibrium between the gradient energy and gravity. De-
pending on the value of the decay constant, equilibrium
configurations of this type populate the line with negative
slope in Fig. 1 with f = 1011 GeV (blue), f = 1013 GeV
(green), or f = 1015 GeV (orange), with the mass-radius
relation
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=
↵k
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. (30)

For configurations lying above this equilibrium line, the
gravitational pull overcomes gradient pressure, so these
configurations contract. On the contrary, configurations
lying below the mass-radius line in Eq. (30) are restored
to the equilibrium condition by the gradient pressure
term. Hence, a restoring force acts to vanish any de-
viation from the stable equilibrium.
The critical branch, the dashed red line in Fig. 1, corre-

sponds to the balance of the gradient and the quartic self-
interaction energy contributions, with mass-radius rela-
tion

R̃

�

���
G!0

=
↵

4

|��|M̃
8↵k

. (31)

Deviations from this configuration are pushed either fur-
ther towards the dilute branch or to further contraction
and are hence unstable. A solution for the radius of the
axion star exists as long as the quantity below the square
root in Eq. (28) is positive, that is when the mass of the
star is smaller than the critical value
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which corresponds to the radius R̃

⇤

= and to the core
amplitude

R̃

⇤

=
↵k

2�M̃
⇤

=

s
↵

4

|��|
8�

, (33)

|⇥⇤

0

| =
p
32�↵k

↵

4

|��| =
8.8⇥ 10�8

|��|
✓

f

1011 GeV

◆
. (34)

Hertzberg, Schiappacasse 17

non-relativ. stable branch

unstable branch

relativistic solution?

Baum, Freese, Redondo, Visinelli, Wilczek, 17



T. Schwetz — IPPP workshop, Durham, March 2018 36

5

�=�������

�=�������

�=�������

���� ���� ���� ���� ���� ���� ���� ���� �����
�

��

����
����
����
����
����
����
����
����
�����
�����
�����
�����
�����

FIG. 1. Line of equilibrium solutions of the non-relativistic
axion-star equations along the dilute branch for f = 1011 GeV
(blue), f = 1013 GeV (green), f = 1015 GeV (orange), con-
necting to the unstable branch along the critical line (red
dashed). Central density increases with the arrows. Also
shown is the meta-stable dense solution (dashed black). Note
that these results are obtained in the single-harmonic approx-
imation and thus the black dashed curve describing the dense
regime should not be trusted.
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In the last equality, we have used the scaling property of
the Schrödinger-Poisson equation, writing the mass and
the radius of the star in terms of dimensionless quantities,
M̃ = M(m/f

2) and R̃ = mR. The natural scale for the
mass and the radius of the axion star are then
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where M

�

and R

�

are respectively the mass and the ra-
dius of the Sun. The equilibrium configurations of the
axion star can be qualitatively obtained by minimizing
the energy density in Eq. (25) with respect to R̃, while
fixing the axion star mass or, equivalently, the total num-
ber of axions N = M/m. This gives a quadratic equation

whose solutions correspond to the radius of the star for
either the dilute branch (R̃

+

) or the critical branch (R̃
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),
namely
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The stability of the solution is determined by the sign of
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. Solutions in the dilute branch (⇢̃
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are stable, while those in the critical branch (� . ⇢̃
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are unstable. Matching onto our numerical results from
section IIIA, we obtain

↵k = 9.9, ↵
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independent of the value of �.
The dilute branch of the axion star corresponds to the

equilibrium between the gradient energy and gravity. De-
pending on the value of the decay constant, equilibrium
configurations of this type populate the line with negative
slope in Fig. 1 with f = 1011 GeV (blue), f = 1013 GeV
(green), or f = 1015 GeV (orange), with the mass-radius
relation
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For configurations lying above this equilibrium line, the
gravitational pull overcomes gradient pressure, so these
configurations contract. On the contrary, configurations
lying below the mass-radius line in Eq. (30) are restored
to the equilibrium condition by the gradient pressure
term. Hence, a restoring force acts to vanish any de-
viation from the stable equilibrium.
The critical branch, the dashed red line in Fig. 1, corre-

sponds to the balance of the gradient and the quartic self-
interaction energy contributions, with mass-radius rela-
tion
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Deviations from this configuration are pushed either fur-
ther towards the dilute branch or to further contraction
and are hence unstable. A solution for the radius of the
axion star exists as long as the quantity below the square
root in Eq. (28) is positive, that is when the mass of the
star is smaller than the critical value
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which corresponds to the radius R̃
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How can minicluster condense into bose stars?

• gravitational cooling Seidel, Suen, 1994: radiate away scalar field

• significant fraction of minicluster mass maybe radiated away in 
terms of (semi)relativistic axions 

• possible collapse to a black hole  
(at much larger mass than MC)
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Figure 3. Phase diagram for axion scalar field collapse with axion mass m, scale parameter f and Bondi mass MB, with
Mp = (8fiG)≠1/2. The thin line shows the maximum mass of a non-relativistic Boson star with quartic self interaction. The
boundary between black holes and Bosenovas is di�use, and the plot shows only the largest mass initial condition which fails to
form a black hole. The diagram is compiled using a bisection search technique, with retarded time range u = 103m≠1. Trapped
surface detection uses ḡ/g = 10≠3 and the Bosenova is defined as a collapse of the core with central density fl > 10≠1m2M2

p .
Some points have been checked using u = 2 ◊ 103m≠1 and ḡ/g = 10≠4.
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Figure 4. Part of the phase diagram where the phase boundary is di�use. Each black pixel denotes a set of initial conditions
which forms a black hole, and each blue pixel denotes a set of initial conditions which forms a Bosenova.

IV. DISCUSSION

Gravitational collapse with nothing more than gravity and a scalar field is a remarkably rich subject. It seems
sensible to build up an understanding of it in small steps, the simplest being spherically symmetric collapse. We have
considered three possible scenarios for axion collapse: axion stars, black holes and Bosenovas. The numerical results
clearly point to a critical point with Bondi mass MB ¥ 10.6M2

p m≠1 and axion decay constant f ¥ 0.25Mp when the
initial conditions are presented on a phase diagram. Mostly, the distinction between the di�erent phases is clear, but
in some parts of the phase diagram, there is no clean line between initial conditions which collapse to a black hole and
those which remain non-singular. There may also exist special final states like the self-similar solutions for massless
scalar collapse [12] which we have not considered.

M
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see also:  
Helfer, Marsh, Clough, Fairbairn, Lim, Becerril, 1609.04724; Levkov, Panin, Tkachev, 1609.03611  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Sensitivity in lensing?

• depending on structure formation history, potentially 
interesting lensing signatures: 
femto-lensing Kolb, Tkachev, 95  
micro-lensing Fairbairn, Marsh et al, 17
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FIG. 15. Expected Microlensing Events: Here we assume
that all the DM is composed of miniclusters on small scales.
Lines show the e↵ects of our modelling of the minicluster mass
function and density profile for HSC and the EROS survey.

modelling we show four di↵erent calculations of Nexp for
HSC.

In the first (gray full-line in Fig. 15), we compute the
event rate for point-like objects (i.e PBHs) of fixed mass
M0 (i.e. Dirac-delta-function mass distribution) to nor-
malise the exposure and e�ciency.

We then compute the case of isolated miniclusters
(Dirac-delta-function mass distribution but non-point
like objects), with density profiles determined by dn/d�
extracted from Fig. 2. This corresponds to the red
full/dashed line in Fig. 15 for the HSC/EROS survey.
This additional treatment reduces the number of events
by a factor of O(102) due to the requirement of large
� such that R > 0. We consider this scenario as the
most conservative: miniclusters are too dense to su↵er
much disruption on mergers, and MCHs are likely to be
a “plum pudding” of objects of mass M0. In this case,
the modulating role of the MCH mass function is not
relevant for the HSC cadence and QCD axion.

The dense MCH case includes in addition the e↵ects
of dn/dM i.e an extended mass function. A microlensing
survey is sensitive to objects of fixed mass M . The mass
function spreads the MCHs to M > M0 (with more to-
tal mass at larger M), shifting the central M0 to smaller
values. The density profiles of the dense MCHs are also
computed using dn/d� i.e. mergers forming MCHs are
assumed to preserve the distribution of halo concentra-
tions. This treatment corresponds to the blue full/dashed
line in Fig. 15 for the HSC/EROS survey. This scenario
is more conservative for the HSC survey and the QCD
axion since it reduces the number of events by moving
mass out of the central region of sensitivity.

Finally, the di↵use minicluster case uses dn/dM , but
assumes that all MCHs with M outside the small window
M0/10  M  10M0 have too low density for microlens-
ing. Mergers are assumed to disrupt the miniclusters
and the MCHs with M > 10M0 are uniform with con-
centration cNFW(M), far too low to lens. The cut in
dn/dM reduces significantly the number of events. This

FIG. 16. Limits on the Fraction of DM collapsed into
Miniclusters: The model adopted is for “isolated miniclus-
ters”, which we consider the most realistic. The shaded region
shows the allowed mass for the QCD axion with miniclus-
ters. Where the n = 3.34 lines intersect this region, f

MC

is
constrained for the QCD axion. The inset shows a zoom-in.
The magenta (blue) line in the inset shows a hypothetical im-
proved observation by HSC ten nights with an e�ciency ✏ ⇠ 1
in the case of isolated miniclusters (dense MHCs).

is the most pessimistic model, corresponding to an e↵ec-
tive reduction in fMC caused by mergers. This scenario
corresponds to the purple line in Fig. 15 for the HSC
survey.

Using the Poisson statistics 95% C.L. limit from above
we find constraints on fMC as a function of m

a

, the axion
mass, presented in Fig. 16 for the most realistic isolated
miniclusters case. The dashed black lines correspond to
the EROS limits in the n = 0 or n = 3.34 hypothesis. The
full red lines correspond to the HSC limits in the n = 0 or
n = 3.34 hypothesis. We find that EROS does not place
any bound on fMC < 1 however HSC places very strong
bounds on fMC for an axion-like particle with n = 3.34,
reaching as low as fMC ⇡ 8.0 ⇥ 10�2 for m

a

⇡ 50 µeV.
The shaded green band shows the allowed mass for the

QCD axion fixed by m
a

= 6.6 µeV(1012 GeV/f
a

) [13, 14]
and the relic density: 50 µeV . m

a

. 200 µeV [39]. The
n = 3.34 lines represent temperature evolution of the
axion mass: where these lines intersect the shaded band,
fMC is bounded for the QCD axion, and we find fMC <
0.083(m

a

/100 µeV)0.12.
As shown in the inset of Fig. 16, these results could be

improved. Indeed the magenta line shows a hypothetical
improved observation by HSC, extending the current one
night to ten nights with an e�ciency ✏ ⇠ 1, leading to
a forecast bound of fMC . 0.004 for the QCD axion in
the isolated miniclusters case. The improved observation
is also able to bound fMC . 0.1 in the more pessimistic
(for the QCD axion) dense MCH scenario. We advo-
cate a dedicated analysis of the HSC microlensing data
to place more rigorous bounds on fMC than we have ap-
proximated here, and for a longer microlensing survey in
order to improve those bounds further. We are confident

Fairbairn, Marsh, Quevillon, Rozier, 1707.03310

requires extrapolation 
from equality till today
assumptions on MC 
state today
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FIG. 14. Cartoon showing the modelling of the mass function and density profiles applied to the computation of the expected
number of lensing events.

The di↵erent host masses for the MW and M31 normalise
the minicluster mass function di↵erently in each case.

The DM density profile along the line of sight is
⇢DM(x) = ⇢MW(x) + ⇢M31(x), with x = d/d

s

for source
distance d

s

= 770 kpc. The line of sight distances are
given in terms of the radial co-ordinate r as

rMW(d) =
q

R2
�

� 2R
�

cos l cos b + d2 , (49)

rM31(d) = d
s

� d , (50)

with R
�

= 8.5 kpc the radial co-ordinate of Earth from
the MW centre and (l, b) = (121.2�, �21.6�) the Galactic
co-ordinates of M31.

HSC has a microlensing e�ciency of ✏ ⇠ 0.1 � 0.8 for
time periods 2 minutes . t̂ . 7 hours with a number of
stars N

s

⇠ 107 � 109. The advanced treatment of the
e�ciency and candidate selection employed in Ref. [37]
is beyond the scope of the present work. In order to get
a sense for the constraints that could be obtained with a
dedicated analysis, we model the HSC microlensing e�-
ciency as a step function with ✏ = 0.5 in the given time
scale (see Fig. 14 of Ref. [37]). To normalise the exposure
we compute the expected number of events for PBHs,
and rescale E to approximately match the constraints in
Fig. 29 of Ref. [37] without accounting for finite source
size and using the extrapolated number counts of source
stars (this is the most optimistic constraint).

It is the short cadence that gives HSC access to low
PBH masses, and for our purposes will allow constraints
on the minicluster fraction for the QCD axion. This is
because low mass objects create lensing events on shorter
timescales due to the smaller radius of the microlensing

tube. Thus detecting microlensing events by such objects
requires large e�ciency on small times scales, i.e. a short
cadence.

HSC use pixel lensing and image subtraction to select
microlensing candidates. Using this technique, they iden-
tify a large number of variable stars, eclipses, and other
transient events. They find a single event with a light
curve consistent with a PBH microlensing event, though
the genuine nature is not confirmed. Thus, the Poisson
statistics 95% C.L. upper limits on the expected number
of microlensing events are

Nexp 
⇢

3 w/o. the PBH candidate
4.74 w. the PBH candidate

. (51)

We take Nexp  3 as the conservative limit on the mini-
cluster lensing events. A dedicated analysis of the HSC
data with the minicluster light curve would be required
to be more precise, and this is beyond the scope of the
present work.

C. Results: Expected Number of Microlensing
Events

In Fig. 15 we show the expected number of microlens-
ing events in various minicluster scenarios as a function of
M0 for HSC and EROS assuming fMC = 1. The number
of events in HSC is generally far larger than for EROS
due to the huge volume of DM between the Earth and
M31 leading to a larger optical depth to microlensing
for HSC [37]. In order to understand the e↵ects of our

Fairbairn, Marsh, Quevillon, Rozier, 1707.03310
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Summary — outlook

• Axion miniclusters are expected in the post-inflation 
scenario

• evolution till today not well understood

• generic feature also for ALP dark matter scenarios 
beyond the QCD axion

• important for direct detection 

• potential lensing signature

40
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P-spectrum dependence on assumptions
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Figure 3. The dimensionless power spectrum �2(q) for f
PQ

= 1012 GeV. In the left panel we
compare �2(q) for the di↵erent initial field correlators, Gaussian (G) and top-hat (TH), as defined
in eq. (3.6) respectively eq. (3.5). The right panel shows �2(q) assuming di↵erent inital times Ti,
when using the same correlator (G). The reference scale, K

1

= a
1

H
1

, is the comoving wave number
at 1 GeV. The solid curve in both panels corresponds to our default assumption, Ti = 3T

osc

and
Gaussian correlator, and is the same as the orange solid curve in the right panel of fig. 2.

describe the over-densities up to the point when they decouple from the Hubble expansion.

The power spectrum at T? discussed in this section will be the input for those calculations.

4 The size and mass of axion miniclusters

In standard cold dark matter cosmology, the Press & Schechter [38] (PS) method and its

variants are useful tools to estimate the mass function of gravitationally collapsed objects

(for reviews see e.g., Refs. [27, 39]). The basic idea is to use a spherical collapse model for

an over-density to estimate a critical density contrast, �c, such that regions with � > �c are

collapsed. PS provide a rule to use this result to estimate the mass function, dn/dM , which

is the number density of collapsed objects with mass in the interval [M,M + dM ]. Below

we provide a modification of the standard method to take into account several peculiarities

of the small-scale fluctuations in the axion energy density:

1. As is clear from the previous section, density fluctuations are of order one from the

initial moment when they are created. Therefore, linear theory cannot be used.

2. The non-linear fluctuations are created around T ⇠ 1 GeV, deep inside the radiation

dominated era. We need a collapse model which is valid both during radiation and

matter domination.

3. We will be interested in the double di↵erential mass function dn/dMdR, providing

the density of objects with a certain mass and a certain size. We develop a modified

PS approach to calculate dn/dMdR, taking again into account the non-linearity of

the fluctuations.
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