

Dark Matter Heating

Justin I. Read

Matthew Walker, Pascal Steger, Oscar Agertz, Michelle Collins, Denis Erkal, Giuliano Iorio, Filippo Fraternali

The Cusp-Core Problem

The cusp-core problem

WLM I Leroy, Nature 2015

Flores & Primack 1994; Moore 1994; Read et al. 2017; Iorio et al. 2017

Flores & Primack 1994; Moore 1994; Read et al. 2017; Iorio et al. 2017

Dubinski & Carlberg 1991; Navarro et al. 1996

Pure Dark Matter Simulations

Observed Universe

Dark Matter Heating

Navarro et al. 1996; Gnedin & Zhao 2002; Read & Gilmore 2005 Pontzen & Governato 2012

Stellar Feedback

Image composite credit: Leisa Townsley et al. 2006

Stellar feedback & galactic winds

Westmoquette et al. 2009; and see Strickland & Heckman 2009; McQuinn et al. 2018

Simulations | Resolving stellar feedback

Read et al. 2016 I Spatial resolution 4pc; mass resolution $300M_{\odot}$

Read et al. 2016

Read et al. 2016

The Cusp-Core Problem Revisited

Read et al. 2016b,2017

Read et al. 2016b,2017

Testing Predictions from DM Heating Models

• Bursty star formation. [Teyssier et al. 2013; Kauffmann 2014; Sparre et al. 2017]

• Stars kinematically "heated" along with the dark matter $\Rightarrow v/\sigma < 1$.

[Read & Gilmore 2005; Teyssier et al. 2013; Leaman et al. 2012; Wheeler et al. 2017]

• Radial migration of stars \Rightarrow age gradients.

[El-Badry et al. 2016; Zhang et al. 2012]

"Smoking gun" evidence for DM heating

Read et al. 2016

UNIVERSITY OF

Leroy, Nature 2015

Rotation curves

Fornax

Robert Lupton & SDSS

Stellar kinematics

UNIVERSITY OF

SURRI

UNIVERSITY OF

SURR

Read et al. 2018a (arXiv:1805.06934),b,c in prep.

Read et al. 2018a (arXiv:1805.06934),b,c in prep.

 $\sigma/m~<~0.57\,{\rm cm}^2\,{\rm g}^{-1}$ at 99% confidence.

Read et al. 2018 (arXiv:1805.06934)

Conclusions

- Dwarf galaxies with more star formation have lower central dark matter densities.
- This suggests that dark matter in dwarf galaxies is "heated up" by baryonic processes.
- If so, this solves the cusp-core problem for dwarf galaxies in LCDM.
- Draco gives us a new constraint on the SIDM cross section: $\sigma/m < 0.57 \text{ cm}^2/\text{g}$ at 99% confidence.

Justin I. Read