

Rachel Bean Cornell University

Annual Theory Meeting, Durham December 2006

Plan

o Introduction to CMB temperature and polarization

o The maps and spectra

o Cosmological implications

What is WMAP?

- o NASA's 'Wilkinson Microwave Anisotropy Probe'
- o Satellite detecting primordial photons "cosmic microwave background"

CMB is a near perfect primordial blackbody spectrum

Annual Theory Meeting , Durham December 2006

Important comparisons with later observations

Imperfections in the CMB are what we are really interested in

o Photons escape from gravitational potential

Cold spots = high density Hot spots = low density

 Translate into fluctuations in the blackbody photon temp at ~1/100,000 level

- o Thomson scattering interactions in photon-electron/baryon fluid characteristic scale $\lambda \sim c_s t_{rec}$
 - $\gamma \iff e^{-} \iff p^{+}$ Compton Coulomb scattering interaction

CMB scattering gives a "2 for 1": Polarization too!

- o Polarization created by Thomson scattering of photons
 - Quadrupolar T distribution
 - T and P correlated

o P a purer imprint of early universe than T

 Once electrons in atoms, scattering processes stop

o P on scales below scattering horizon size

- small scale polarization at recombination z~1088
- Larger scale from reionization by the first stars z~25

CMB Polarization: Alternative descriptions

- Polarization <=> Stokes Parameters (Q,U)
 or E/ B modes analogous to EM.
 - E/B rotationally invariant <u>and</u> nicely divides underlying processes
- o Density (scalar) perturbations only generate EE
 - EE polarization <=> matter density &
 CMB temperature
- o Metric (tensor) perturbations generate both EE and BB
 - BB insight into primordial gravity waves with little 'contamination' from scalar modes

Plan

o Introduction to CMB temperature and polarization

- o The maps and spectra
- o Cosmological implications

Measure CMB at multiple frequencies to minimize systematics

Multiple maps help extract galactic foregrounds

Harmonic analysis of the maps gives deeper insight into underlying processes

o Spherical harmonic decomposition of sky

$$rac{\Delta T(p)}{T} = \sum_{lm} a_{lm} Y_{lm}(p)$$

o For a random field all we need to describe it is the correlation function

$$\langle a_{lm}^* a_{l'm'}
angle = \delta_{ll'} \delta_{mm'} C_l$$

o Estimate C_l from sampling a_{lm} from the sky

$$C_{l} = rac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^{2}$$

 Inherent sampling error associated with measurement ("cosmic variance")

$$\Delta C_l = \sqrt{\frac{2}{2l+1}}C_l$$

Spatial fluctuations transform into `angular power spectrum'

CMB Temperature fluctuations: An overview

Largest scales

- Only just entering causal horizon recently, sensitive to universe's recent evolution
- Cosmological origins
- inherent sampling uncertainty "cosmic variance"

Annual Theory Meeting, Durham December 2006

Annual Theory Meeting, Durham December 2006

Polarization maps

Annual Theory Meeting , Durham December 2006

Polarized foregrounds – evidence of role of galactic magnetic field

Magnetic Field Structure in external galaxies exhibit spiral structure

M83 6cm Polarized Int. + B-Vectors (VLA+Effelsberg)

M51 6cm Total Int. + B-Vectors (VLA+Effelsberg)

Copyright: MPIfR Bonn (R.Beck, C.Horellou & N.Neininger)

Copyright: MPIfR Bonn (R.Beck, N.Neininger, S.Sukumar & R.Allen)

Summary of power spectrum results

Plan

o Introduction to CMB temperature and polarization

o The maps and spectra

Observations have driven many key theoretical developments

Observations have driven many key theoretical developments

CMB peaks, troughs and plateaus constrain cosmology

CMB spectrum features are translated into core cosmological parameters

The expansion history:	Hubble expansion factor H ₀ , H(z)
The matter content curvature :	fractional energy densities ($\Omega_X = \rho_X / \rho_{total}$)
Primordial power spectrum :	P(k) = A k ⁿ⁻¹ , tensor to scalar ratio r
Dark energy characteristics :	equation of state, w=density/pressure
Ionization history :	optical depth (τ), redshift of reionization(z_{rei})

First peak position key constraint on the matter contents of the universe

o E.g. CMB First peak position – angular diameter distance to last scattering

Sound horizon at z=1100

- o Depends on matter content (expansion history)
- o Depends on curvature
 - BUT Geometrical degeneracy
- o Degeneracies BIG hurdle to get to theory
 - Polarization data helps break theselg

Improvement in Parameters from polarization measurement of reionization (τ)

Comparison of 1st year and 3rd year WMAP constraints

Improvement from additional complementary datasets

The simple 6 parameter cosmological model

{ $\Omega_{b}h^{2}$, $\Omega_{m}h^{2}$, h, τ , n_s, A_s}: χ^{2} /dof = 1.04

- o Run model forward in time
 - predict cosmological evolution

o Go backwards in time

to study early universe

o Constrain variants on simplest model

- massive neutrinos
- Dark energy models
- Beyond power law inflation

WMAP fits predict Hubble expansion H(z)

Luminosity distance prediction from WMAP alone

29/41

WMAP fits predict galaxy & mass distribution

Predicted P(k) for SDSS and 2dF galaxy surveys from WMAP alone

WMAP fits predict small scale CMB

Predicted small scale CMB spectrum from WMAP alone

Constraints on VERY early universe

- o `Inflation'
 - early period of accelerated expansion, just after the Big Bang
- o Acceleration induced by slow roll of particle φ down a potential well V($\varphi)$
- o Predicts ...
 - No preferred scale P(k) ~k ^(n -1) with n-1~0
 - Small tensor contribution r=T/S
 - Entropy conserving (adiabatic) fluctuations
- o Acceleration causes Hubble horizon decrease
 - Stretches space -> spatial Flatness
 - Density fluctuations random (Gaussian)

Constraints on geometry of the universe

CMB needs dark matter: – alternative 10⁻⁵⁴ less likely!

CMB doesn't need dark energy: - Λ = 0 equally likely but - Λ = 0 needs low expansion rate (inconsistent with other observations)

WMAP+ other observations:

- Entirely consistent with flatness

Constraints on initial conditions: Gaussianity

distribution of dT/T on the sky (Npix = 3072, 12288, 786432)

Still some interesting large scale correlations...

34/41

Annual Theory Meeting, Durham December 2006

Constraints on initial conditions: power spectrum

Constraints on power law initial $P(k) \propto k^{n-1}$ + tensors, r=A_T/A_S

Annual Theory Meeting, Durham December 2006

Constraints on initial conditions: slow roll inflation?

RB, Shandera, Tye, Xu (in prep)

36/41

Constraints on initial conditions: adiabaticity

o No need for isocurvature perturbations

Annual Theory Meeting, Durham December 2006

Beyond Λ CDM: Neutrino masses

	Σm _v (eV) 95%	CL
WMAP only	1.8	
WMAP+SDSS	1.3	
WMAP+2dF	0.88	
CMB +LSS + SN	0.66	

Sensitive to assumptions about clustering properties of Dark Energy

Conclusions

- WMAP now has full sky temperature and polarization maps 0
- Polarization maps important development for cosmology 0
 - Simple Λ CDM model survived its most rigorous test
 - Simplest inflationary models favored

WMAP is a rich resource 0

- combining/ correlating WMAP with complementary data
- Foreground polarization templates for future surveys
- Future CMB from WMAP, and beyond, vital 0
 - Tensor modes: direct signature of inflation?
 - Role in investigations into dark matter/dark energy

Annual Theory Meeting, Durham December 2006

