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AdS/CFT: the basics

Conjectured exact quantum duality between:

Type 1I1B Superstring on
N=4 SYM asymptotically

on a sphere

AdS5 X 55




AdS/CFT conjecture was motivated first by Maldacena

The basic idea 1s to take a stack of D3-branes and analyze the
low energy limit of it’s excitations in two ditferent ways:

Focus on shortest strings

Lead to field theory of

particles with spin one or less



Branes are massive: they bend spacetime

Lead to black-hole type geometry

The AdS/CFT correspondence states that these two ways of

thinking of the low energy limit are completely equivalent:
each 1s perturbatively reliable in different regimes.



Basic Dictionary

AdS

CFT

Super-isometries

Global symmetries

R4

Q%MN

Flux = N

Gauge group U(N)

State

State




The main problem of the AAS/CFT 1s to show the equivalence

of states on both sides: same irreducible representations of the

symmetry group.
Technicalities:

Want to work in Lorentzian signature

Gravity works best in global coordinates for AdS

ds® = — cosh® pdt? + sinh? pdQ2 + dp?

SYM lives in conformal boundary: p — o0

S R



We understand the states of SYM 1n free field imit (gauge

invariant subset of Fock space).

Only know how to create some states in gravity by adding
probes to some classical solution of gravity with required
asymptotics. These probes can be strings, D-branes.
Don’t have systematic theory of quantum gravity, just
semiclassical expansion.



We have a lot of reasons the correspondence

should work. (Many tests)

The big question 1s: how does it work?

More precisely: where does geometry come from?

This talk will present a proposal for the origin
of extra dimensional geometry in CFT that passes many
consistency tests and
seems to give a good expansion of the N=4 SYM
at strong ‘t Hooft coupling.



¢ Some background independence: we need
to encode many geometries /topologies. Not
just the ground state of the system.

2¢ Focus on BPS dynamics to help tame
quantum corrections.

s¢ Universal description of the origin of strings
for all classical gravity states.



Operator state correspondence.

The N=4 SYM i1s a superconformal field theory

In any CFT there 1s an operator state correspondence

Radial quantization
ds® = (d?; d92>
r

0(0) ~ |0)

Hamiltonian 1s scaling dimension: Need

to measure anomalous dimensions.



Complete description of states in SYM:

Local gauge invariant operators inserted at the origin

in Euclidean theory.

These are products of traces of fields and their
derivatives inserted at origin.

Can make a -1 correspondence with states in the

gauge invariant Fock space

of the field theory on the sphere.



Basic correspondence:

oM@ ~ g

i,[n]

of fundamental fields (as operators) get turned into

raising operators of partial waves of field on sphere. Each of
these counts as a Letter.

[t's easy to match quantum numbers: dimensions vs energy,
SO(4) quantum numbers.



Each trace 1s interpreted as a string (Witten, Gubser,Klebanov,
Polyakov)

Works only so long as the number of Letters (length of an
operator) 1s less than

N1/2
In this regime, planar diagrams dominate

Operator description is very convenient for computing
Hamiltonian.



First done to one loop in BMN limit. (B, Maldacena, Nastase)

Extended to SO(6) subsector by Minahan and Zarembeo.
Found an integrable SO(6) spin chain.

Extended to tull SU(2,2|4) chain by Beisert and Staudacher,
who found a full 1-loop integrable spin chain.

Classical string motion in dual geometry also integrable (Bena,

Roiban, Polchinski)



Suggests integrability as a way to match string states around

AdS, to quantum spin chain model from resummation of planar
diagrams. This 1s a formidable task, but

if integrable, one expects some solution 1n the form
of a Bethe Ansatz. There has been a lot of recent progress

in this direction.

Beisert, Dorey, Frolov, Hernandez, Hoffman, Janick,
Lopez, Maldacena, Staudacher, Tseytlin ...

This 1s advocated as a proof of AAS/CFT.



THE BASICS

Need a ground state
0y ~ tr(Z7)(0) = ZZZ 2222222222222 22227

L — Xk 1.X
This state preserves half of supersymmetries.

Need defects propagating about ground state background

N1, n9) ~tr(Z™YZ™YZ™ .. )~ ZLZZZZZZY ZZZ27ZZ2Y ZZ 77

We have some type of lattice with various defects on it.



Asymptotic Bethe Ansatz

Eigenfunctions of the Hamiltonian look
asymptotically as follows

w(nl, 77,2) G ea:p(iPlnl =t ’inng) b S(Pl, P2) exp(innl o z'Plng)

This 1s valid asymptotically for both n large.
S 1s some type of S-matrix of the defects.

The energy associated to such a state 1s

E—J= Z\/1+

sin®(P; /2)

Dispersion relation

Santambrogio, Zanon. Nice argument for exactness by Beisert



The “proot” 1s limited:
One background. (Expansion around strict AdS x S)
Captures only strings (with all o’ corrections)

Opinion: too algebraic, not enough geometric intuition,

D-branes missing.

I will now take a different route to try to address all of

these at the same time, but giving away a solvable
description of strings (integrability).



There 1s a lot of SUSY.

Systematic exploration of supersymmetric states
give good results.

Half BPS states: 1n free field limit can be described by

a gauged matrix quantum mechanics of a harmonic

oscillator (equivalent to quantum hall droplet)
(Corley, Jevicki, Ramgoolam, B.)

In gravity there 1s a classification of regular

solutions 1n terms of a two-coloring of the plane
(Lin, Lunin, Maldacena)

Gravity 1s like the hydrodynamic description of the
quantum hall droplet. Suggestive of the origin of geometry.



BPS MATRIX MODEL
DYNAMICS

s¢ 1/8 BPS states: Chiral ring dynamics.

s Leads to Improved effective low energy dynamics.



Want to study states that respect 1/8 SUSY (Chiral ring)

Via operator state correspondence:
O(0) ~ 10)

Any local gauge invariant operator is constructed from
traces of fields and derivatives.

e
0" @y 1

\



In free field limit all states that correspond to chiral ring

can be written in terms
of the 3 s-wave complex scalar components: X, Y, Z

This 1s like dimensional reduction on sphere.

BPS argument: dimensional reduction 1s an accurate

description of the BPS dynamics (even at strong coupling).
Semiclassical 1s often exact.



We want to explore this reduction at strong coupling

A typical result of matrix models 1s that the typical
eigenvalue 1s of order N'/2

Zi = X% 4 X%

6 6
1 1 1 >
Sl /dttr (E :i(DtX“)2 — §(X“)2 = @g}%M[X“,Xb][Xb,X ]>

a=1 atb=1

This term dominates at strong coupling. The minimum of
potential happens for commuting matrices.
There 1s still a of such configurations, and we
want to quantize them. Further analysis reveals that this
constraint 1s requiredfor BPS states.



Effective low energy dynamics 1s a gauged Matrix

quantum mechanics of commuting matrices
X' X7 =0

(Minisuperspace approximation)

Can all matrices simultaneously, by gauge
transformations.
Associate a 6-vector per eigenvalue & ~ (X))

Figenvalues are coordinates of particles (a la BFSS)

Classically the eigenvalue dynamics is free.



Going to eigenvalue variables is like going to spherical
coordinates.

Measure term from going to eigenvalue basis that atfects
the effective laplacian (angular variables are dropped)

e E e

1<J

1 2 1 = 2

Quantum truncation of classical H in mini-superspace



2¢ Terms we set to zero (commutators) are
D, F terms of potential. This means we are
reducing to dynamics on moduli space of

vacua.

s¢ This 1s well know to be given by N particles
in 6 flat dimensions. (Lessons from M (atrix) theory)



Figenvalue Distributions:

One can find ground state, and absorb square root of

the measure 1in wave functions.
~ free fermion description of hermitian matrix models

tho ~ exp(— » Z/2)

Y = py
[Pl ~ p® exp(— > " x7) = exp (— d FH+2) log|Z - ij>

i<j

Square of wave function tells us which configurations are

dominant.



Interpret collection of eigenvalues as positions of
particles in 6d.

Similar to a Boltzman gas of N Bosons in 6d with a confining

potential and logarithmic repulsive interactions.

e (—zfz b2 logl - )

exp(—(H)

We want to study the thermodynamics

of this ensemble in the saddle point approximation.
(Large N limit, replace sums by integrals)

Introduce a density of bosons (eigenvalues)



Density of bosons 1s a singular configuration. Symmetries of
ensemble suggest the following density of “eigenvalues”

0(]Z] — o)
== WAYE
L r%d_l\/ol(S?d_l)

We get a round five sphere



A

¢ BPS wave functions are holomorphic,
multiplying the ground state wave function.
If multiplying by homogeneous polynomial

of degree n, the energy 1s n.

s¢ This 1s the same as holomorphic
quantization of the moduli space of vacua

(complex Kahler manifold)



For example, take this holomorphic function

N

(

And multiply the ground state by it.
This 1s a new wave function, with energy n.

af|e) ~ Po(Z)a

Interpreted as creation of one graviton with momentum
n on top of a given state (Witten).



To consider classical solutions, we need coherent states
Naively, we would write

eXP(Z tnPn(Z))lzo

But these are usually non-normalizable.

Instead, we use
S taPa(Z) = trf(2)

Where , but only grows logarithmically.

Net result 1s to change the confining potential, but not the
repulsive interactions. We get a deformed distribution.



Al

s¢ Deformation of geometry of eigenvalues
parallels deformation of gravity by a

classical “coherent state”.

5« We identify the eigenvalue distribution with
(some aspect of) gravity: Geometry is
emergent.



R

¢ Ditferent topologies of eigenvalue
distributions lead to different spacetime
topologies (explicit in Lin, Lunin, Maldacena
case.)

2

¢ Very few exact results are known. We have
the wave functions, but we need the
distributions of eigenvalues.



These wave functions can be simulated using
Monte-Carlo methods

Other coordinates

-10

100 eigenvalue simulation
10—
PRAR W Expected classical
T Wiw B X B Ja .
R radius: 7.07
e b 0 o
R R O ; ;
o %ﬁ"*ﬂ}h%ﬁ 4 P Numerical radius:
L doLS
u,.;%. LI 6.63+-0.06
5
X

Can check low quadrupole moment.






Distance from origin (1000 particle simulation).
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The full quantum simulation differs from the classical
expected result in an interesting way.

Thermal fluctuations of Boltzman system are quantum

fluctuations in wave function.
These should be important quantum gravity effects.

Many wave functions can be simulated, they give rise to
different geometries.



Matching to gravity needs a better dictionary:
Eigenvalues are D-branes (giant gravitons)

Experience with this type of setup in the half BPS case

shows that the D-branes are a geometric locus where the
sphere of the boundary shrinks to zero size. (LLIM analysis)

The simulations capture this degeneration locus, not the

full geometry.



Approximations that lead to commuting matrices improve at
strong coupling! Off-diagonal modes become heavy.

.~ [ ar (z

6

: I
(Do =G ZWQ%M[X%XW[X%X@])

a,b=1

l\DI»—\

1 S o
Eosc s \/1 A ﬁgYM‘xj o xj"Q

With the typical radius, the energies scale like square root of

the ‘t Hooft coupling. Diagonal modes are slow degrees of
freedom 1n a Born-Oppenheimer approx.



Can also suggest : off-diagonal modes are
massive and can be represented by lines joining eigenvalues

(points on the sphere): STRING BITS. Need to dress them

with gravity (eigenvalues).

One can also verity string tension
(D.B, D. Correa, S. Vazquez)




One can calculate string energies for BMN states:

J
O ~ Y _exp(ikl/J)tx(Z"']Y, Z]1Z2777'X, Z))

oy

Off-diagonal modes



One treats the off-diagonal modes as free fields.

One calculates the energy of the BMN state assuming the off-
diagonal modes the diagonal ones to first order.

The calculation of energies can be done 1n a saddle point and
stationary phase approximation.

wk ‘ Htotal ‘ wk >

el
Yo




Details of state description

b

) ~ Y exp(ikl/J) > AV 2 X 4h)0),,

y/

[=0 Sl

Manipulations of formulae lead to the following expression

fdeCW |2ij | > exp(ikl/J) ZZZJ' l|22\/1 gYM'% — Zj|?

sl / T ool > 15, Sep kL) ) A

Localizes on sphere

[Localizes on |z| maximal (diameter), and

)

particular phase between z, z



Result localizes to a string bit

of particular
6 = k/2J
2
DR 2\/1 + QY%N SIne (he/ 29

to all orders in the ‘t Hooft
coupling exactly, by taking J large k fixed. (Small angles)



A

5¢ Matches the formula of Santambrogio and Zanon for all loop anomalous
dimensions.

s¢ It also matches the conjectures from the “all loop Bethe ansatz” dispersion
relation (Arutyunov, Beisert, Dippel, Staudacher)

% Surprisingly, this also matches the recent classical Nambu-Goto calculation
(Hofman, Maldacena), including the full geometrical interpretation. The
eigenva]ue geometry above preceded the Nambu-Goto calculation.

s¢ The origin of strings by string-bits is robust for other BPS geometries
(different eigenvalue distributions)



A

Incomplete picture because off—diagonal modes are
treated as free fields.

¢ Suggests breakdown of all-loop Bethe ansatz for small J,
but 1t’s not clear if it happens and where 1t happens.
Number of magnons ~ number of off-diagonal modes.

s¢ One should be able to the number of string bits
to make smooth slow strings moving on the sphere (or
other geometries)



100

80 -

60 -

40 -

20 -

Puzzles

One can try a wavefunction
that corresponds to a “donut”.

I . . . I . . . I . . . I
40 60 80 100

Does not match topological LLLLIM intuition



There 1s no analytic result on the “surfaces” that

the simulation produces, other than they are submanifolds,
possibly with a boundary. Only the most symmetric case 1s

understood.

Simulations can be a source of intuition to get to
understand gravity better,

A lot left to do!



CONCLUSION

NA
w

A lot of recent progress on Integrability of string.

A

¢ Reduction in low energy degrees of freedom to eigenvalues.

N2

“¢ Non-trivial repulsion of eigenvalues gives geometry as
thermodynamic saddle point of wave function.

S

¢ Off-diagonal modes give string bits for all geometries.

A
z

% The approach gives a strong coupling expansion that 1s
quantitative (can reproduce giant magnons, etc).

A
N

IS

The problems can be simulated on a computer!




