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 AdS/CFT: the basics

Conjectured exact quantum duality between:
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on a sphere

Type IIB Superstring on
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AdS/CFT conjecture was motivated first by Maldacena

The basic idea is to take a stack of D3-branes and analyze the 
low energy limit of it’s excitations in two different ways:

Shortest strings are massless

Lead to field theory of 
particles with spin one or less



Branes are massive: they bend spacetime

Lead to black-hole type geometry

Because of gravitational redshift, 
particles in the near horizon region cost 

almost no energy to produce.

We can take also a low energy limit by
focusing on the near horizon region.

The AdS/CFT correspondence states that these two ways of 
thinking of the low energy limit are completely equivalent:

each is perturbatively reliable in different regimes.
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Flux = N Gauge group U(N)

State State 

Basic Dictionary

AdS CFT



The main problem of the AdS/CFT is to show the equivalence 
of states on both sides: same irreducible representations of the 

symmetry group. 

Technicalities:

Want to work in Lorentzian signature

Gravity works best in global coordinates for AdS
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We understand the states of SYM in free field limit (gauge 
invariant subset of Fock space).

Only know how to create some states in gravity by adding
probes to some classical solution of gravity with required 

asymptotics. These probes can be strings, D-branes.
Don’t have systematic theory of quantum gravity, just 

semiclassical expansion. 



We have a lot of reasons why the correspondence
should work. (Many tests)

The big question is: how does it work?

More precisely: where does geometry come from?

This talk will present a proposal for the origin
of extra dimensional geometry in CFT that passes many 

consistency tests and
seems to give a good expansion of the N=4 SYM 

at strong ‘t Hooft coupling.



What we’re after

Some background independence: we need 
to encode many geometries /topologies. Not 
just the ground state of the system.

Focus on BPS dynamics to help tame 
quantum corrections.

Universal description of the origin of strings 
for all classical gravity states.
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The N=4 SYM is a superconformal field theory

In any CFT there is an operator state correspondence

Radial quantization

O(0) ∼ |O〉

ds
2 = r

2
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dr2
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+ dΩ2

3

)

1

Hamiltonian is scaling dimension: Need 
to measure anomalous dimensions.

Operator state correspondence.



Complete description of states in SYM:

Local gauge invariant operators inserted at the origin
in Euclidean theory.

These are products of traces of fields and their 
derivatives inserted at origin. 

Can make a 1-1 correspondence with states in the 
gauge invariant Fock space 

of the field theory on the sphere.
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Basic correspondence:

Derivatives of fundamental fields (as operators) get turned into 
raising operators of partial waves of field on sphere. Each of 

these counts as a Letter.

It’s easy to match quantum numbers: dimensions vs energy,
SO(4) quantum numbers.



Operator description is very convenient for computing 
Hamiltonian.

Each trace is interpreted as a string (Witten, Gubser,Klebanov, 
Polyakov)

Works only so long as the number of  Letters (length of an 
operator) is less than 
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In this regime, planar diagrams dominate



First done to one loop in BMN limit. (B., Maldacena, Nastase)

Extended to SO(6) subsector by Minahan and Zarembo.
Found an integrable SO(6) spin chain.

Extended to full SU(2,2|4) chain by Beisert and Staudacher, 
who found a full 1-loop integrable spin chain. 

Classical string motion in dual geometry also integrable (Bena, 
Roiban, Polchinski)



Suggests integrability as a way to match string states around 
AdS, to quantum spin chain model from resummation of planar 

diagrams.  This is a formidable task, but 
 if integrable, one expects some solution in the form

of a Bethe Ansatz. There has been a lot of recent progress 
in this direction. 

This is advocated as a proof of AdS/CFT.

 Beisert, Dorey, Frolov, Hernandez, Hoffman, Janick,
 Lopez, Maldacena, Staudacher, Tseytlin ...



THE BASICS

Need a ground state
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Need defects propagating about ground state background
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We have some type of lattice with various defects on it.

This state preserves half of supersymmetries.



Asymptotic Bethe Ansatz

Eigenfunctions of the Hamiltonian look 
asymptotically as follows
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This is valid asymptotically for both n large.
S is some type of S-matrix of the defects.

The energy associated to such a state is
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Dispersion relation
Santambrogio, Zanon. Nice argument for exactness by Beisert



The “proof” is limited:

One background. (Expansion around strict AdS x S)

We expect correspondence to include “all geometries with 
asymptotic AdS x S boundary conditions” in some sense.

I will now take a different route to try to address all of 
these at the same time, but giving away a solvable 

description of strings (integrability).

Captures only strings (with all       corrections)

D-branes missing.
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Opinion: too algebraic, not enough geometric intuition,



There is a lot of SUSY.

Systematic exploration of supersymmetric states 
usually give  good results.

Half BPS states: in free field limit can be described by 
a gauged matrix quantum mechanics of a harmonic 

oscillator (equivalent to quantum hall droplet) 
(Corley, Jevicki, Ramgoolam, B.)

In gravity there is a classification of regular 
solutions in terms of a two-coloring of the plane 

(Lin, Lunin, Maldacena)

Gravity is like the hydrodynamic description of the 
quantum hall droplet. Suggestive of the origin of geometry.



BPS matrix model 
dynamics

1/8 BPS states: Chiral ring dynamics.

Leads to Improved effective low energy dynamics.



Want to study states that respect 1/8 SUSY (Chiral ring)

BPS bound:          Energy = Angular momentum

Via operator state correspondence:

Any local gauge invariant operator is constructed from
traces of fields and derivatives.
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Spherical harmonic expansion on sphere



In free field limit all states that correspond to chiral ring
 can be written in terms 

of the  3 s-wave complex scalar components: X, Y, Z

This is like dimensional reduction on sphere.

BPS argument: dimensional reduction is an accurate
description of the BPS dynamics (even at strong coupling).

Semiclassical is often exact.
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1. Introduction

2. Gauged matrix quantum mechanics of commuting matri-

ces

Let us consider a matrix quantum mechanics model for 2d Hermitian matrices of
rank N which commute with each other (we can equally consider it as a matrix
model for d normal matrices which commute with each other). As argued in [?] such

a model results from considering either 1/2, 1/4 or 1/8 BPS states in N = 4 SYM
compactified on a sphere, where d = 1, 2, 3 respectively. The BPS states near the

vacuum are made of multiple gravitational quanta, so they can be described in a
purely geometric fashion. In this section we will deal with the systems where the
matrices commute without describing how the other degrees of freedom of the N = 4

SYM decouple.

Let us label the Hermitian matrices by X i, i = 1, . . . 2d, and the complex normal

matrices by Zj = X2j−1 + iX2j , for j = 1, . . . 2d. We require moreover that

[X i, Xj] = 0 (2.1)

The model has a gauge invariance under SU(N) transformations, where we act

by conjugation on all the matrices simultaneously X i → UX iU−1. It is easy to see
that the constraint 2.1 is invariant under these transformations.

Now we want to solve a Gaussian matrix model quantum mechanics associated
to these matrices. We have two options here: we can consider a first order dynamics

where Z̄j and Zj are canonically conjugate variables (this is equivalent to stating
that X2i−1 and X2i are canonically conjugate, or we can consider a second order

– 1 –

where the nk denote multi-indices. These are conjectured to be eigenstates of the

Hamiltonian of energy ∑
j

|nj | , (2.22)

above the ground state, which are moreover approximately orthogonal in the large N
limit [3]. This follows from identifying these states with the corresponding graviton

states in the N = 4 SYM theory. These give an approximate Fock space of oscillators,
one for each multi-index, on which one can take coherent states. These coherent

states can be analyzed using similar techniques as those used above, and they give
wave-like shape deformations of the five sphere, also with singular support in the
embedding space R6.

3. A saddle point approximation to BMN state energies

Now we want to use the results of the last section to calculate energies of stringy
modes in the CFT. For this, we need an explanation of how the other modes of the
SYM theory decouple to obtain the matrix model of commuting matrices. To do

this we need to begin with the N = 4 SYM theory compactified on a round S3. We
obtain the following action for the scalars

Ssc =

∫
S3

dΩ3 dt tr

(
6∑

a=1

1

2
(Dµφ

a)2 − 1

2
(φa)2 −

6∑
a,b=1

1

4
g2

Y M [φa, φb][φb, φa]

)
. (3.1)

The mass term for the scalars is induced by the conformal coupling of the scalars to
the curvature of the S3, which is chosen to have radius equal to one. This also sets
the scale for time derivatives. With this normalization, the volume of the S3 is 2π2.

To study BPS configurations, one needs to concentrate on the constant modes
of the φas, while keeping every other mode in the vacuum. This gives an effective
reduction to a gauged matrix quantum mechanical model of six Hermitian matrices.

This model, after rescaling the matrices to have a kinetic and quadratic potential
term as in the last section, is of the following form

Ssc =

∫
dt tr

(
6∑

a=1

1

2
(DtX

a)2 − 1

2
(Xa)2 −

6∑
a,b=1

1

8π2
g2

Y M [Xa, Xb][Xb, Xa]

)
. (3.2)

We will work with this dimensionally reduced model (slightly modified) in what

follows.

The matrices at this point are not required to commute. If we diagonalize X1,
and under the assumption that its eigenvalues are of order

√
N (as calculated in

the previous section, and also as expected from usual matrix integrals), we find that
by putting vevs in the interaction term coming from the commutators, the effective

– 8 –

We want to explore this reduction at strong coupling

A typical result of matrix models is that the typical 
eigenvalue is of order  
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potential happens for commuting matrices.

There is still a family of such configurations, and we
want to quantize them. Further analysis reveals that this 

constraint is requiredfor BPS states.



Effective low energy dynamics is a gauged Matrix 
quantum mechanics of commuting matrices

Can diagonalize all matrices simultaneously, by gauge 
transformations.
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1. Introduction

2. Gauged matrix quantum mechanics of commuting matri-

ces

Let us consider a matrix quantum mechanics model for 2d Hermitian matrices of
rank N which commute with each other (we can equally consider it as a matrix
model for d normal matrices which commute with each other). As argued in [?] such

a model results from considering either 1/2, 1/4 or 1/8 BPS states in N = 4 SYM
compactified on a sphere, where d = 1, 2, 3 respectively. The BPS states near the

vacuum are made of multiple gravitational quanta, so they can be described in a
purely geometric fashion. In this section we will deal with the systems where the
matrices commute without describing how the other degrees of freedom of the N = 4

SYM decouple.

Let us label the Hermitian matrices by X i, i = 1, . . . 2d, and the complex normal

matrices by Zj = X2j−1 + iX2j , for j = 1, . . . 2d. We require moreover that

[X i, Xj] = 0 (2.1)

The model has a gauge invariance under SU(N) transformations, where we act

by conjugation on all the matrices simultaneously X i → UX iU−1. It is easy to see
that the constraint 2.1 is invariant under these transformations.

Now we want to solve a Gaussian matrix model quantum mechanics associated
to these matrices. We have two options here: we can consider a first order dynamics

where Z̄j and Zj are canonically conjugate variables (this is equivalent to stating
that X2i−1 and X2i are canonically conjugate, or we can consider a second order

– 1 –

dynamics where we also include the time derivatives of the matrices (this doubles

the number of matrices effectively).
The Hamiltonian will look as follows

H =
1

2
tr(Π2

j) +
1

2
tr((Xj)2) (2.2)

Because we have a SU(N) action which leaves the model invariant, we can gauge
this SU(N) action, and we can ask about the singlet sector of the matrix model. This
is the model we will concern ourselves with.

Because we have this SU(N) action on the matrices, we can exploit the fact that
the matrices X i are hermitian to use a SU(N) transformation to diagonalize any

one of the X matrices, let us say X1. Because the matrices commute, they can be
diagonalized simultaneously, so if we diagonalize X1, we diagonalize all others at the

same time.
This reduces the number of degrees of freedom to the eigenvalues of the matrices.

Indeed, for each diagonal component of the matrices X i
jj we can associate a 2d vector

of egenvalues
!xj ! (X i

jj) (2.3)

In this form we have removed all of the infinitesimal gauge transformations on the
X. However, there are global transformations which permute the eigenvalues of the

matrices at the same time. These gauge transformations permute the vectors !xj into
each other. Because of this fact, wave functions have to be symmetric under the
permutations of the vectors !xj .

The system can thus be interpreted as set of N bosons on a space with 2d
dimensions (or a 2d dimensional phase space).

If we treat the system classically, we can use a diagonal ansatz to find solutions of
the dynamical system. Under these assumptions we find N free harmonic oscillators
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– 2 –

Associate a 6-vector per eigenvalue

(Minisuperspace approximation)

Classically the eigenvalue dynamics is free.

Eigenvalues are coordinates of particles (a la BFSS)



Measure term from going to eigenvalue basis that affects
the effective laplacian (angular variables are dropped)
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Quantum truncation of classical H in mini-superspace

Going to eigenvalue variables is like going to spherical 
coordinates. 



Terms we set to zero (commutators) are 
D,F terms of potential. This means we are 
reducing to dynamics on moduli space of 
vacua.

This is well know to be given by N particles 
in 6 flat dimensions. (Lessons from M(atrix) theory)



One can find ground state, and absorb square root of 
the measure in wave functions.

~ free fermion description of hermitian matrix models
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is an eigenfunction of the above Hamiltonian. Since it is real and positive it is very

likely that it represents the ground state of the system. This will be orthogonal to
other wave functions of different energy by using the measure µ2. Namely, let ψ̃ be

another eigenstate of H with different energy. Then∫ ∏
dxi

jµ
2ψ̃∗ψ = 0 (2.7)

Also, vevs of observables will be evaluated with µ2, and this in general makes it

hard to do a calculation. It is convenient to perform a similarity transformation and
absorb a factor of µ into the wave functions, so that

ψ̂ = µψ (2.8)

and the measure factor associated to ψ is the usual
∏

dxi
j , which is N copies of the

measure for a single eigenvalue. Notice that µ is the square root of a function which
is symmetric in the exchange of all the vectors "xi. So if the particles are bosons with

respect to the measure µ, the particles given by the wave function ψ̂ are also bosons,
with the usual measure for each boson. This regularity, where we have N identical
copies of the measure factor of an individual boson, makes it possible to treat the

system thermodynamically, because we can place all bosons on the same phase space
and ask about the distributions of particles.

Now we want to study the large N limit of the distribution of these bosons for

the wave function ψ̂. If we square ψ̂, we get a probability distribution on the phase
space of the 2N particles. This is given by

|ψ̂2
0| ∼ µ2 exp(−

∑
x2

i ) = exp

(
−

∑
"x2

i + 2
∑
i<j

log |"xi − "xj |
)

(2.9)

The last term of the right hand side can be interpreted as partition function of a
gas of particles in an external quadratic confining potential exp(−βH̃), which has

logarithmic repulsion between the particles in 2d dimensions. In the thermodynam-
ics limit N → ∞, we believe that the bosons will form some type of continuous

distribution density ρ on the phase space of a single particle. The goal for us is to
determine the shape of ρ.

For d = 1, this is a Coulomb gas in two dimensions, and the problem can be

treated like a plasma. The particles move to cancel the electric field locally, and they
form a filled disc of finite radius. If the 2 dimensions are treated as a phase space,
the system can be related to a quantum hall droplet system of free fermions [?].

Now we will consider the case d > 1. The probability distribution is given by

|ψ̂2
0| ∼ exp

(
−

∫
d2dxρ(x)"x2

i +

∫
d2dxd2dyρ(x)ρ(y) log("x − "y)

)
(2.10)
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Eigenvalue Distributions:

Square of wave function tells us which configurations are 
dominant.



Interpret collection of eigenvalues as positions of 
particles in 6d.

Similar to a Boltzman gas of N Bosons in 6d with a confining 
potential and logarithmic repulsive interactions.
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We want to study the thermodynamics 
of this ensemble  in the saddle point approximation.

(Large N limit, replace sums by integrals) 
Introduce a density of bosons (eigenvalues)

are holomorphic functions on the moduli space of vacua of the theory, and they would

correspond exactly to symmetric holomorphic polynomials like P . This means that
these wave functions of the matrix model we have constructed, are at worst a really

good variational approximation to the true BPS wave functions.
Because the matrix model of commuting matrices was obtained via some ap-

proximations to a supersymmetric system, one can expect that there are going to be

additional corrections that compete with this small perturbation we have found and
that may fix the small discrepancy in satisfying the Schrodinger equation that we

are missing, while keeping the wave function shape in the way we wrote it. This is
only expected to work for BPS wave functions, where one can sometimes use holo-
morphy arguments to make exact statements. We see that above we have used all

the information we had on the polynomial P to get to this result, and that we have a
very reasonable set of wave functions to study. In [6] it was argued that these are the

exact BPS wave functions once we have discarded the additional gaugino spherical
harmonics on the S3 that can also contribute to the chiral ring. The natural reason

for discarding the fermionic oscillators at this stage is that they do not get excited
classical configurations.

For the rest of the paper we will concentrate on studying the holomorphic wave

functions described above and we will treat them as exact wave functions. It would
be interesting if this could be proved exactly by using supersymmetry arguments.

2.1 Thermodynamic behavior of the N-particle wave functions

We now have a list of wave functions to analyze. They are all built by multiplying

the ground state wave function ψ̂0 by a symmetric polynomial of the variables zi.
We now want to find out what type of geometry these wave functions are associated
to.

To begin, we want to study the ground state itself. We find that the square of
the wave function, which has a probabilistic interpretation, takes the following form

|ψ̂0|2 = exp(−
∑

i

"x2
i +

∑
i<j

log(|"xi − "xj |2) (2.25)

Notice the similarity between this probability function and a Boltzman distri-

bution exp(−βH̃) for a gas of particles in d dimensions, where β = 1 and H̃ =∑
i "x

2
i −

∑
i<j log(|"xi − "xj |2, where the "xi are the positions of the particles. This is,

we notice that we have a gas of particles confined by a harmonic oscillator well, and
that also have repulsive logarithmic interactions. If d = 2 this is a Coulomb gas of
particles (a two dimensional plasma) in a potential well. For higher dimensions this

is a different problem.
If we are interested in a thermodynamic limit where N → ∞ (meaning N is

taken to be very large), then we can hope that the gas will settle to a preferred ther-
modynamic configuration that will maximize the probability distribution, and that
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Density of bosons is a singular configuration. Symmetries of 
ensemble suggest the following density of “eigenvalues”

We get a round five sphere 

ρ is positive (the density of bosons) and the total number of particles is N . This is∫
ρ = N . Now, we want to evaluate the distribution ρ by a saddle point approxi-

mation. The idea is to treat the problem as a variational problem for ρ where we

want to maximize the value of |ψ̂2
0| which is our probability density. We impose the

condition of the number of particles as a constraint with a Lagrange multiplier. We
find that on the support of ρ

#x2 + C = 2

∫
d2dyρ(y) log(|#x − #y|) (2.11)

In general, one can show that for even numbers of dimensions the function log(#x−#y)
is proportional to the Green’s function for the operator (∇2)d, so that operating on

both sides of the equation with this operator one finds that for d > 1, ρ̂ vanishes.
This is incompatible with the constraint that

∫
ρ = N . This is what we find under

the assumption that ρ̂ is a smooth function.
What we find this way is that ρ̂ has singular support. Because of spherical

symmetry, one can make a simple ansatz for ρ which has singular support. One
takes a singular spherically symmetric distribution at uniform radius r0

ρ = N
δ(|#x|− r0)

r2d−1
0 V ol(S2d−1)

(2.12)

which has been properly normalized. One sees this by transforming the integral∫
d2dxρ(x) to spherical coordinates.

Now we substitute this ansatz into 2.10, and minimize with respect to r0. Since
all particles end up at the same radius r0, the term with

∫
ρ(x)#x2 is easy to evaluate.

We find that this is equal to Nr2
0. The second term is harder to evaluate. This

requires integrating over relative angles. The term with the logarithm is equal to

log(r0(1−cos θ)) = log( for the relative angle between two points on the sphere. This
term can be written as follows

T2(r0) = N2

∫
d2dxd2dyρ(x)ρ(y) log(|#x − #y|) = (2.13)∫

dΩ2d−1 dΩ′2d−1drdr′
δ(r − r0)

Vol(S2d−1)

δ(r′ − r0)

Vol(S2d−1)
(log(r0) + log(1 − cos θ))(2.14)

Notice that in the above equation, only the first term of the sum will depend on r0,
while the complicated angular integral will be in the second term of the sum. Thus
we find that T2(r0) is equal to

T2(r0) = N2 log(r0) + N2c (2.15)

where c is a constant, independent of r0. From here, we need to minimize the function

f(r0) = Nr2
0 − N2 log(r0) − N2c (2.16)
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which has been properly normalized. One sees this by transforming the integral∫
d2dxρ0(x) to spherical coordinates.

Now we substitute this ansatz into (2.10), and minimize with respect to r0.

Since all particles end up at the same radius r0, the term with
∫

ρ0(x)"x2 is easy to
evaluate. We find that this is equal to Nr2

0. The second term is harder to evaluate.
This requires integrating over relative angles. The term with the logarithm is equal

to log[r0(1 − cos θ)] for θ the relative angle between two points on the sphere. This
term can be written as follows

T2(r0) = N2

∫
d2dxd2dyρ(x)ρ(y) log |"x − "y| (2.13)

= N2

∫
dΩ2d−1dΩ′

2d−1

Vol(S2d−1)2
drdr′δ(r − r0)δ(r

′ − r0) [log(r0) + log(1 − cos θ)] .

Notice that in the above equation, only the first term of the sum will depend on r0,
while the complicated angular integral will be in the second term of the sum. Thus

we find that T2(r0) is equal to

T2(r0) = N2 log(r0) + N2c , (2.14)

where c is a constant, independent of r0. From here, we need to minimize the function

f(r0) = Nr2
0 − N2 log(r0) − N2c , (2.15)

from where we find that

r0 =

√
N

2
. (2.16)

Notice that this result is independent of d. At first, this seems puzzling, but one

can argue that this is the correct result by calculating the force particle i exerts on
particle j in the direction normal to the sphere.

Looking at the figure 1, if the angle between the particles is 2θ, then the distance
between them is l = 2r0 sin θ. The net force is then 2/l pointed along the straight
line joining particles i and j. The normal to the sphere and this line meet at an

angle of π/2 − θ, and the force normal to the sphere from the particle at angle 2θ
(this force is pointing in the vertical direction in the figure) is then

F ij
v =

cos(π/2 − θ)

2r0 sin θ
=

1

2r0
, (2.17)

which is independent of the angle that particles i, j subtend on the sphere, so long
as they are both located on the sphere. This is why the result does not depend on
d: the angular distribution of particles (how many particles reside at angle 2θ) does

not matter to calculate the net force exerted on particle j.
The upshot of the above calculation is that the distribution of eigenvalues is a

singular distribution of particles. They form a thin shell of a sphere with radius r0

independent of d > 1. The radius is exactly
√

N/2.
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BPS wave functions are holomorphic, 
multiplying the ground state wave function. 
If multiplying by homogeneous polynomial 
of degree n, the energy is n.

This is the same as holomorphic 
quantization of the moduli space of vacua 
(complex Kahler manifold)



is well described by a density of particles in d dimensions with some characteristic

thermal fluctuations.
We would approach this thermodynamic limit replacing sums by integrals, and

introducing a density of particles ρ(x). In this way the energy is given by

H̃ ∼
∫

("x)2ρ(x)ddx −
∫ ∫

ddxddyρ(x)ρ(y) log(|"x − "y|) (2.26)

subject to ∫
ρ(x)ddx = N (2.27)

and to ρ(x) ≥ 0 [6]. As is typical in thermal problems, we would first find the saddle
point of H̃ that minimizes the energy. This was done in detail in [8]. The main

observation is that we need to solve the following integral equation

x2 + C =

∫
ddyρ(y) log(|"x − "y|2) (2.28)

in the region where ρ has smooth support, and where C is a lagrange multiplier

enforcing the constraint. If d is even, and greater than two, then

(∇2
x)

d/2 log(|"x − "y|) ∼ δd("x − "y) (2.29)

so that under the assumption of smooth support, taking derivatives with respect to x
and integrating over y commute. If one uses this assumption, one applies ((∇x)2)d/2

on both sides of the equation. After this procedure one obtains the following equation

0 =

∫
ρ(y)δd(x − y) ∼ ρ(x) (2.30)

This contradicts that
∫

ρ = N . So one must conclude that the particle distribution
ρ has singular support in the thermodynamic saddle point limit. For the case above,

it was found that due to spherical symmetry, one expects that the distribution is
spherically symmetric and singular ρ("x) ∼ δ(|"x| − r). The saddle of this ansatz
occurs exactly when r =

√
N/2, essentially independent of d [8].

For the case of N = 4 SYM, we need the special case d = 6. In this case there
are three (matrices of) complex variables that we need. It is customary to call them

X, Y, Z. We have already used Xa as real variables. The notation we will follow is
that X without an index represents X1 + iX2. There are other simple symmetric
polynomials P (X, Y, Z) one might consider other than one.

For example, take a single trace polynomial of Z,

Pn =
∑

i

(z1
i )

n = tr(Zn) (2.31)

the wave function ψ̂0Pn is an allowed wave function. So is ψ̂1 = ψ̂0(tr(Zn))2 =
ψ̂0P 2

n and ψ̂2 = ψ̂otr(Z2n) = ψ̂0P2n. These two states are distinct functions of the
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For example, take this holomorphic function

And multiply the ground state by it.

This is a new wave function, with energy n.eigenvalues of Z with the same energy and R charge, so they represent different states.

What can we say about these two wave-functions? Here we need some more intuition.
Since we are interested in comparing these wave functions with a gravitational dual

configuration of AdS, we will get our intuition of what these objects represent from
the expected dictionary of the AdS/CFT setup.

In the AdS/CFT dictionary established by Witten [4], each trace counts as a

single graviton, so one expects that at large N , for fixed n, the two states ψ̂1 and
ψ̂2 (properly normalized) are approximately orthogonal. This is, 〈ψ̂1|ψ̂2〉 ∼ O(N−1).

The number of traces counts approximately the number of gravitons, and one can
check that the traces do have an approximate oscillator algebra for a single matrix
model, where a†

n|α〉 ∼ Pn(Z)ψ̂α. Here we have to assume this property, as we don’t

know how to calculate the norm of the corresponding states analytically.
Single graviton states on a given geometry do not correspond to classical states of

geometry. To get geometrical states, one would naturally expect that these are given
by some type of coherent state. This is, our first guess for interesting geometric wave

functions is to take an expression of the form exp(
∑

n tna†)|0〉 with finitely many tn
different from zero.

However, we see that we have a problem with a naive extrapolation of Witten’s

result for this type of wave function. The reason is that

exp(
∑

n

tnPn(Z))ψ̂0 (2.32)

is not a normalizable state unless tn = 0 for all n ≥ 3, because the trace dominates
over ψ̂0 for very large values of the eigenvalues of Z, z. Thus we can not do quantum
mechanics with such a state. What we need to fix this is good behavior at infinity,

so that the wave function is L2 integrable.
Let us define f(x) =

∑
n tnxn. With this convention,

∑
n tnPn(Z) = trf(Z).

To cure the bad behavior at infinity we can require that f have better behavior at
infinity than any term in the series expansion of f . However, f is a complex analytic

function, so to have such a property, f has to be multivalued.
The simplest behavior is for f(x) to behave logarithmically at infinity. This is

just thinking of a particular polynomial behavior of ψ̂/ψ̂0, and we know that such

wave functions are normalizable. The function f will then have a branch cut in the
complex plane. However ψ can still be single valued, as it depends on exp(if). Let

us use instead
f ∼ m log(g(x)) (2.33)

where g is an arbitrary polynomial of x, and m is a parameter that tunes the strength
of the perturbation. For single valued wave functions, it should be an integer. For x

small, if g(0) %= 0, we can expand log(g(x)) in Taylor series, and we can approximate
any polynomial f to arbitrary accuracy. Such a wave function would be given by

ψ̂0 det(g(Z))m (2.34)
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Interpreted as creation of one graviton with momentum
 n on top of a given state (Witten). 
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But these are usually non-normalizable.

Instead, we use

Where f is analytic at zero, but only grows logarithmically.

Net result is to change the confining potential, but not the 
repulsive interactions. We get a deformed distribution.



Deformation of geometry of eigenvalues 
parallels deformation of gravity by a 
classical “coherent state”.

We identify the eigenvalue distribution with 
(some aspect of) gravity: Geometry is 
emergent.



Different topologies of eigenvalue 
distributions lead to different spacetime 
topologies (explicit in Lin, Lunin, Maldacena 
case.)

Very few exact results are known. We have 
the wave functions, but we need the 
distributions of eigenvalues.



These wave functions can be simulated using 
Monte-Carlo methods

100 eigenvalue simulation
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The full quantum simulation differs from the classical 
expected result in an interesting way. 

These should be important quantum gravity effects.

Thermal fluctuations of Boltzman system are quantum
fluctuations in wave function.

Many wave functions can be simulated, they give rise to 
different geometries.



Matching to gravity needs a better dictionary:

Eigenvalues are D-branes (giant gravitons)

Experience with this type of setup in the half BPS case 
shows that the D-branes are a geometric locus where the 

sphere of the boundary shrinks to zero size. (LLM analysis)

The simulations capture this degeneration locus, not the 
full geometry.



Approximations that lead to commuting matrices improve at 
strong coupling! Off-diagonal modes become heavy.

It is suggested that one treat the above operator as the following state:

|ψk,l〉 ∼
∑

l

exp(ikl/J)
∑
j,j′

zl
jY

†j
j′ zJ−l

j′ X†j′

j ψ̂0|0〉od (3.5)

where in the above notation we have explicitly the wave function in the coordinate
basis for the diagonal components of the commuting part of the X i matrices, and

where we have the off-diagonal modes written as free oscillators acting on the off-
diagonal vacuum |0〉od. As we have argued before, this is reasonable because the

off-diagonal modes are heavy.
Now we want to evaluate the energy of the above state. We do this as follows.

E ∼ 〈ψk,l|Htotal|ψk,l〉
〈ψk,l|ψk,l〉 (3.6)

Now we can integrate out the off-diagonal modes, and evaluate their energy over
the ground state assuming that these are free oscillators joining the eigenvalues.
The off-diagonal modes between eigenvalues j, j′ are to be treated orthogonal to the

vector "xj − "xj′ , because a component along that direction is obtained by a gauge
transformation on the commuting matrices.

This gives us an energy for the oscillators which is equal to

Eosc = 2

√
1 +

1

2π2
g2

Y M |"xj − "xj′|2 (3.7)

Adding the energy of the diagonal piece by using 2.23 we get that the total energy
is given by

Etotal = J + 〈Eosc〉 (3.8)

where we have to evaluate the average energy of the oscillator for the wave function
we considered. This results into a multiple integral

〈Eosc〉 =

∫ ∏
dxi|ψ0|2|

∑
l exp(ikl/J)

∑
j,j′ z

l
jz

J−l
j′ |22

√
1 + 1

4π2 g2
Y M |"xj − "xj′|2∫ ∏

dxi|ψ0|2|
∑

l exp(2πikl/J)
∑

j,j′ z
l
jz

J−l
j′ |2 (3.9)

Now we can evaluate this integral by a saddle point approximation, similar to
what we did in the previous section. This is done in two steps. First, the integral will

be dominated by configurations which maximize |ψ0|2, which suggest that "xj and "xj′

should be located exactly on the sphere we found in the previous section. Thus we
reduce the integral to an integral over relative angles associated to the positions j

and j′ on the sphere, where we have identified locations on the sphere with individual
particles in our ensemble of the previous section.

Secondly, we see that in the limit of J large we can improve the saddle point
approximation due to the extra powers of zj , zj′ in the numerator and denominator.
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where the nk denote multi-indices. These are conjectured to be eigenstates of the

Hamiltonian of energy ∑
j

|nj | , (2.22)

above the ground state, which are moreover approximately orthogonal in the large N
limit [3]. This follows from identifying these states with the corresponding graviton

states in the N = 4 SYM theory. These give an approximate Fock space of oscillators,
one for each multi-index, on which one can take coherent states. These coherent

states can be analyzed using similar techniques as those used above, and they give
wave-like shape deformations of the five sphere, also with singular support in the
embedding space R6.

3. A saddle point approximation to BMN state energies

Now we want to use the results of the last section to calculate energies of stringy
modes in the CFT. For this, we need an explanation of how the other modes of the
SYM theory decouple to obtain the matrix model of commuting matrices. To do

this we need to begin with the N = 4 SYM theory compactified on a round S3. We
obtain the following action for the scalars

Ssc =

∫
S3

dΩ3 dt tr

(
6∑

a=1

1

2
(Dµφ

a)2 − 1

2
(φa)2 −

6∑
a,b=1

1

4
g2

Y M [φa, φb][φb, φa]

)
. (3.1)

The mass term for the scalars is induced by the conformal coupling of the scalars to
the curvature of the S3, which is chosen to have radius equal to one. This also sets
the scale for time derivatives. With this normalization, the volume of the S3 is 2π2.

To study BPS configurations, one needs to concentrate on the constant modes
of the φas, while keeping every other mode in the vacuum. This gives an effective
reduction to a gauged matrix quantum mechanical model of six Hermitian matrices.

This model, after rescaling the matrices to have a kinetic and quadratic potential
term as in the last section, is of the following form

Ssc =

∫
dt tr

(
6∑

a=1

1

2
(DtX

a)2 − 1

2
(Xa)2 −

6∑
a,b=1

1

8π2
g2

Y M [Xa, Xb][Xb, Xa]

)
. (3.2)

We will work with this dimensionally reduced model (slightly modified) in what

follows.

The matrices at this point are not required to commute. If we diagonalize X1,
and under the assumption that its eigenvalues are of order

√
N (as calculated in

the previous section, and also as expected from usual matrix integrals), we find that
by putting vevs in the interaction term coming from the commutators, the effective
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With the typical radius, the energies scale like square root of
the ‘t Hooft coupling. Diagonal modes are slow degrees of 

freedom in a Born-Oppenheimer approx.



Can also suggest origin of string scale: off-diagonal modes are 
massive and can be represented by lines joining eigenvalues
(points on the sphere): STRING BITS. Need to dress them 

with gravity (eigenvalues).

One can also verify string tension
(D.B, D. Correa, S. Vazquez)



One can calculate string energies for BMN states:

nent along that direction is obtained by a gauge transformation on the commuting

matrices. This is explained also in [3].
The above Hamiltonian can be regarded as a small perturbation in the large N

’t Hooft limit as long as g2
Y M |!xi − !xj |2 stays finite.

Our approximation in what follows is that we will treat the off-diagonal modes
as free fields, while we keep the information of the distribution of eigenvalues for the

slow degrees of freedom exactly. For this approximation, the dimensional reduction
of the matrix model is a reasonable description of the system for the degrees of

freedom we are considering, since we are ignoring interactions between off-diagonal
modes.

When we include the fact that the matrix model is gauged, we need to be careful

about gauge invariance. This means that for each off-diagonal Xj
k mode arriving at

eigenvalue j, we need a second off-diagonal mode leaving it X l
j. This means that

the off-diagonal modes form a closed path between various points on the five-sphere.
This is how we would like to think of a closed string state, where the off-diagonal

modes can be labeled string bits. We will use this convention in what follows.
We now want to calculate the approximate energy of a state consisting of a

single string bit joining two eigenvalues. First, we need a way to identify which

pairs of eigenvalues we are considering, and we also want to control the total angular
momentum of the string bit on the S5, J . To obtain states with the correct value of

J , one also needs to turn on the diagonal matrices to a state that is not the vacuum.
This procedure can be considered as a gravitational dressing of the state to impart

it with momentum. For large J , this will give us precisely the BMN limit [4].
We also need to make sure that we consider physical states of the gauge theory.

Gauge invariance forces us to turn on at least two such oscillators. One from eigen-

values i to eigenvalues j, and the other from eigenvalue j to eigenvalue i. From our
results in the previous sections, eigenvalues are going to be associated to positions

on the five sphere.
Let us now consider a typical BMN-type operator

Ok ∼
J∑

l=0

exp(ikl/J)tr(Z lY ZJ−lX) . (3.5)

For k #= 0 this is very similar to the operator

Ok ∼
J∑

l=0

exp(ikl/J)tr(Z l−1[Y, Z]ZJ−l−1[X, Z]) . (3.6)

Using the operator state correspondence, we are supposed to relate the diagonal
components of Z to the eigenvalues we found in the last section for the matrix Z.

Let us call these eigenvalues zi. We do this because the state is almost BPS with
energy approximately equal to J . The presence of the commutators means we are
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Diagonal modes

Off-diagonal modes



One treats the off-diagonal modes as free fields.

One calculates the energy of the BMN state assuming the off-
diagonal modes don’t affect the diagonal ones to first order. 

The calculation of energies can be done in a saddle point and 
stationary phase approximation.

turning on off-diagonal components of the fields Y and X. These are to be treated

as raising operators in the quantum mechanical model (3.3); call them Y †i
j and X†k

l

for the corresponding matrix modes.

We suggest that one treat the above operator as the following state in the reduced
matrix model:

|ψk〉 ∼
J∑

l=0

exp(ikl/J)
∑
j,j′

zl
jY

†j
j′ zJ−l

j′ X†j′

j ψ̂0|0〉od , (3.7)

where in the above notation we have explicitly the wave function in the coordinate

basis for the diagonal components of the commuting part of the Xa matrices, and
where we have the off-diagonal modes written as free oscillators acting on the off-

diagonal vacuum |0〉od.
Now we want to evaluate the energy of the above state. We do this as follows:

E ∼ 〈ψk|H total|ψk〉
〈ψk|ψk〉 . (3.8)

From the Hamiltonian (3.3) we see that, after subtracting the ground state energy,
each oscillator will carry an energy

Eosc
jj′ =

√
1 +

g2
Y M

2π2
|#xj − #xj′|2 . (3.9)

Adding the energy of the diagonal piece by using (2.22) we get that the total energy
is given by

Etotal = J + 〈Eosc〉 , (3.10)

where we have to evaluate the average energy of the oscillator for the wave function
we considered. This results into a multiple integral

〈Eosc〉 =

∫ ∏
dxi|ψ0|2

∑
j,j′ |

∑
l exp(ikl/J)zl

jz
J−l
j′ |22

√
1 +

g2
Y M

2π2 |#xj − #xj′ |2∫ ∏
dxi|ψ0|2 ∑

j,j′ |
∑

l exp(ikl/J)zl
jz

J−l
j′ |2 . (3.11)

In the above, we have done the contraction between raising and lowering opera-

tors of the off-diagonal modes as follows

〈ai
ja

†k
l 〉 = δi

lδ
k
l (3.12)

This is what makes the sums run over a single pair of eigenvalues in (3.11). The

extra factor of 2 in the above equation is due to the fact that we have two string bits
between the same pair of eigenvalues in the problem.

Now we can evaluate this integral by a saddle point approximation, similar to
what we did in the previous section. This is done in two steps. First, the integral will
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Manipulations of formulae lead to the following expression

Localizes on sphere
Localizes on |z| maximal (diameter), and 

particular phase between z, z’



The geometrical interpretation of this result is as follows. We have two eigenval-

ues on the sphere at a particular diameter, where the BPS null geodesics associated to
the BMN limit for the corresponding configuration are located. The quasi-momentum

on the BMN string, characterized by k/2J , translates to the angle on the sphere be-
tween the two eigenvalues. The energy of the BMN impurities (the off-diagonal
modes) is calculated by the Euclidean distance associated to the embedding of the

five-sphere into a flat Euclidean 6-dimensional geometry. This is shown in figure 2.

0
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j
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!sin2 r

Figure 2: Geometry of the string bit between two eigenvalues, string bit shown in red.

The angle between the eigenvalues is θ = k/2J

The energy of the string bit can be characterized in terms of its kinetic energy

(coming from the free field N = 4 SYM result), plus the strong coupling mass term
from the interaction with the eigenvalue condensate. This mass term is proportional

to |!xi −!xj | and not to the angle that the two eigenvalues on the sphere form. In this
sense, the string bit leaves the sphere, but for small angle θ the effect is negligible.

Now we use the value of r0 calculated in the previous section, and we find a

result which is equal to

〈Eosc〉 = 2

√
1 +

g2
Y MN

π2
sin2(k/2J) . (3.16)

In the BMN limit where J is taken to be large, we need to also take k ∼ 2πn with
n fixed. The above result reduces to

〈Eosc〉 = 2

√
1 + g2

Y MN
(n

J

)2
. (3.17)

which matches exactly the BMN limit to all orders in perturbation theory 1. This

should be taken as evidence that the approximations done above are reasonable for
these states.

Now we can try to compare our result (3.16) with some other conjectures in the

literature. Indeed, we find that the above analytic formula is exactly the result of

1The normalization of g2

Y M
above is to be identified with 4πg in [4]
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Matches BMN string calculation to all orders in the ‘t Hooft 
coupling exactly, by taking J large k fixed. (Small angles) 



Matches the formula of Santambrogio and Zanon for all loop anomalous 
dimensions.

It also matches the conjectures from the ``all loop Bethe ansatz” dispersion 
relation (Arutyunov, Beisert, Dippel, Staudacher) 

Surprisingly, this also matches the recent classical Nambu-Goto calculation 
(Hofman, Maldacena), including the full geometrical interpretation. The 
eigenvalue geometry above preceded the Nambu-Goto calculation.

The origin of strings by string-bits is robust for other BPS geometries 
(different eigenvalue distributions)



Incomplete picture because off-diagonal modes are 
treated as free fields.

Suggests breakdown of all-loop Bethe ansatz for small J, 
but it’s not clear if it happens and where it happens. 
Number of magnons ~ number of off-diagonal modes.

One should be able to change the number of string bits 
to make smooth slow strings moving on the sphere (or 
other geometries)
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Puzzles

Bend?

One can try a wavefunction
that corresponds to a “donut”.

Does not match topological LLM intuition



There is no analytic result on the “surfaces” that
the simulation produces, other than they are submanifolds, 
possibly with a boundary. Only the most symmetric case is 

understood.

Simulations can be a source of intuition to get to 
understand gravity better, including all quantum 

corrections! 

A lot left to do!



A lot of recent progress on Integrability of string. 

Reduction in low energy degrees of freedom to eigenvalues.

Non-trivial repulsion of eigenvalues gives geometry as 
thermodynamic saddle point of wave function. 

Off-diagonal modes give string bits for all geometries.

The approach gives a strong coupling expansion that is 
quantitative (can reproduce giant magnons, etc).

The problems can be simulated on a computer! 

Conclusion


