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Why B Physics?

(a) test SM picture of flavour violation: the unitarity triangle

Unitarity of CKM matrix:
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Why B Physics?
(a) test SM picture of flavour violation: the unitarity triangle

(b) find/constrain new physics,

e.g. flavour-changing neutral currents (FCNC):

Basic problem: flavour physics masked by strong interactions .

How to control QCD effects?
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The B Physicist’s Tool Box
effective field theories

disentangle physics governed by different mass scales
(SM: mW ,mt � mb � ΛQCD)

Fermi’s 4-fermion theory (1/mW ), heavy quark effective theory
(1/mb), soft-collinear effective theory (1/

√
mb, 1/mb)

renormalisation-group methods

resum large logarithms, e.g. αs lnmW/mb

operator product expansion

inclusive amplitudes governed by one scale, e.g. B → Xceν

factorisation theorems/methods

exclusive amplitudes (B → ππ) and inclusive amplitudes governed by
different scales, e.g. B → Xsγ with cuts

nonperturbative methods (for all the dirty rest)

lattice, QCD sum rules. . .
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How to calculate decay amplitudes?
A simple 3 step procedure. . .

Step 1: obtain effective Lagrangian at scale ∼ mW by integrating out

effects from heavy particles: W , t and any BSM particles:

C(m_W) x

SM diagrams→ short-distance coefficient C(mW )× effective operator
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How to calculate decay amplitudes?
Step 2: include radiative corrections:

γ

u, c, t u, c, t

b W s αs ln
M

2

W

m2

b

: ∼ +50% in amplitude

∼ +100% in BR

non − logarithmic logarithmic
︸ ︷︷ ︸

∼ +20% in BR
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How to calculate decay amplitudes?
Step 2: include radiative corrections:

and resum large logs in αs ln(mW /mb):

Leff =
GF√

2

∑

i

Ci(µ)Oi(µ)

{

1 +O
(

m2
b

m2
W

)}

Ci: Wilson-coefficients, containing short-distance effects

Oi: dim-6 operators, e.g. (d̄u)V −A(c̄b)V −A, describing long-distance
effects

Leff for nonleptonic decays known to NNLO (Gorbahn/Haisch 04)

Leff for radiative decays almost known to NNLO (Misiak et al. 06)

BSM effects in some scenarios known to NLO, e.g. MSSM with Minimal
Flavour Violation (Degrassi/Gambino/Slavich 06)
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How to calculate decay amplitudes?

Step 3: take hadronic matrix elements

This is where important developments took place in the last ∼ 7 years. . .

full calculation on the lattice or from QCD sum rules

form factors, i.e. matrix elements 〈F |Oi|B〉

“simple” operator product expanion in 1/mb in terms of local matrix
elements

total width of inclusive decays and moments of b→ ceν transitions

expansion in 1/mb and factorisation in terms of nonlocal (light-cone)
matrix elements

inclusive b→ light transitions with experimental cuts

exclusive (in particular nonleptonic and radiative) decays, e.g.
B → ππ, B → K∗γ
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Let’s focus on a few examples. . .
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Bs Mixing & New Physics

Ball/Fleischer, hep-ph/0604249
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Phenomenology of B Mixing

B̄0 = (bq̄) and B0 = (qb̄) (q = d, s) with definite flavour content, but not

mass eigenstates Mixing!

mixing induces mass and width mixing matrices Mab, Γab

observables: ∆M , ∆Γ, mixing-induced CP asymmetries
ACP(Bd → J/ψKS), ACP(Bs → J/ψφ), semileptonic CP asymmetry Aq

SL

∆Md well known, ∆Ms first measured in 2006 (CDF)

argMd
12 = 2β (in the SM);

argM s
12 ≈ 0 (in the SM): no direct measurement yet, wait for LHC(b)

M12 loop induced, sensitive to new physics

Any hint of new physics yet?
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∆Mq in the SM

MSM
12 =

=
G2

FM
2
W

12π2
MBq

η̂BB̂Bq
f2

Bq
(V ∗

tqVtb)
2S0(xt)

S0(xt = m2
t/M

2
W ) = 2.35± 0.06: Inami-Lim function

η̂B = 0.552: NLO QCD correction (Buras/Jamin/Weiss ’90)

B̂Bq
f2

Bq
∝ 〈B0

q |(q̄b)V −A(q̄b)V −A|B̄0
q 〉: hadronic matrix element, from lattice

V ∗
tqVtb: from tree-level processes
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Generic Parametrisation of New Physics
∆Ms = 2|M s

12| with

M s
12 = M s,SM

12 (1 + κse
iσs)

κs > 0: NP amplitude

σs: new CP-violating phase

Lines of ρs =const.:
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∣
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∣

∣

= (1 + 2κs cosσs + κ2
s)

1/2

Q: What is the SM prediction of ∆Ms?
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Predictions of ∆MSM
s

Need hadronic matrix elements from lattice.

Two unquenched calculations available:

JLQCD: Nf = 2 Wilson fermions

HPQCD: Nf = 2 + 1 staggered light + NRQCD heavy fermions

constraints from JLQCD: HPQCD:
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Predictions of ∆MSM
s

∆MSM
s

∣

∣

JLQCD
= (16.1± 2.8) ps−1

ρs|JLQCD = 1.08+0.03
−0.01(exp)± 0.19(th)

∆MSM
s

∣

∣

HPQCD
= (21.2± 3.2) ps−1

ρs|HPQCD = 0.82+0.02
−0.01(exp)± 0.12(th) 1.5σ!

constraints from JLQCD: HPQCD:
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Predictions of ∆MSM
s

∆MSM
s

∣

∣

JLQCD
= (16.1± 2.8) ps−1

ρs|JLQCD = 1.08+0.03
−0.01(exp)± 0.19(th)

∆MSM
s

∣

∣

HPQCD
= (21.2± 3.2) ps−1

ρs|HPQCD = 0.82+0.02
−0.01(exp)± 0.12(th) 1.5σ!

Conclusion from this exercise:

∆MSM
s is actually not very well known!

For better constraints, need mixing phase φs = argM s
12!
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Constraints from φq

ρq =const.: φNP
q =const.:

0 100 200 300

0.5

1

1.5

2

2.5

σq [deg]

κ
q

κ
q

0 100 200 300

0.5

1

1.5

2

2.5

σq [deg]

φq = argM q
12 = φSM

q + φNP
q with φSM

s = −2λ2Rb sin γ ≈ −2◦
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Status of φs

brand-new constraints from As
SL and ∆Γs: (Lenz/Nierste, hep-ph/0612167)

sinφs = −0.77± 0.04(th)± 0.34(exp) (SM: ≈ −0.06)

! result heavily theory dependent!

for more precise results, have to wait for ACP(Bs → J/ψφ) at LHC
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|Vtd/Vts| & UT angle γ from B → (ρ, K∗)γ

Ball/Jones/Zwicky, hep-ph/0612081
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Radiative Penguins

K*B

B → K∗γ ←→ b→ sγ

B → (ρ, ω)γ ←→ b→ dγ
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Theory Framework
QCD factorisation: (Bosch/Buchalla 01)

A(B → V γ) =

8
∑

i=1

∑

U=u,c

λUCi〈V γ|QU
i |B〉

〈V γ|QU
i |B〉 =

[

TB→V
1 (0)T I

i +

∫ 1

0

dξ duT II
i (ξ, u)φB(ξ)φ⊥2;V (u)

]

· e

λU : CKM factors

Ci, T
I,II
i : perturbative QCD quantities

T1, φB , φ
⊥

2;V : non-perturbative QCD quantities

QCD factorisation formula valid to leading order in 1/mb , only some

corrections in 1/mb can be treated in QCDF
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Theory Framework
Contributions at O(1/mb):

B

q

B

q

VV

(a) (b)

b

q

D
b D

weak annihilation

can be treated in QCDF

relevant for B(B → ργ) and isospin
asymmetries

long-distance photon emission, be-
yond QCDF, relevant for B(B± →
ρ±γ)

soft gluon emission

beyond QCDF, new method
developed by
Ball/Jones/Zwicky 06

relevant for B(B → V γ) and
time-dependent CP
asymmetry
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Form Factors
state-of-the-art results from QCD sum rules on the light-cone: (Ball/Zwicky 04)

T ρ
1 (0) Tω

1 (0) TK∗

1 (0)

0.27± 0.04 0.25± 0.04 0.31± 0.04

better accuracy for ratios:

ξρ ≡
TK∗

1

T ρ
1

= 1.17± 0.09 ξω ≡
TK∗

1

Tω
1

= 1.30± 0.10

strategy for predicting branching ratios:

B(B → V γ)
∣

∣

th
=

[ B(B → V γ)

B(B → K∗γ)

]

th, ξV

B(B → K∗γ)
∣

∣

exp
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Theory Predictions for B → (ρ, ω)γ
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|Vtd/Vts|

B(B → (ρ, ω)γ)

B(B → K∗γ)
≡ Rρ/ω =

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2
(

1−m2
ρ/m

2
B

1−m2
K∗/m2

B

)3
1

ξ2ρ
[1 + ∆R]

BaBar 06: Rρ/ω = 0.030± 0.006, Belle 05: 0.032± 0.008

Ball/Zwicky 06: ξρ = 1.17± 0.09

Ball/Jones/Zwicky 06: ∆R ∼ 0− 0.15
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|Vtd/Vts|

B(B → (ρ, ω)γ)

B(B → K∗γ)
≡ Rρ/ω =

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2
(

1−m2
ρ/m

2
B

1−m2
K∗/m2

B

)3
1

ξ2ρ
[1 + ∆R]

BaBar 06: Rρ/ω = 0.030± 0.006, Belle 05: 0.032± 0.008
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-0.05
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0.1

0.15

|Vtd/Vts|

∆
R ∆R depends on |Vtd/Vts| itself!
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∆R
Solution: use truly independent set of CKM parameters:

λ, Rb, |Vtd/Vts| or λ, Rb, γ

⇒ determine either |Vtd/Vts| or γ from experimental Rρ/ω

0.025 0.03 0.035

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Rρ/ω

|V
t
d
/V

t
s
|2

Rρ/ω

0.025 0.03 0.035 0.04
30.

40.

50.

60.

70.

80.γ
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Results
From 2006 BaBar data:
∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

= 0.199+0.022
−0.025(exp)± 0.014(th)←→ γ = (61.0+13.5

−16.0(exp)+8.9
−9.3(th))◦
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∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

= 0.199+0.022
−0.025(exp)± 0.014(th)←→ γ = (61.0+13.5

−16.0(exp)+8.9
−9.3(th))◦

Results from other methods:

from B mixing: ∆Ms/∆Md:
∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

= 0.206+0.0081
−0.0060(th)± 0.0007(syst)

depends on lattice input: fBs

√

BBs
/fBd

√

BBd
= 1.21+0.047

−0.035 (Okamoto, Lattice

2005)
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Results
From 2006 BaBar data:
∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

= 0.199+0.022
−0.025(exp)± 0.014(th)←→ γ = (61.0+13.5

−16.0(exp)+8.9
−9.3(th))◦

Results from other methods:

theory independent: Dalitz plot analysis of CP asymmetry in
B− → D0K− with (D0, D̄0)→ KSπ

+π−:

BaBar : γ = (92± 41± 11± 12)◦ , Belle: γ = (53+15
−18 ± 3± 9)◦

SU(3) fits (B → ππ and B → πK): γ = (70.0+3.8
−4.3)

◦ (Fleischer 06)

QCD factorisation in B → PV : γ = (62± 8)◦ (Beneke/Neubert 03)

SCET in B → ππ: γ = (73.9+7.4
−10.7)

◦ (Stewart 06)
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Time-dependent CP Asymmetry in B → K∗γ

Ball/Zwicky, hep-ph/0609037
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ACP(B → K∗γ)
b→ sγ is actually either

bR → sLγL (with helicity factor mb) or

bL → sRγR (with helicity factor ms)

γ dominantly left-polarised, γR suppressed by ms/mb

entails a small time-dependent CP asymmetry (interference of γL/γR

amplitudes):

ACP =
Γ(B̄0(t)→ K̄∗0γ)− Γ(B0(t)→ K∗0γ)

Γ(B̄0(t)→ K̄∗0γ) + Γ(B0(t)→ K∗0γ)

≈ −2
ms

mb
sin(2β) sin(∆Mdt) ≈ −3%

null-test of the SM! (Gershon/Soni 06)

helicity suppression removed by new physics if splin flip can occur on
internal line (e.g. in left-right symmetric models)
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ACP(B → K∗γ)
helicity suppression removed by new physics if splin flip can occur on
internal line (e.g. in left-right symmetric models)

caveat emptor! No helicity suppression in 3-parton process b→ sγg:

b s

c
O2

gγ

Q2

all contributions
b→ sγRg ∼ O(1/mb)

dominant contribution from charm
loop (with large Wilson coefficient
∼ 1)

contributes to B → K∗γ if B or K∗ in 3-particle quark-antiquark-gluon
state

previous estimate: c loop increases |ACP| to 10% with large
uncertainties, up from 3% (Grinstein/Pirjol 05)
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Can one do better?

b s

c
O2

gγ

Q2

calculate effective operator for soft-gluon emission in 1/mc expansion

calculate matrix element from QCD sum rules on the light-cone

contribution Ac loop
CP = +(0.5± 1)%

all together: ACP(B → K∗γ) = −(2.2± 1.5+1
−0)%

experimental result: −(28± 26)%

B → K∗γ difficult for LHC; Bs → φγ better suited;

SM prediction of CP asymmetry: ACP(Bs → φγ) = (0.1± 0.1)%

any measured CP violation larger than a few percent unambiguous
signal for new physics with non-standard weak couplings (not V −A)!
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Summary
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Summary
in order to fully explore (both old and new) flavour physics in B decays,
need to understand strong interaction physics

QCD enters at all scales (mW , mb,
√

mbΛQCD, ΛQCD)

the perturbative treatment of QCD effects is organised in terms of
short-distance coefficients in effective field theories and scattering
amplitudes in factorisation formulas; they are well under control

nonperturbative QCD effects are organised in terms of matrix elements
of effective local or nonlocal (light-cone) operators and are under good to
reasonable control

determination of CKM matrix elements fine except for possible tension
between |Vub| from UTangles and inclusive b→ ueν (2.5σ)

for new physics searches, identify observables sensitive to new physics
which are zero or near zero in the SM: null tests of the SM

Example: time-dependent CP asymmetry in B → K∗γ
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Happy Penguins. . .
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Happy Penguins. . .

be a Little Higgs?
thought it would 
Who would have

I only hope his gluinos
won’t be too heavy!
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