

1

Status on the disformally coupled galileon from cosmological data and GW170817

Clément Leloup – CEA/Irfu/DPhP Cosmology group

September 4, 2018

IRN Terascale 2018 - IPPP Durham

I. Presentation of the galileon model

II. Methodology and datasets

III. Results

I. Presentation of the galileon model

II. Methodology and datasets

III. Results

- Simple principles for a successful extension of General Relativity :
 - Additional scalar field : π
 - Galilean symmetry in Minkowskii space-time :

$$\pi \to \pi + c + b_\mu x^\mu$$

- 2^{nd} order e.o.m in π derivatives : avoid Ostrogradski ghosts
- Direct couplings to matter : conformal and/or disformal

- Simple principles for a successful extension of General Relativity :
 - Additional scalar field : π
 - Galilean symmetry in Minkowskii space-time :

 $\pi \to \pi + c + b_\mu x^\mu$

- 2^{nd} order e.o.m in π derivatives : avoid Ostrogradski ghosts
- Direct couplings to matter : conformal and/or disformal

Disfavoured by Neveu et al. 2016

Most general action :

$$\mathcal{S}[\phi, g, \pi] = \mathcal{S}_{SM}[\phi, g] + \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R - \frac{1}{2} \sum_{i=1}^5 \frac{c_i}{M^{3(i-2)}} \mathcal{L}_i - \frac{M_P}{M^3} c_G G^{\mu\nu} \pi_{;\mu} \pi_{;\nu} \right]$$

$$\mathcal{L}_{1} = \pi$$

$$\mathcal{L}_{2} = \pi_{;\mu}\pi^{;\mu} \equiv X$$

$$\mathcal{L}_{3} = X \Box \pi$$

$$\mathcal{L}_{4} = X \left[2 (\Box \pi)^{2} - 2 (\pi_{;\mu\nu}\pi^{;\mu\nu}) - \frac{1}{2}XR \right]$$

$$\mathcal{L}_{5} = X \left[(\Box \pi)^{3} - 3 (\pi_{;\mu\nu}\pi^{;\mu\nu}) \Box \pi + 2 (\pi^{;\nu}_{;\mu}\pi^{;\rho}_{;\nu}\pi^{;\mu}_{;\rho}) - 6 (\pi_{;\mu}\pi^{;\mu\nu}G_{\nu\rho}\pi^{;\rho}) \right]$$

$$\text{Most general action :}$$

$$S[\phi, g, \pi] = S_{SM}[\phi, g] + \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R - \frac{1}{2} \sum_{i=1}^5 \frac{c_i}{M^{3(i-2)}} \mathcal{L}_i - \frac{M_P}{M^3} c_G G^{\mu\nu} \pi_{;\mu} \pi_{;\nu} \right]$$

$$\mathcal{L}_1 = \pi$$

$$\mathcal{L}_2 = \pi_{;\mu} \pi^{;\mu} \equiv X$$

$$\mathcal{L}_3 = X \Box \pi$$

$$\mathcal{L}_4 = X \left[2 (\Box \pi)^2 - 2 (\pi_{;\mu\nu} \pi^{;\mu\nu}) - \frac{1}{2} X R \right]$$

$$\mathcal{L}_5 = X \left[(\Box \pi)^3 - 3 (\pi_{;\mu\nu} \pi^{;\mu\nu}) \Box \pi + 2 (\pi^{;\nu}_{;\mu} \pi^{;\rho}_{;\rho} \pi^{;\mu}_{;\rho}) - 6 (\pi_{;\mu} \pi^{;\mu\nu} G_{\nu\rho} \pi^{;\rho}) \right]$$

$$\text{Most general action :}$$

$$S[\phi, g, \pi] = S_{SM}[\phi, g] + \int d^4 x \sqrt{-g} \left[\frac{M_P^2}{2} R - \frac{1}{2} \sum_{i=1}^5 \frac{\Box_i}{M^{3(i-2)}} \mathcal{L}_i - \frac{M_P}{M^3} \underline{C}_G G^{\mu\nu} \pi_{;\mu} \pi_{;\nu} \right]$$

$$\mathcal{L}_1 = \pi$$

$$\mathcal{L}_2 = \pi_{;\mu} \pi^{;\mu} \equiv X$$

$$\mathcal{L}_3 = X \Box \pi$$

$$\mathcal{L}_4 = X \left[2 (\Box \pi)^2 - 2 (\pi_{;\mu\nu} \pi^{;\mu\nu}) - \frac{1}{2} X R \right]$$

$$\mathcal{L}_5 = X \left[(\Box \pi)^3 - 3 (\pi_{;\mu\nu} \pi^{;\mu\nu}) \Box \pi + 2 (\pi^{;\nu}_{;\mu} \pi^{;\rho}_{;\rho} \pi^{;\mu}_{;\rho}) - 6 (\pi_{;\mu} \pi^{;\mu\nu} G_{\nu\rho} \pi^{;\rho}) \right]$$

$$\text{Most general action :}$$

$$S[\phi, g, \pi] = S_{SM}[\phi, g] + \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R - \frac{1}{2} \sum_{i=1}^5 \frac{C_i}{M^{3(i-2)}} \mathcal{L}_i - \frac{M_P}{M^3} C_G G^{\mu\nu} \pi_{;\mu} \pi_{;\nu} \right]$$

$$\mathcal{L}_1 = \pi \quad \text{Tadpole (behaves like } \Lambda \text{ so } c_1 = 0)$$

$$\mathcal{L}_2 = \pi_{;\mu} \pi^{;\mu} \equiv X$$

$$\mathcal{L}_3 = X \Box \pi$$

$$\mathcal{L}_4 = X \left[2 (\Box \pi)^2 - 2 (\pi_{;\mu\nu} \pi^{;\mu\nu}) - \frac{1}{2} X R \right]$$

$$\mathcal{L}_5 = X \left[(\Box \pi)^3 - 3 (\pi_{;\mu\nu} \pi^{;\mu\nu}) \Box \pi + 2 (\pi^{;\nu}_{;\mu} \pi^{;\rho}_{;\rho} \pi^{;\mu}) - 6 (\pi_{;\mu} \pi^{;\mu\nu} G_{\nu\rho} \pi^{;\rho}) \right]$$

$$\text{Most general action :}$$

$$S[\phi, g, \pi] = S_{SM}[\phi, g] + \int d^4 x \sqrt{-g} \left[\frac{M_P^2}{2} R - \frac{1}{2} \sum_{i=1}^5 \frac{c_i}{M^{3(i-2)}} \mathcal{L}_i - \frac{M_P}{M^3} \frac{c_G}{G} G^{\mu\nu} \pi_{;\mu} \pi_{;\nu} \right]$$

$$\mathcal{L}_1 = \pi \quad \text{Tadpole (behaves like } \Lambda \text{ so } c_1 = 0) \quad \text{Disformal coupling}$$

$$\mathcal{L}_2 = \pi_{;\mu} \pi^{;\mu} \equiv X \quad \text{Kinetic term}$$

$$\mathcal{L}_3 = X \Box \pi$$

$$\mathcal{L}_4 = X \left[2 (\Box \pi)^2 - 2 (\pi_{;\mu\nu} \pi^{;\mu\nu}) - \frac{1}{2} X R \right]$$

$$\mathcal{L}_5 = X \left[(\Box \pi)^3 - 3 (\pi_{;\mu\nu} \pi^{;\mu\nu}) \Box \pi + 2 (\pi^{;\nu}_{;\mu} \pi^{;\rho}_{;\rho} \pi^{;\mu}_{;\rho}) - 6 (\pi_{;\mu} \pi^{;\mu\nu} G_{\nu\rho} \pi^{;\rho}) \right]$$

$$\text{Most general action :}$$

$$S[\phi, g, \pi] = S_{SM}[\phi, g] + \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R - \frac{1}{2} \sum_{i=1}^5 \frac{c_i}{M^{3(i-2)}} \mathcal{L}_i - \frac{M_P}{M^3} \frac{c_G}{G} G^{\mu\nu} \pi_{;\mu} \pi_{;\nu} \right]$$

$$\mathcal{L}_1 = \pi \quad \text{Tadpole (behaves like } \Lambda \text{ so } c_i = 0) \quad \text{Disformal coupling}$$

$$\mathcal{L}_2 = \pi_{;\mu} \pi^{;\mu} \equiv X \quad \text{Kinetic term}$$

$$\mathcal{L}_3 = X \Box \pi \quad \text{Kinetic term}$$

$$\mathcal{L}_4 = X \left[2 (\Box \pi)^2 - 2 (\pi_{;\mu\nu} \pi^{;\mu\nu}) - \frac{1}{2} X R \right] \quad \text{Non-linear lagrangians}$$

$$\mathcal{L}_5 = X \left[(\Box \pi)^3 - 3 (\pi_{;\mu\nu} \pi^{;\mu\nu}) \Box \pi + 2 (\pi^{;\nu}_{;\mu} \pi^{;\rho}_{;\rho} \pi^{;\mu}_{;\rho}) - 6 (\pi_{;\mu} \pi^{;\mu\nu} G_{\nu\rho} \pi^{;\rho}) \right]$$

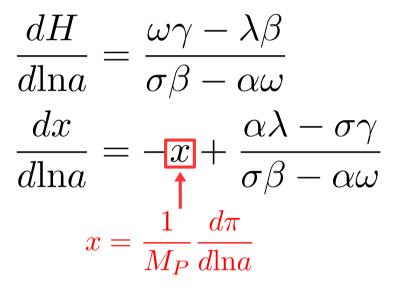
 Non-linear lagrangians necessary to screen the galileon at small scales (Vainshtein effect)

I. Presentation of the galileon model

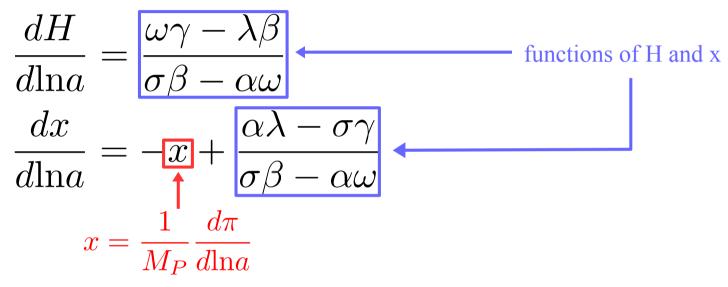
II.Methodology and datasets

III.Results

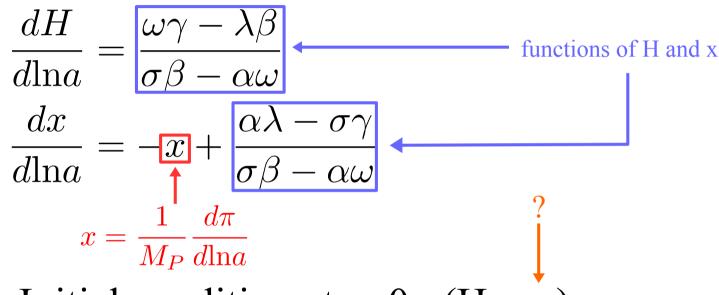
$$\frac{dH}{d\ln a} = \frac{\omega\gamma - \lambda\beta}{\sigma\beta - \alpha\omega}$$
$$\frac{dx}{d\ln a} = -x + \frac{\alpha\lambda - \sigma\gamma}{\sigma\beta - \alpha\omega}$$



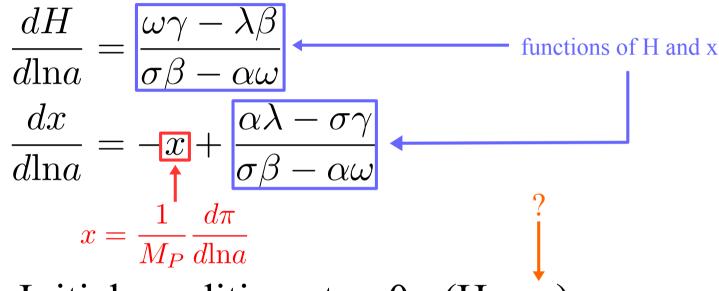




> Initial condition at z=0: (H₀, x₀)

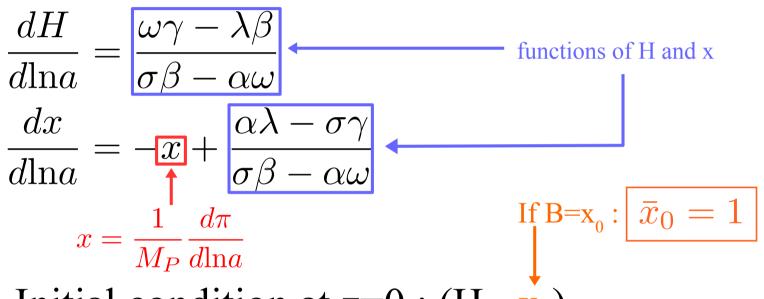


> Initial condition at $z=0: (H_0, x_0)$



- > Initial condition at $z=0:(H_0, x_0)$
- Scaling invariance :

$$\begin{array}{rccc} c_i & \to & \bar{c}_i \equiv c_i B^i, & i = 2, ..., 5 \\ c_G & \to & \bar{c}_G \equiv c_G B^2 \\ x & \to & \bar{x} \equiv x/B \end{array}$$



- > Initial condition at z=0: (H₀, x_0)
- Scaling invariance :

$$\begin{array}{rccc} c_i & \to & \bar{c}_i \equiv c_i B^i, & i = 2, ..., 5 \\ c_G & \to & \bar{c}_G \equiv c_G B^2 \\ x & \to & \bar{x} \equiv x/B \end{array}$$

- > Two classes of galileon models :
 - Full galileon : $\{\overline{c}_2, \overline{c}_3, \overline{c}_4, \overline{c}_5, \overline{c}_G, \overline{x}_0\}$

- > Two classes of galileon models :
 - Full galileon : $\{\overline{c}_2, \overline{c}_3, \overline{c}_4, \overline{c}_5, \overline{c}_G, \overline{x}_0\}$

Fixed by re-scaling

Fixed by flatness condition at z=0 : $\Omega_{\pi}^{0} = 1 - \Omega_{m}^{0} - \Omega_{r}^{0}$

- > Two classes of galileon models :
 - Full galileon : $\{\overline{c_2}, \overline{c_3}, \overline{c_4}, \overline{c_5}, \overline{c_G}, \overline{x_0}\}$ Fixed by re-scaling

Free parameters Fixed by flatness condition at z=0 : $\Omega_{\pi}^{0} = 1 - \Omega_{m}^{0} - \Omega_{r}^{0}$

- > Two classes of galileon models :
 - Full galileon : $\{\overline{c}_2, \overline{c}_3, \overline{c}_4, \overline{c}_5, \overline{c}_G, \overline{x}_0\}$
 - Cubic galileon : $\{\overline{c_2}, \overline{c_3}, \overline{c_4}, \overline{c_5}, \overline{c_G}, \overline{x_0}\}$

Fixed by flatness condition

Set to 0

- > Two classes of galileon models :
 - Full galileon : $\{\overline{c}_2, \overline{c}_3, \overline{c}_4, \overline{c}_5, \overline{c}_G, \overline{x}_0\}$
 - Cubic galileon : $\{\overline{c_2}, \overline{c_3}, \overline{c_4}, \overline{c_5}, \overline{c_G}, \overline{x_0}\}$
- In most studies, tracker solutions only :
 - attractor solutions
 - additional relation on the \bar{c}_i parameters
 - analytic solutions for the background evolution

- > Two classes of galileon models :
 - Full galileon : $\{\overline{c}_2, \overline{c}_3, \overline{c}_4, \overline{c}_5, \overline{c}_G, \overline{x}_0\}$
 - Cubic galileon : $\{\overline{c_2}, \overline{c_3}, \overline{c_4}, \overline{c_5}, \overline{c_G}, \overline{x_0}\}$
- > In most studies, tracker solutions only :
 - attractor solutions
 - additional relation on the \bar{c}_i parameters
 - analytic solutions for the background evolution
- In this study, no restriction on the parameter space

- > Two classes of galileon models :
 - Full galileon : $\{\overline{c}_2, \overline{c}_3, \overline{c}_4, \overline{c}_5, \overline{c}_G, \overline{x}_0\}$
 - Cubic galileon : $\{\overline{c_2}, \overline{c_3}, \overline{c_4}, \overline{c_5}, \overline{c_G}, \overline{x_0}\}$
- > In most studies, tracker solutions only :
 - attractor solutions
 - additional relation on the \bar{c}_i parameters
 - analytic solutions for the background evolution
- In this study, no restriction on the parameter space
- Galileon predictions obtained using our own modified version of Boltzmann code CAMB

- MCMC exploration of the parameter space against cosmological observations
 - \rightarrow Our own modified version of CosmoMC
 - \rightarrow Reject sets of parameters that fail stability conditions
 - CMB : Planck 2015 TTTEEE+lowP+lensing
 - BAO : 6dF, MGS, BOSS DR12
 - SN Ia : JLA sample

MCMC exploration of the parameter space against cosmological observations

 \rightarrow Our own modified version of CosmoMC

- \rightarrow Reject sets of parameters that fail stability conditions
- CMB : Planck 2015 TTTEEE+lowP+lensing
- BAO : 6dF, MGS, BOSS DR12
- SN Ia : JLA sample

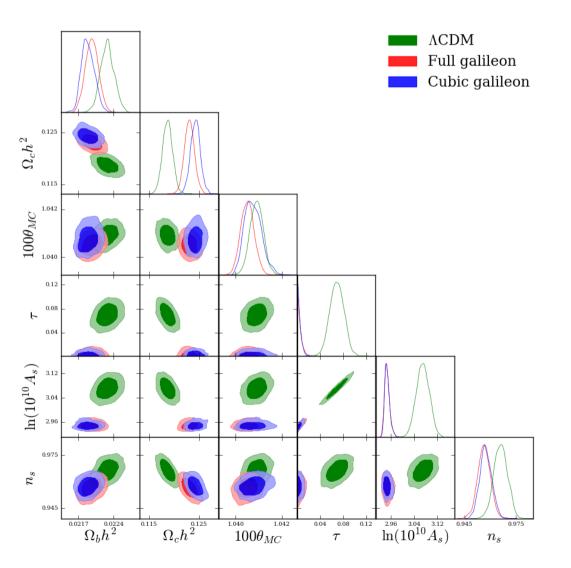
→ base parameters { $\Omega_b h^2$, $\Omega_c h^2$, $100\theta_{MC}$, τ , A_s , n_s }

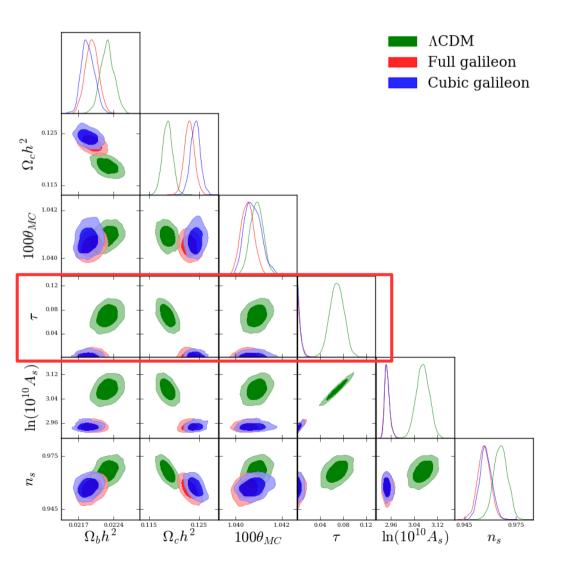
- MCMC exploration of the parameter space against cosmological observations
 - \rightarrow Our own modified version of CosmoMC
 - \rightarrow Reject sets of parameters that fail stability conditions
 - CMB : Planck 2015 TTTEEE+lowP+lensing
 - BAO : 6dF, MGS, BOSS DR12
 - SN Ia : JLA sample
- A posteriori comparison to GW speed constraint from GW170817

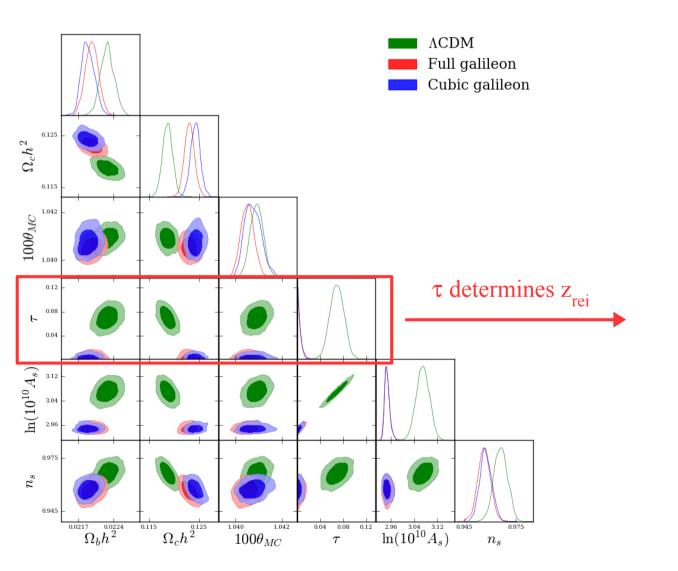
I. Presentation of the galileon model

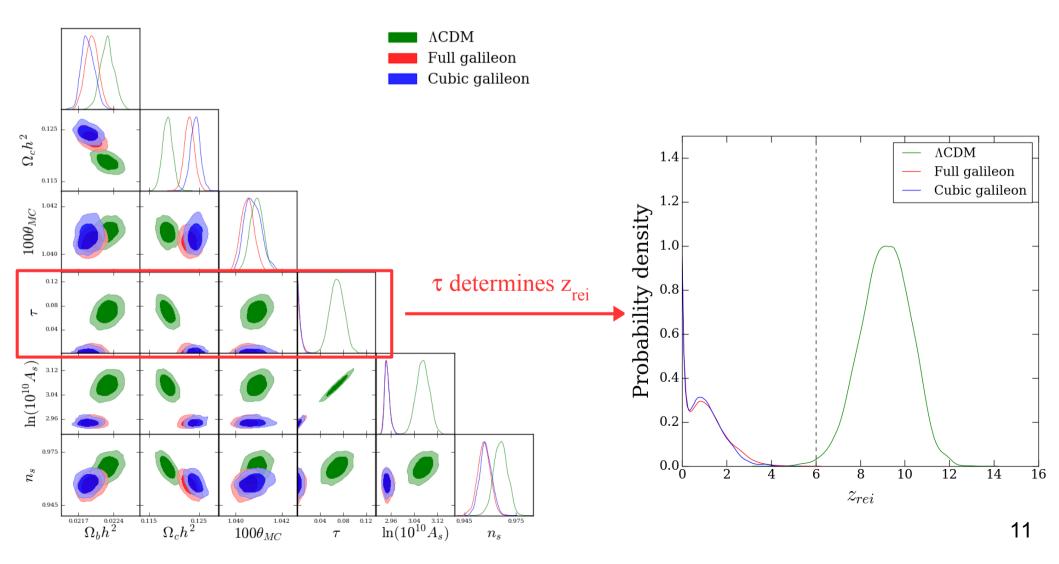
II.Methodology and datasets

III.Results







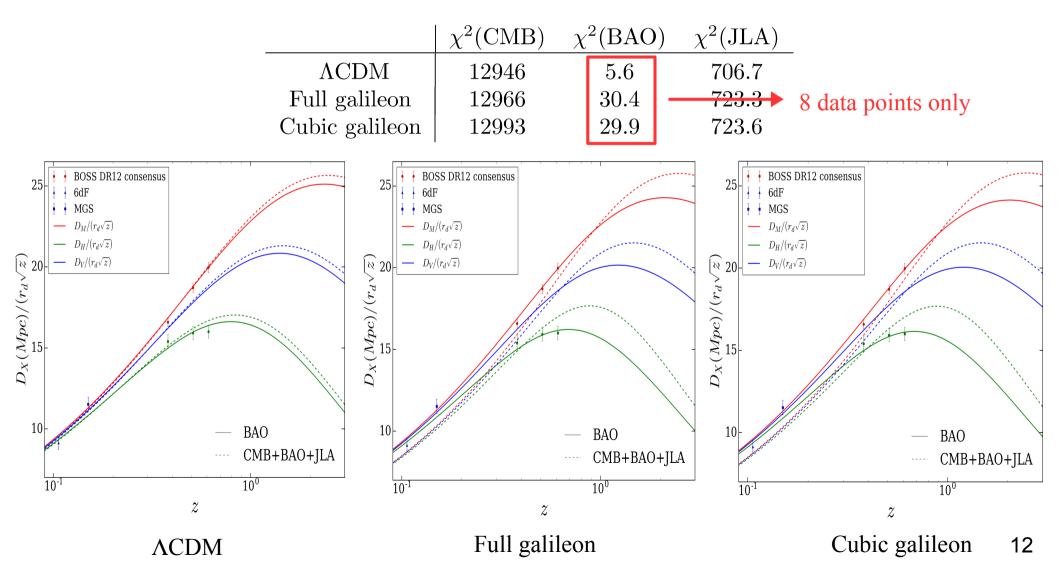


		$\chi^2(\text{CMB})$	$\chi^2(BAO)$	$\chi^2(\text{JLA})$
Λ	CDM	12946	5.6	706.7
Full	galileon	12966	30.4	723.3
Cubic	galileon	12993	29.9	723.6

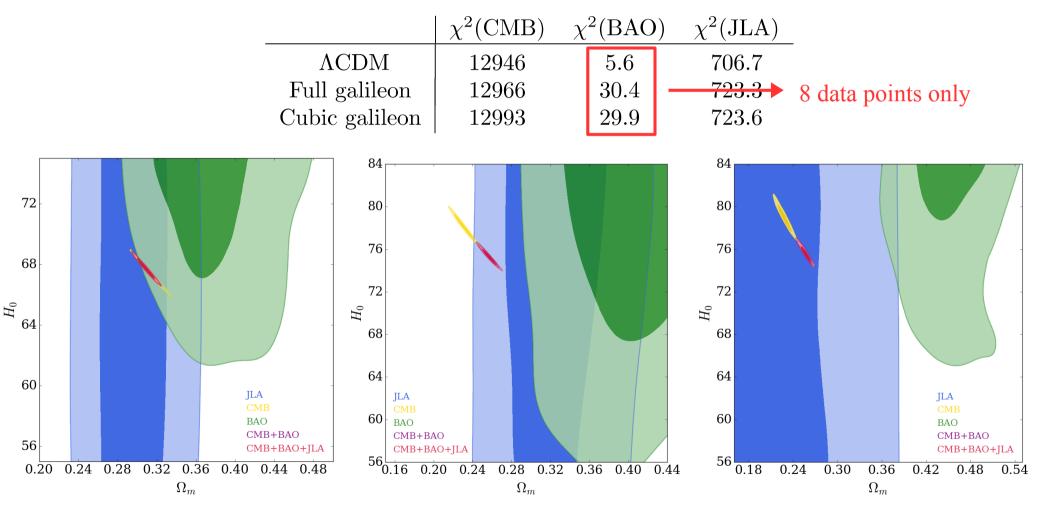
Fit to combined cosmological data (CMB+BAO+JLA) :

	$\chi^2(\text{CMB})$	$\chi^2(BAO$) $\chi^2(\text{JLA})$	_
ΛCDM	12946	5.6	706.7	
Full galileon	12966	30.4	722.3	8 data points only
Cubic galileon	12993	29.9	723.6	± •

Fit to combined cosmological data (CMB+BAO+JLA) :



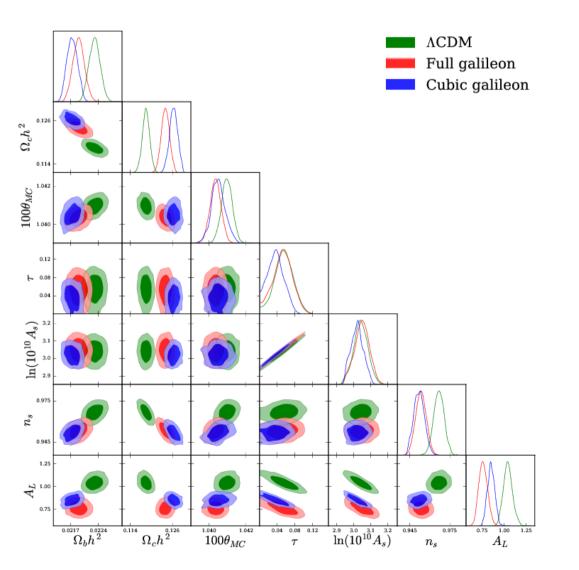
Fit to combined cosmological data (CMB+BAO+JLA) :



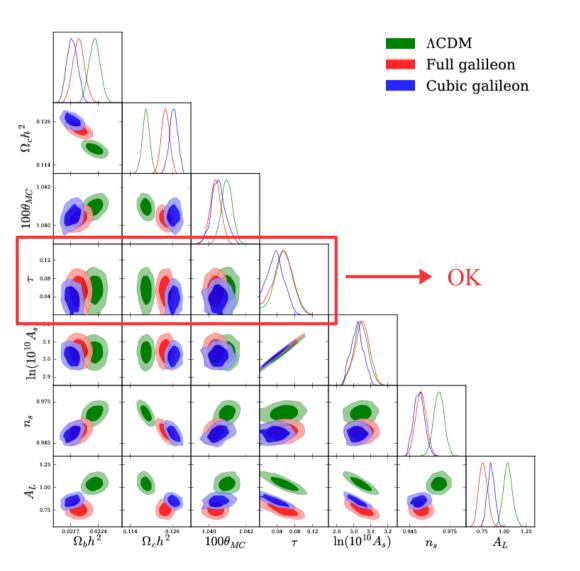
ΛCDM

Full galileon

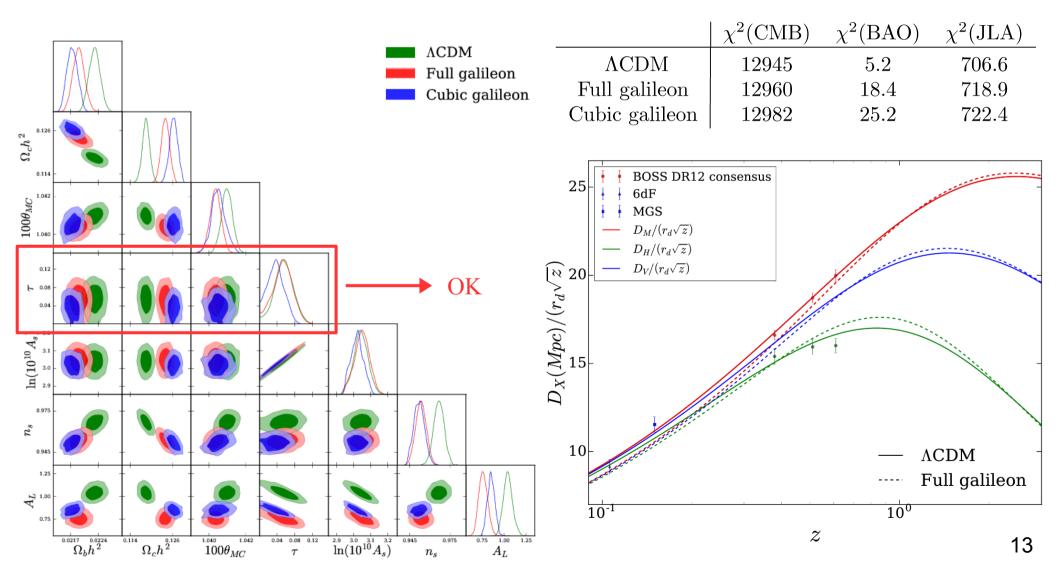
> Model extended to the parameter A_L :



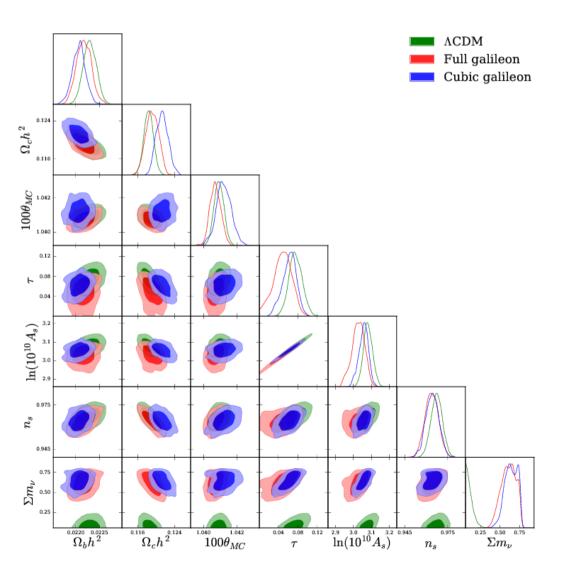
> Model extended to the parameter A_L :



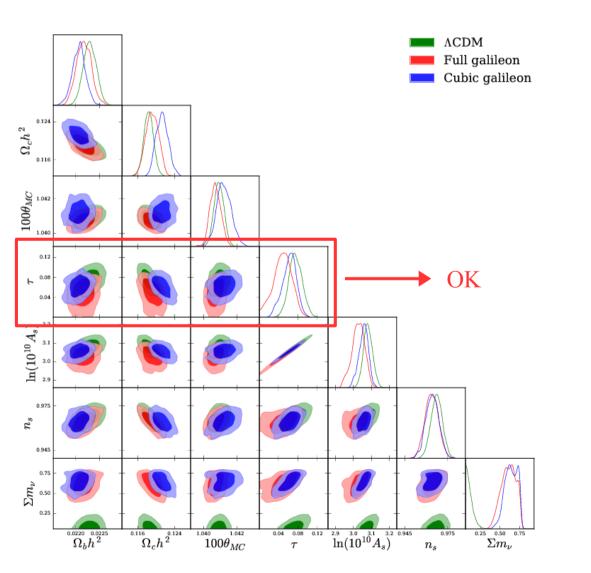
> Model extended to the parameter A_L :



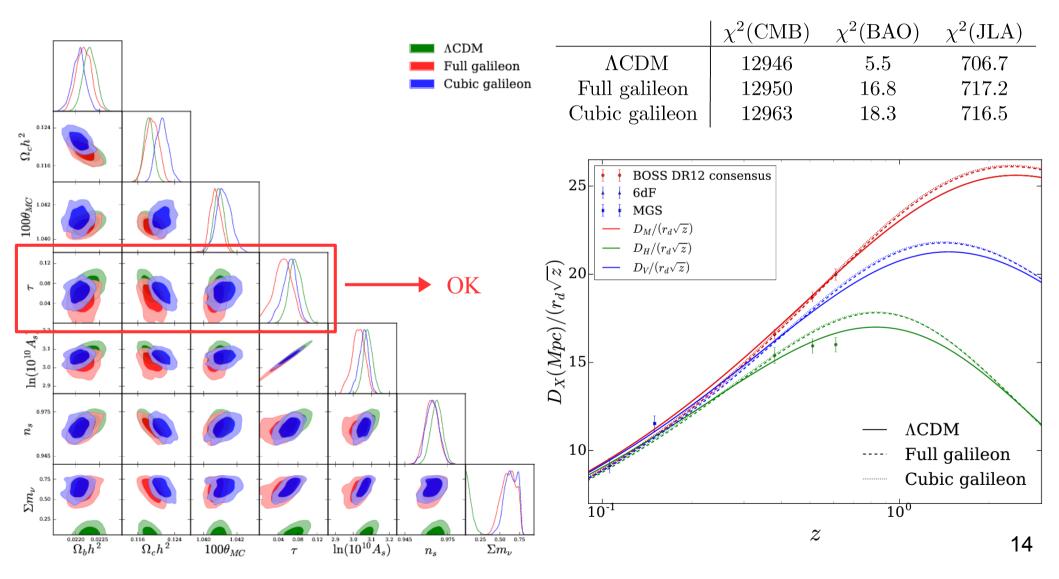
> Model extended to the parameter Σm_v :



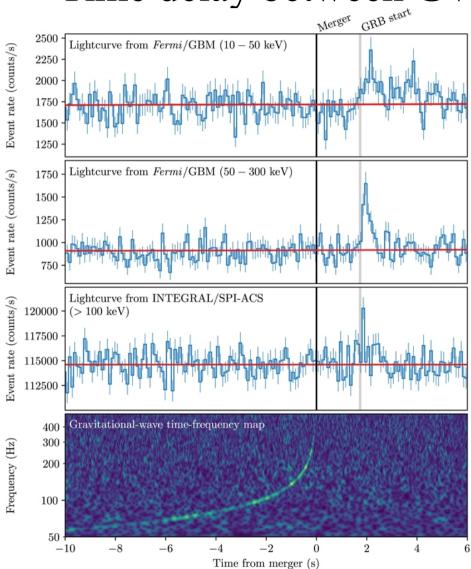
> Model extended to the parameter Σm_v :



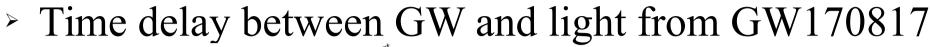
> Model extended to the parameter Σm_v :

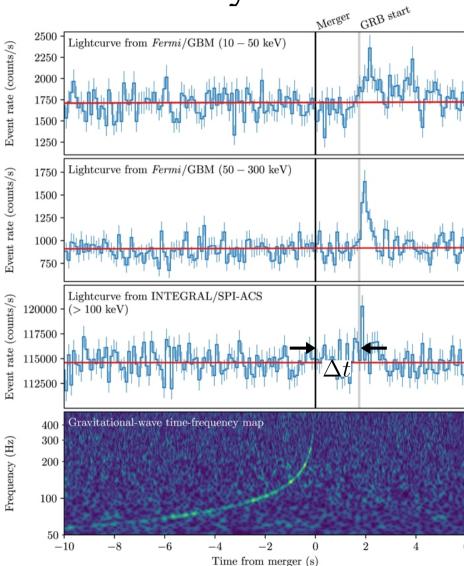


> Time delay between GW and light from GW170817



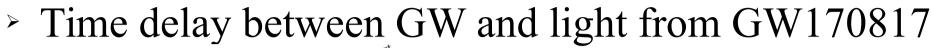
arXiv:1710.05834

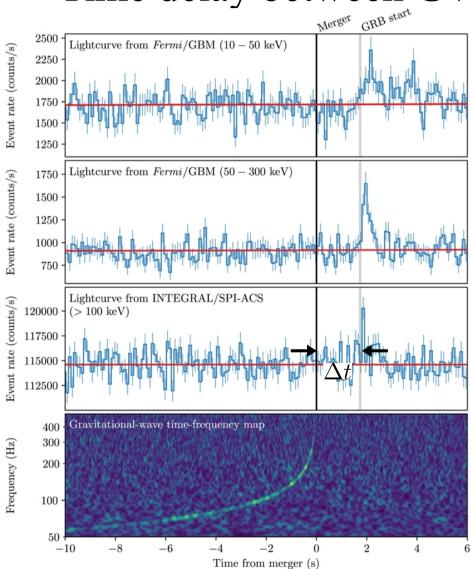




arXiv:1710.05834

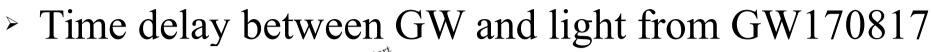
 $\Delta t = \int_{a_c}^{1} \frac{da}{aH} \left(1 - \frac{c}{c_g(a)} \right) + \delta t$ $= 1.74 \pm 0.05 s$

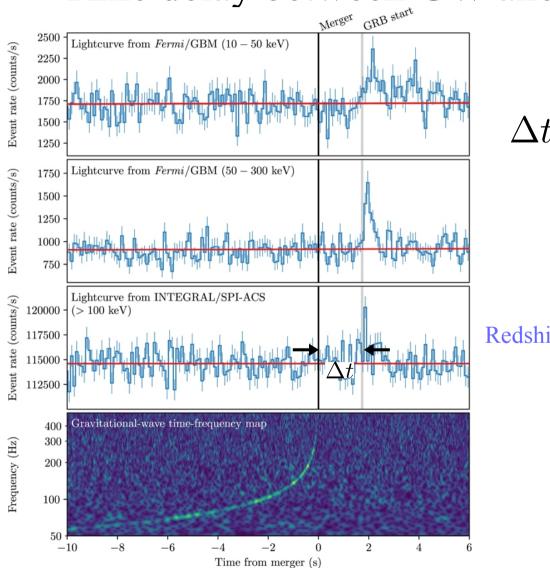




$$\Delta t = \int_{a_e}^{1} \frac{da}{aH} \left(1 - \frac{c}{c_g(a)} \right) + \delta t$$

= 1.74 ± 0.05s
Speed of GW

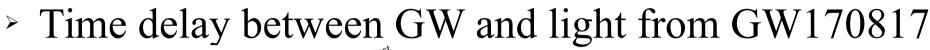


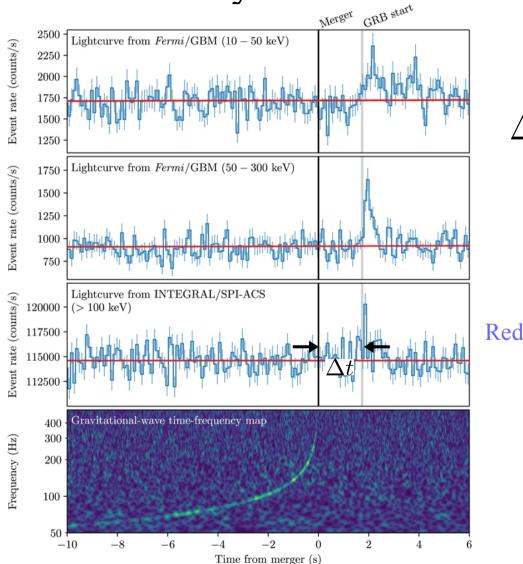


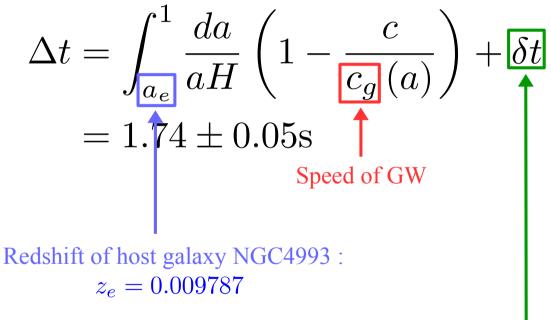
$$\Delta t = \int_{a_e}^{1} \frac{da}{aH} \left(1 - \frac{c}{c_g(a)} \right) + \delta t$$

= 1.74 ± 0.05s
Speed of GW

 $z_e = 0.009787$

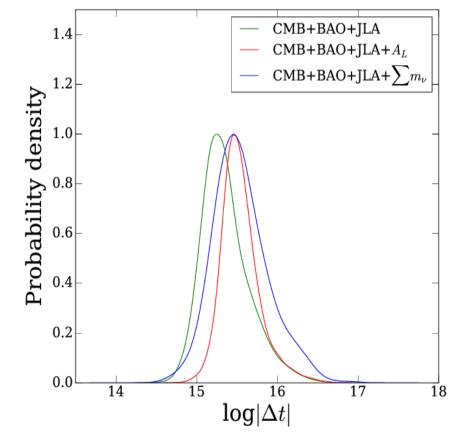






Time delay between GW emission and light emission. Conservative assumption (arXiv:1710.05834) : $\delta t \in [-1000s, 100s]$

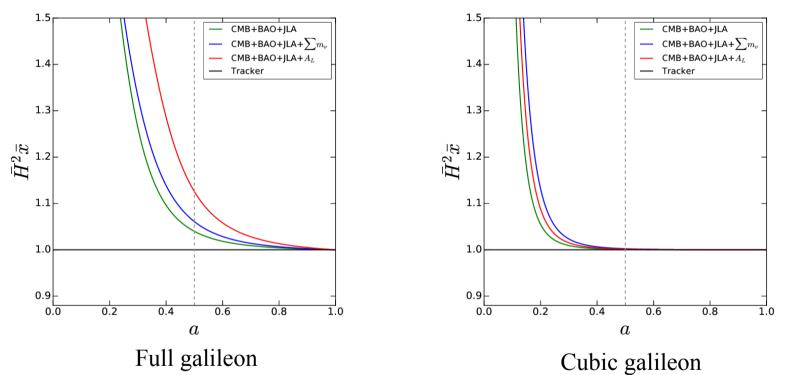
▹ Modification of GW speed only due to c_4 , c_5 and c_G ⇒ affects only the full galileon model



> $\Delta t > 10^{14}$ sec ~ a few million years

- Study of a theoretically well motivated extension of General Relativity
- Base galileon models in strong tension with BAO data and reionization constraints
- > Extended models with A_L and Σm_v better, but still in tension with BAO
- > GW170817 excludes completely the full galileon model
- First full galileon parameter space exploration after Planck

Was the full exploration useful ?



- Best fits of extended full galileon models converge towards tracker later than the beginning of DE dominated era
 - \Rightarrow risk of missing interesting scenarios if restraining to tracker

Thank you !

 $\tilde{g}_{\mu\nu} = A(\pi, X) g_{\mu\nu} + B(\pi, X) \nabla_{\mu} \pi \nabla_{\nu} \pi$

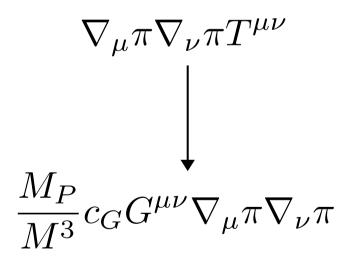
Conformal transformation

$$\pi T^{\mu}_{\mu}$$

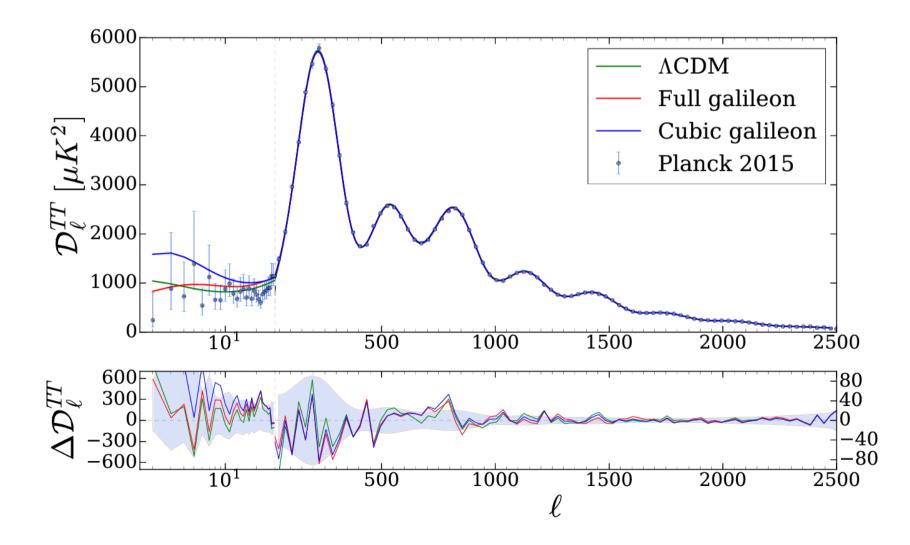
$$\downarrow$$

$$M_P c_0 \pi R$$

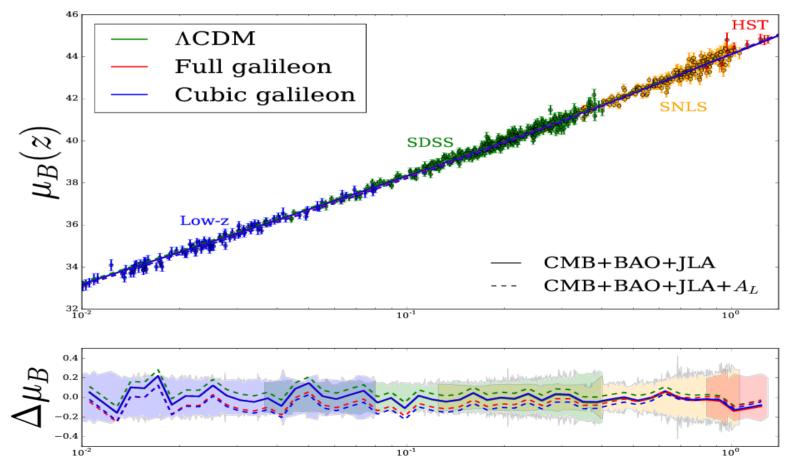
Disformal transformation



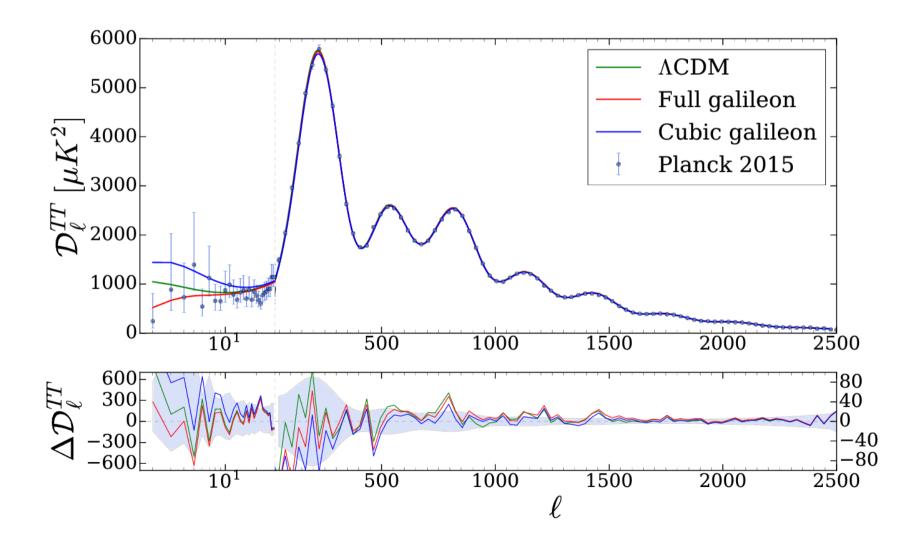
> TT powerspectrum with A_L



> SN hubble diagram with A_L



> TT powerspectrum with Σm_v



> SN hubble diagram with Σm_{ν}

