Long-lived dark matter mediators in Direct Detection experiments

IRN-Terascale meeting

Dark matter GPS session

IPPP, Durham

Outline

- \cdot General framework and idea
- \cdot Concrete ideas

General idea

So far, direct detection experiments are more or less blind to sub-GeV dark matter candidates.

Consider alternative processes for such cases?

· Initial idea: radiative scattering accompanied by mediator emission, incl. possibility of scattering outside the detector \rightarrow only detect decay products.

e.g. photon pair

· But: kinematic limit on emitted mediator mass:

 $m_{med}^{max} = \frac{\mu_{\chi N} v_{\chi}^2}{2}$

→ for $m_{\chi} \sim 1$ GeV can only access ~ 1 keV mediators → too long-lived if mediator is a scalar decaying into photon pairs.

Potential ideas -1

1) Consider scattering/annihilation of dark matter particles *among themselves* to access higher mediator masses \rightarrow shorter mediator lifetimes.

· Can access higher mediator masses (\rightarrow shorter lifetimes).

 \cdot Considered scattering target depends on the mediator lifetime.

Potential ideas -2

2) Move to indirect detection.

- \cdot Expect ring-like photon signal around massive objects, at distances d ~ $c\tau_{_{med}}$
- · Leptonic decay constraints already studied in arXiv:1612.00845. Photons?

But then lose connection with DD

- 3) Consider alternative mediators/processes.
- · Example: $Z' \rightarrow Z^* \gamma \rightarrow \nu \nu \gamma$ (*e.g.* in models with anomalous U(1)'s).
- · (Virtual) tree-level decay \rightarrow shorter lifetime.

Open issues

 \cdot Which of these ideas is the most promising? Need at least rough estimates!

And then detailed calculations

· What "external" constraints do we consider? Stellar cooling, BBN, CMB...

 \cdot How seriously do we take the relic density constraint?

 \cdot For the most, need some concrete model. Which one?

Let's discuss!