

Measuring Higgs boson properties effectively at the LHC

Michael Spannowsky

IPPP, Durham University

Durham

IRN Meeting

I

Michael Spannowsky

Due to absence of signs of new physics

HEP has 'Big Mac' blues,

i.e. why nature not like (as natural as) advertised?

Commercial

Reality

Sure, Higgs boson does the job, but...

The Higgs boson, a window to new physics

Improved/Unified way of interpretation of measurements

- interpretation of any measurement model dependent
- interpretation requires communication between different scales as well as theorists and experimentalists

Connecting measurements with UV physics

Kappa Framework

- NP models simple rescaling of couplings $\sigma(g_p) \times BR(g_d)$
- No new Lorentz
 -structures or
 kinematics

EFT

- SM degrees of freedom and symmetries
- New kinematics/
 Lorentz structures

Simplified Models

- New low-energy degrees of freedom
- Subset of states of full models, reflective at scale of measurement

Full (UV) Model

- Very complex and often high-dimensional parameter space
- Allows to correlate high-scale and lowscale physics

Complexity/Flexibility

Durham

4

EFT fit is next step to tension theory with data

Validity and Relevance of EFT approach

Results for linearised LO EFT approach

Focus on linear contribution of EFT for theory prediction: [Englert, Kogler, Schulz, MS 1511.05170]

 $\mathcal{M} = \mathcal{M}_{\rm SM} + \mathcal{M}_{d=6}$

$$|\mathcal{M}|^{2} = |\mathcal{M}_{\rm SM}|^{2} + 2\operatorname{Re}\{\mathcal{M}_{\rm SM}\mathcal{M}_{d=6}^{*}\} + \mathcal{O}(1/\Lambda^{4})$$
$$N_{\rm th} = \sigma(H+X) \times \operatorname{BR}(H \to YY)$$

 $\times \mathcal{L} \times BR(X, Y \to \text{final state})$

Number of predicted events:

We assume that production and decay factorise to good approximation

Each channel has own prod. and decay efficiencies: $N_{\rm ev} = \epsilon_p \epsilon_d N_{\rm th}$

Wilson coefficients can be (over) constraint in many decay and production processes:

Decays:	$H \to f \bar{f}$	$H\to\gamma\gamma$	$H \to \gamma Z$
	$H \to ZZ^*$	$H \to WW^*$	
Production:	$pp \to H$	$pp \to Hj$	$pp \rightarrow Hjj$
	$pp \to HV$	$pp \rightarrow ttH$	
Durham	IRN Meeting 7		

signal strength: 36 indep. meas. (300 ifb) 46 indep. meas. (3000 ifb) differential: 88 indep. meas. (300 ifb) 123 indep. meas. (3000 ifb)

Michael Spannowsky

06.09.2018

To show benefit of differential distribution need observable

- Different observables can give different results for fit
- 2->2 scattering leaves only 2 degrees of freedom, but 2->3 (tth, vbf) more complex
- However, exp. need to be able to provide unfolded distributions

most likely and practical **pT,H** unfolded

Three sources of **uncertainties**

Theoretical uncertainties

(taken from exp. Run-1 papers)

Flat over pT,H range...

production process		decay process		
$pp \to H$	14.7	$H \rightarrow bb$	6.1	
$pp \rightarrow H + j$	15	$H ightarrow \gamma \gamma$	5.4	
$pp \rightarrow H + 2j$	15	$H \to \tau^+ \tau^-$	2.8	
$pp \to HZ$	5.1	$H \to 4l$	4.8	
$pp \to HW$	3.7	$H \rightarrow 2l 2 \nu$	4.8	
$pp \to t\bar{t}H$	12	$H \to \mu^+ \mu^-$	2.8	

Conservative for inclusive rate, aggressive for distributions

Systematic uncertainties

obtained for 7/8 TeV are scaled to 14 TeV with 300 and 3000 ifb respectively by $\sqrt{\mathcal{L}_8/\mathcal{L}_{14}}$

statistical uncertainties

part of fit and we require **5** events to consider a channel

production process		decay process		
$pp \rightarrow H$	10	$H \rightarrow b\overline{b}$	25	
$pp \to H + \mathbf{j}$	30	$H ightarrow \gamma \gamma$	20	
$pp \to H + 2 {\rm j}$	100	$H \rightarrow \tau^+ \tau^-$	15	
$pp \rightarrow HZ$	10	$H \rightarrow 4l$	20	
$pp \rightarrow HW$	50	$H \rightarrow 2l2\nu$	15	
$pp \rightarrow t\bar{t}H$	30	$H \rightarrow Z\gamma$	150	
		$H ightarrow \mu^+ \mu^-$	150	

	$t\overline{t}H$	HZ	HW	H incl.	H + j	H + 2j
$H \rightarrow b\overline{b}$	80	25	40	100	100	150
$H \rightarrow \gamma \gamma$	60	70	30	10	10	20
$H \rightarrow \tau^+ \tau^-$	100	75	75	80	80	30
$H \rightarrow 4l$	70	30	30	20	20	30
$H \rightarrow 2l2\nu$	70	100	100	20	20	30
$H \rightarrow Z\gamma$	100	100	100	100	100	100
$H ightarrow \mu^+ \mu^-$	100	100	100	100	100	100

rel. syst. uncertainty in %

signal strength measurement

differential measurement

Interpretation of results

Composite (SILH) Higgs:

One expects $\bar{c}_g \sim \frac{m_W^2}{16\pi^2} \frac{y_t^2}{\Lambda^2}$ with comp. scale $\Lambda \sim g_
ho f$ with $|\bar{c}_g| \lesssim 5 \times 10^{-6}$ we get $\Lambda \gtrsim 2.8$ TeV

indirect probe of new physics scenario using Higgs observables only

Three Higgs properties are of particular interest

Total width of Higgs (invisible decays)

- Width affects all decay channels
- Indicative of new couplings (i.e. invisible or novel particles)

CP properties of Higgs interactions

Higgs self-coupling

$$V(\phi) = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

- Indicative of ew sym. breaking potential
- Matter/Anti-matter asymmetry (Baryogenesis)

14

CMS 'width' Measurement

using angular correlations of 41 decay products

III. insert off-shell coupling measurement in on-shell signal strength to bound width

> Obs.(exp.) @95% C.L: Γ_H< 4.2(8.5) Γ_HSM Γ_H< 17.4 (35.3) MeV

Example 'width-measurement'

Limit on invisible branching ratio from global Higgs fit

 In Kappa framework for Run 1: BR < 0.34 at 95% CL (assumed kV < 1)

• Extend SM EFT by light degree of freedom, e.g. fermionic DM candidate

CP violating interactions of the Higgs boson

Use recent ATLAS measurements in $h \to \gamma \gamma$ and $~h \to Z Z^* \to 4\ell$

Need to construct CP sensitive observables in linearised framework $|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2\text{Re}\left(\mathcal{M}_{SM}^{\star}\mathcal{M}_{d6}\right) + \mathcal{O}(\Lambda^{-4}).$

for example:
$$\Delta \phi_{jj} = \phi_1 - \phi_2$$
, in Hjj $A = \frac{\sigma(0 < \Delta \phi_{jj} < \pi) - \sigma(-\pi < \Delta \phi_{jj} < 0)}{\sigma(0 < \Delta \phi_{jj} < \pi) + \sigma(-\pi < \Delta \phi_{jj} < 0)}$
with ATLAS data one finds $A = 0.3 \pm 0.2$

Durham

Future sensitivity can be improved by separating enriched regions of GF and WBF and by studying H->41 decay angles, e.g.

$$\cos \Phi = \frac{(\mathbf{p}_{l^-} \times \mathbf{p}_{l^+}) \cdot (\mathbf{p}_{l^{\prime -}} \times \mathbf{p}_{l^{\prime +}})}{\sqrt{(\mathbf{p}_{l^-} \times \mathbf{p}_{l^+})^2 (\mathbf{p}_{l^{\prime -}} \times \mathbf{p}_{l^{\prime +}})^2}} \Big|_h$$

Coefficier	nt		
$\left[\text{TeV}^{-2} \right]$	36.1 fb^{-1}	$300 {\rm ~fb^{-1}}$	$3000 {\rm ~fb^{-1}}$
$c_{H\tilde{G}}/\Lambda^2$	$\left [-0.19, 0.19] \right $	[-0.067, 0.067]	[-0.021, 0.021]
$c_{H\tilde{W}}/\Lambda^2$	[-11, 11]	[-3.8, 3.8]	[-1.2, 1.2]
$\left c_{H\tilde{B}}/\Lambda^2 \right $	[-5.9, 5.9]	[-2.1, 2.1]	[-0.65, 0.65]
$c_{H\tilde{W}B}/\Lambda$	[-14, 14]	[-4.9, 4.9]	[-1.5, 1.5]

Marginalised over other coefficients

Durham

Michael Spannowsky

Measure modification of self-coupling

• If new physics heavy can parametrise effect using EFT

$$\mathcal{L}_{\text{Dim6}} \supset c_H \partial^\mu (\Phi^\dagger \Phi) \partial_\mu (\Phi^\dagger \Phi) - c_6 (\Phi^\dagger \Phi)^3 + (c_y \Phi^\dagger \Phi \bar{Q}_L \Phi q_R + h.c.) + c_g \Phi^\dagger \Phi G^a_{\mu\nu} G^{a\mu\nu}$$

• Non-resonant loop-induced HH production affected

 c6 can only be constrained in global fit, after over-constraining the system

Measurement prospects at future colliders

- e+e- collider WBF most sensitive channel for large energies > 500 GeV
- Decay via H->bb
- Unless 1 TeV ILC precision low

$\Delta g/g$ 250 Ge		Baseline		LumiUP		
	250 GeV	+ 500 GeV	+ 1 TeV	250 GeV	+ 500 GeV	+ 1 TeV
8HZZ	1.3%	1.0%	1.0%	0.61%	0.51%	0.51%
8 _{HWW}	4.8%	1.2%	1.1%	2.3%	0.58%	0.56%
8 <i>Hbb</i>	5.3%	1.6%	1.3%	2.5%	0.83%	0.66%
8Hcc	6.8%	2.8%	1.8%	3.2%	1.5%	1.0%
g_{Hgg}	6.4%	2.3%	1.6%	3.0%	1.2%	0.87%
8ηττ	5.7%	2.3%	1.7%	2.7%	1.2%	0.93%
8 Ηγγ	18%	8.4%	4.0%	8.2%	4.5%	2.4%
8 Нµµ	-	-	16%	-		10%
8Htt	-	14%	3.1%	-	7.8%	1.9%
Γ_H	11%	5.0%	1.60	5 10%	2.5%	2.3%
λ_{HHH}	-	83%	21%	-	46%	13%

• Promising predictions at FCC-hh 100 TeV: O(5)% accuracy

[Barr, Dolan, Englert, Ferreira, MS '14]
 [Azatov, Contino, Panico, Son '15]
 [Yao '15]
 [Papaefstathiou, Sakurai '15]
 [Papaefstathiou '15]
 [Banerjee, Englert, Mangano, Selvaggi, MS '18]

 For long time to come, HL-LHC is best chance to measure selfcoupling, but is it good enough?

[Tian, Fujii 1311.6528]

decay modes $-9.4 < \kappa_\lambda^{2\sigma} < 17$

[Bizon, Gorbahn, Haisch, Zanderighi '16] [Maltoni, Pagani, Shivaji, Zhao '17] [Degrassi, Giardino, Maltoni, Pagani '16]

DOUBLE-HIGGS OBSERVABLES: Direct production (LO)

Di-Higgs production with various subsequent decay channels. Assumed CS accuracy 50%

 $-0.8 < \kappa_{\lambda}^{2\sigma} < 8.5$

[Di Vita, Grojean, Panico, Riembau, Vantalon '17] Michael Spannowsky 06.09.2018

Can Higgs-selfcoupling be bounded by theoretical considerations?

23

- Vacuum stability lar Introducing new c6 contribution ^v results in two possible instabilities for potential
 - (Ifi) requires resummation of large field contributions
 - → (sfi) requires too small cutoff scale for EFT approach
 - cannot connect vac. instabilities to bound on c6 within EFT
- Perturbativity

require loop corrections to be smaller than tree-level vertex

$$\Delta\lambda_{hhh}(\sqrt{s}, m_h) = -\frac{1}{16\pi^2}\lambda_{hhh}^3 C_0(m_h^2, m_h^2, s; m_h, m_h, m_h)$$

$$\left|\lambda_{hhh}/\lambda_{hhh}^{\rm SM}\right| \lesssim 6$$

for quartic: $|\beta_{\lambda_{hhhh}}/\lambda_{hhhh}| < 1 \implies |\lambda_{hhhh}/\lambda_{hhhh}^{SM}| \lesssim 68$

Durham

IRN Meeting

Can Higgs-selfcoupling be bounded by theoretical considerations?

Largest shift in trilinear self-coupling $\mathcal{L}_6 = \frac{c_6}{\Lambda^2} |H|^6$ from tree-level contributions

Summary

Optimising data analysis/interpretation is primary goal at LHC

- always trade-off between generality and precision (model dependence)
- EFT fits provide well-defined framework to extract information on UV physics from Higgs boson measurements
- Existing data and analysis strategies not sensitive enough to set strong constraints on Higgs width or Higgs selfcoupling

When sensitive, Higgs might cure us from Big Mac Blues