

Bellazzini 1806.09640 Franceschini, Panico, Pomarol, Wulzer 1712.01310 Panico, Wulzer 1708.07823, Azatov, Contino, Machado 1607.05236

LHC Exploration (so far 2009-2017)

LHC Exploration (so far 2009-2017)

Experimentally: First accessible signal/Easy to study

LHC Exploration (so far 2009-2017)

Experimentally: First accessible signal/Easy to study

LHC Exploration (now -> 2030's)

Effective Field Theories

A way to capture the most relevant effects that survive at E<<M and characterise broad BSM hypotheses $E/M\ll 1$

For

 $\mathcal{L}_4 + \mathcal{L}_6 + \dots = \mathcal{L}^{eff} = L(\frac{g_H H}{M}, \frac{g_V W^{\mu\nu}}{M^2}, \frac{D_\mu}{M}, \frac{g_\Psi \Psi}{M^{3/2}})$

10-100 TeV

LHC Exploration
(now -> 2030's)
Effective Field Theories
A way to capture the most relevant effects that survive
at E<E/M \ll 1

$$\mathcal{L}_4 + \mathcal{L}_6 + \dots = \mathcal{L}^{eff} = L(\frac{g_H H}{M}, \frac{g_V W^{\mu\nu}}{M^2}, \frac{D_{\mu}}{M}, \frac{g_\Psi \Psi}{M^{3/2}})$$

10.100 TeV

F

LHC Exploration
(now -> 2030's)
Effective Field Theories
A way to capture the most relevant effects that survive
at E<E/M \ll 1

$$\mathcal{L}_{4} + \mathcal{L}_{6} + \dots = \mathcal{L}^{eff} = L(\frac{g_{H}H}{M}, \frac{g_{V}W^{\mu\nu}}{M^{2}}, \frac{D_{\mu}}{M}, \frac{g_{\Psi}\Psi}{M^{3/2}})$$

 $\mathcal{L}_{SM} = \int_{i}^{i} c_{i} \frac{O_{i}}{M^{2}}$
 $\mathcal{L}_{SM} = \int_{i}^{i} c_{i} \frac{O_{i}}{M^{2}}$
 $\mathcal{L}_{SM} = O(i = \bar{Q}_{L}\gamma^{\mu}Q_{L}\bar{L}\gamma_{\mu}L)$
dimension-6 = leading effects

LHC Exploration (now -> 2030's)

LHC Exploration (now -> 2030's)

- e.g. measurements of Higgs Couplings,...
 - big statistics
 - soon systematic limited

- of Higgs Couplings,...
 - big statistics
 - soon systematic limited

- e.g. Drell-Yann, VH, VV',...
 - small statistics
 - more challenging measurement
 - more space for improvement

LHC Exploration (now -> 2030's)

Outline

Intro

A challenge at high-E: non-interference

Transverse Dibosons: Interference resurrection

Longitudinal Dibosons: Interference revitalization

ZZ,Zgamma: what to search for?

Difficult measurement with many challenges:

Difficult measurement with many challenges:

Difficult measurement with many challenges:

Precise SM theoretical predictions
-LHC Experimental control of systematics

Difficult measurement with many challenges:

Precise SM theoretical predictions
-LHC Experimental control of systematics
BSM understanding

Difficult measurement with many challenges:

Why Interference?

When SM and BSM contribute to the same amplitude:

$$Amp = SM + BSM = SM(1 + \delta_{BSM})$$

$$\delta_{BSM} = c \frac{E^2}{M^2}$$

Why Interference?

When SM and BSM contribute to the same amplitude:

$$Amp = SM + BSM = SM(1 + \delta_{BSM})$$

$$\delta_{BSM} = c \frac{E^2}{M^2}$$

$$\bullet \ \sigma \propto |Amp|^2 \simeq SM^2 (1 + \delta_{BSM} + \delta_{BSM}^2)$$

For small BSM effects $1 \gg \delta_{BSM}$, interference dominates $\delta_{BSM} \gg \delta_{BSM}^2$

Non-Interference?

If SM and BSM contribute to different amplitudes:

 $\sigma \propto \sum |Amp|^2 \simeq SM^2 (1 + c_i \frac{E^2}{\Lambda^2} + c_i^2 \frac{E^4}{\Lambda^4})$

Non-Interference?

If SM and BSM contribute to different amplitudes:

•
$$\sigma \propto \sum |Amp|^2 \simeq SM^2 (1 + c_i \frac{E^2}{\Lambda^2} + c_i^2 \frac{E^4}{\Lambda^4})$$

The leading effects BSM are $O\left(\frac{1}{\Lambda^4}\right)$

> Small effects, even smaller!

	SMJ	Andir	y BSM n-6 operator
A_4	$ h(A_4^{\rm SM}) $	$ h(A_4^{\mathrm{BSM}}) $	
VVVV	0	4,2	
$VV\phi\phi$	0	2	
$VV\psi\psi$	0	2	
$V\psi\psi\phi$	0	2	
$\psi\psi\psi\psi\psi$	2,0	2,0	
$\psi\psi\phi\phi$	0	0	
$\phi\phi\phi\phi$	0	0	

I will discuss:

Resurrect Interference

Revitalize Interference

Outline

Intro

A challenge at high-E: non-interference

Transverse Dibosons: Interference resurrection

Longitudinal Dibosons: Interference revitalization

ZZ,Zgamma: what to search for?

Interference Resurrection

Focus on dibosons, with these operators that do not interfere with the SM

Differential measurements WW, WZ

 $V_{1,2}$: Helicity $\pm \mp/\pm \pm$ in SM/BSM

> Quantum mechanically different, no interference

Differential measurements WW, WZ

V1,2: Helicity ±∓/±± in SM/BSM ▶ Quantum mechanically different, no interference

f(1,3) f(2,4): Helicity +1/2 -1/2 in SM and in BSM

▶ QM same, interference possible

Differential measurements WW, WZ

Differential measurements WW, WZ

 \blacktriangleright Cancels when integrated over $arphi \in [-\pi,\pi]$

Differential measurements WY

 $Int^{\rm CP} = 2g^2 \sin^2 \theta \mathcal{A}_{++}^{\rm BSM_+} \left[\mathcal{A}_{-+}^{\rm SM} + \mathcal{A}_{+-}^{\rm SM} \right] \cos 2\varphi ,$ $Int^{\rm CP} = 2ig^2 \sin^2 \theta \mathcal{A}_{++}^{\rm BSM_-} \left[\mathcal{A}_{-+}^{\rm SM} - \mathcal{A}_{+-}^{\rm SM} \right] \sin 2\varphi$

Differential measurements WY

$$Int^{\rm CP} = 2g^2 \sin^2 \theta \mathcal{A}_{++}^{{}_{\rm BSM}} \left[\mathcal{A}_{-+}^{{}_{\rm SM}} + \mathcal{A}_{+-}^{{}_{\rm SM}} \right] \cos 2\varphi ,$$
$$Int^{\rm QP} = 2ig^2 \sin^2 \theta \mathcal{A}_{++}^{{}_{\rm BSM}} \left[\mathcal{A}_{-+}^{{}_{\rm SM}} - \mathcal{A}_{+-}^{{}_{\rm SM}} \right] \sin 2\varphi$$

Differential azimuthal distributions = SM-BSM interference

Neutrino: from missing energy + reconstruct W mass

 φ_{reco}

 φ_{true}

Neutrino: from missing energy + reconstruct W mass

2) Some events:
$$m_{\perp}^2 > m_W^2$$

(off-shell, exp.error)
reconstructed as $m_{inv}^2 = m_W^2$
 $\Rightarrow \varphi = \pi/2$ or $\varphi = -\pi/2$.

Neutrino: from missing energy + reconstruct W mass

2) Some events:
$$m_{\perp}^2 > m_W^2$$

(off-shell, exp.error)
reconstructed as $m_{inv}^2 = m_W^2$
 $\Rightarrow \varphi = \pi/2$ or $\varphi = -\pi/2$.

Neutrino: from missing energy + reconstruct W mass

2) Some events: $m_{\perp}^2 > m_W^2$ (off-shell, exp.error) reconstructed as $m_{inv}^2 = m_W^2$ $\Rightarrow \varphi = \pi/2$ or $\varphi = -\pi/2$.

Neutrino: from missing energy + reconstruct W mass

2) Some events: $m_{\perp}^2 > m_W^2$ (off-shell, exp.error) reconstructed as $m_{inv}^2 = m_W^2$ $\Rightarrow \varphi = \pi/2$ or $\varphi = -\pi/2$.

Neutrino: from missing energy + reconstruct W mass With (DELPHES) detector simulation

Neutrino: from missing energy + reconstruct W mass With (DELPHES) detector simulation

Neutrino: from missing energy + reconstruct W mass With (DELPHES) detector simulation

Neutrino: from missing energy + reconstruct W mass With (DELPHES) detector simulation

Resurrection is real

Results

Results

 $p_{\perp \gamma}$

Results

Interference Resurrection makes the difference.

Interference Resurrection makes the difference.

Outline

Intro

A challenge at high-E: non-interference

Transverse Dibosons: Interference resurrection

Longitudinal Dibosons: Interference revitalization

ZZ,Zgamma: what to search for?

di-boson experiments complementary to Higgs Physics (->combination)

* This relation is valid at leading order in the EFT

See 1405.0181 for specific relations

Simplicity at High-E

At high-E only one effect survives (for given i, f states) Jackob, Wick'59, Franceschini, Panico, Pomarol, FR, Wulzer

2.9.
$$\frac{a^{(3)}}{\text{TeV}^2} i H^{\dagger} \sigma^a \overset{\leftrightarrow}{D}_{\mu} H \bar{Q} \sigma^a \gamma^{\mu} Q$$

Di-Bosons

Franceschini, Panico, Pomarol, FR, Wulzer'17

Which channel has the best reach?

Estimate (no syst, LO,...):

Challenge:

Channel	Bound without bkg.	Bound with bkg.		
Wh	$\left[-0.0024, 0.0024 ight]$	$\left[-0.0089, 0.0078 ight]$	2	Boosted higgs for
Zh	$\left[-0.0074, 0.0070 ight]$	_	5	top:h->bb fakes?
WW	[-0.0029, 0.0028]	[-0.011, 0.0093]	- 7	Large VT bgnd
WZ	$\left[-0.0032, 0.0031 ight]$	$\left[-0.0057, 0.0052 ight]$	\$	
	()			

(WW pT>1000GeV 3/ab: 7 LL events, 70 TT events)

Di-Bosons

Franceschini, Panico, Pomarol, FR, Wulzer'17

Which channel has the best reach?

Estimate (no syst, LO,...):

Challenge:

Channel	Bound without bkg.	Bound with bkg.		
Wh	$\left[-0.0024, 0.0024 ight]$	[-0.0089, 0.0078]	2	Boosted higgs for
Zh	$\left[-0.0074, 0.0070 ight]$	_	5	top:h->bb fakes?
WW	[-0.0029, 0.0028]	[-0.011, 0.0093])	
WZ	$\left[-0.0032, 0.0031 ight]$	$\left[-0.0057, 0.0052\right]$	3	Large VT bgnd
	(2)			

(WW pT>1000GeV 3/ab: 7 LL events, 70 TT events)

Fully leptonic WZ

pT cut on extra radiation: (kinematics close to LO)

$Cos\theta$ cut close to central (exploit radiation-zero)

Results - NLO - LHC

is this a good result?

Big effects Strong Coupling BSM Measurable with O(1) precision

Weak Coupling BSM Measurable only with precision

> Results from experiments of this kind can be applied to broader BSM scenarios

Results - NLO - LHC

Outline

Intro

A challenge at high-E: non-interference

Transverse Dibosons: Interference resurrection

Longitudinal Dibosons: Interference revitalization

ZZ,Zgamma: what to search for?

Dimension-8 effect: Why shall we look at dim>6?

Dimension-8 effect: Why shall we look at dim>6?

(longitudinal+Transverse)

Modifies only the LT amplitude:

At high-Energy, every amplitude with odd number of L is suppressed by $mZ/E \rightarrow$ not maximally growing!

÷.)

Dimension-8 effect: Why shall we look at dim>6?

(longitudinal+Transverse)

Modifies only the LT amplitude:

At high-Energy, every amplitude with odd number of L is suppressed by $mZ/E \rightarrow$ not maximally growing!

 $(\dot{\cdot}\dot{\cdot})$

Contributes to +0/-0 helicity, while SM mainly in +nTGC don't modify the majority of the process
Dimension-8 and ZZ, ZY

Is there a symmetry/theory such that first effects in ZZ/ZY?

YES! (non-linearly realized Supersymmetry 1706.03070 or tree-level Kaluza-Klein graviton exchange)

What is the EFT? ...surprise...

Dimension-8 and ZZ, ZY

Is there a symmetry/theory such that first effects in ZZ/ZY?

YES! (non-linearly realized Supersymmetry 1706.03070 or tree-level Kaluza-Klein graviton exchange)

What is the EFT? ...surprise...

$\frac{1}{2\Lambda^4} \left(i\bar{\psi}\gamma^{\{\mu}\partial^{\nu\}}\psi + \text{h.c.} \right) D_{\mu}H^{\dagger}D_{\nu}H$	$-\frac{1}{4\Lambda^4}B_{\mu\nu}B^{\mu}{}_{\rho}\left(i\bar{\psi}\gamma^{\{\rho}\partial^{\nu\}}\psi + \text{h.c.}\right)$
$\frac{1}{2\Lambda^4} \left(i \bar{Q} \sigma^a \gamma^{\{\mu} \partial^{\nu\}} Q + \text{h.c.} \right) D_{\mu} H^{\dagger} \sigma^a D_{\nu} H$	$-\frac{1}{4\Lambda^4} W^a_{\mu\nu} W^{a\mu}_{\ \rho} \left(i\bar{\psi}\gamma^{\{\rho}\partial^{\nu\}}\psi + \text{h.c.} \right)$
$\psi = Q, u_R, d_R$	$-\frac{1}{4\Lambda^4} B_{\mu\nu} W^{a\mu}_{\ \rho} \left(i \bar{Q} \sigma^a \gamma^{\{\rho} \partial^{\nu\}} Q + \text{h.c.} \right)$

very different from nTGC parametrization!

Energy-Growth

$$\begin{array}{|c|c|c|c|c|} \hline \frac{1}{2\Lambda^4} \left(i\bar{\psi}\gamma^{\{\mu}\partial^{\nu\}}\psi + \mathrm{h.c.} \right) D_{\mu}H^{\dagger}D_{\nu}H & -\frac{1}{4\Lambda^4}B_{\mu\nu}B^{\mu}{}_{\rho} \left(i\bar{\psi}\gamma^{\{\rho}\partial^{\nu\}}\psi + \mathrm{h.c.} \right) \\ \hline \frac{1}{2\Lambda^4} \left(i\bar{Q}\sigma^a\gamma^{\{\mu}\partial^{\nu\}}Q + \mathrm{h.c.} \right) D_{\mu}H^{\dagger}\sigma^a D_{\nu}H & -\frac{1}{4\Lambda^4}W^a_{\mu\nu}W^a{}_{\rho}^{\mu} \left(i\bar{\psi}\gamma^{\{\rho}\partial^{\nu\}}Q + \mathrm{h.c.} \right) \\ \hline \psi = Q, u_R, d_R & -\frac{1}{4\Lambda^4}B_{\mu\nu}W^a{}_{\rho}^{\mu} \left(i\bar{Q}\sigma^a\gamma^{\{\rho}\partial^{\nu\}}Q + \mathrm{h.c.} \right) \\ \hline \mathbf{LL} \text{ final states (ZZ only)} & \mathsf{TT} \text{ final states (ZZ,ZY,YY)} \end{array}$$

Energy-Growth

$$\frac{1}{2\Lambda^{4}} \left(i\bar{\psi}\gamma^{\{\mu}\partial^{\nu\}}\psi + h.c. \right) D_{\mu}H^{\dagger}D_{\nu}H - \frac{1}{4\Lambda^{4}}B_{\mu\nu}B^{\mu}{}_{\rho} \left(i\bar{\psi}\gamma^{\{\rho}\partial^{\nu\}}\psi + h.c. \right) .$$

$$\frac{1}{2\Lambda^{4}} \left(i\bar{Q}\sigma^{a}\gamma^{\{\mu}\partial^{\nu\}}Q + h.c. \right) D_{\mu}H^{\dagger}\sigma^{a}D_{\nu}H - \frac{1}{4\Lambda^{4}}W^{a}{}_{\mu\nu}W^{a}{}_{\rho}^{\mu} \left(i\bar{Q}\sigma^{a}\gamma^{\{\rho}\partial^{\nu\}}Q + h.c. \right) .$$

$$\frac{1}{\psi} = Q, u_{R}, d_{R} - \frac{1}{4\Lambda^{4}}B_{\mu\nu}W^{a}{}_{\rho}^{\mu} \left(i\bar{Q}\sigma^{a}\gamma^{\{\rho}\partial^{\nu\}}Q + h.c. \right) .$$
LL final states (ZZ only) TT final states (ZZ,ZY,YY)
$$No LT (no mZ/E suppression)$$

$$Both grow as E^{4}/\Lambda^{4} in amplitude$$

Helicity

Positivity Constraints

Fundamental principles from unitarity/analyticity imply constraints on coefficient in front! unique of these dimension-8 Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi'hep-th/0602178 Rellazzini (1605 06111

Bellazzini'1605.06111

$$\frac{1}{2\Lambda^4} \left(i\bar{\psi}\gamma^{\{\mu}\partial^{\nu\}}\psi + \text{h.c.} \right) D_{\mu}H^{\dagger}D_{\nu}H \qquad -\frac{1}{4\Lambda^4} B_{\mu\nu}B^{\mu}{}_{\rho} \left(i\bar{\psi}\gamma^{\{\rho}\partial^{\nu\}}\psi + \text{h.c.} \right)$$
$$\frac{1}{2\Lambda^4} \left(i\bar{Q}\sigma^a\gamma^{\{\mu}\partial^{\nu\}}Q + \text{h.c.} \right) D_{\mu}H^{\dagger}\sigma^a D_{\nu}H \qquad -\frac{1}{4\Lambda^4} W^a{}_{\mu\nu}W^a{}_{\rho}^{\mu} \left(i\bar{\psi}\gamma^{\{\rho}\partial^{\nu\}}\psi + \text{h.c.} \right)$$
$$\frac{-\frac{1}{4\Lambda^4} B_{\mu\nu}W^a{}_{\rho}^{\mu} \left(i\bar{Q}\sigma^a\gamma^{\{\rho}\partial^{\nu\}}Q + \text{h.c.} \right) }{ \psi = Q, u_R, d_R} \qquad -\frac{1}{4\Lambda^4} B_{\mu\nu}W^a{}_{\rho}^{\mu} \left(i\bar{Q}\sigma^a\gamma^{\{\rho}\partial^{\nu\}}Q + \text{h.c.} \right)$$

Positivity Constraints

Fundamental principles from unitarity/analyticity imply constraints on coefficient in front! unique of these dimension-8 Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi'hep-th/0602178 Bellazzini'1605.06111

Bellazzini'1605.06111

$$\begin{aligned} \frac{1}{2\Lambda^4} \left(i\bar{\psi}\gamma^{\{\mu}\partial^{\nu\}}\psi + \text{h.c.} \right) D_{\mu}H^{\dagger}D_{\nu}H & -\frac{1}{4\Lambda^4}B_{\mu\nu}B^{\mu}{}_{\rho} \left(i\bar{\psi}\gamma^{\{\rho}\partial^{\nu\}}\psi + \text{h.c.} \right) \\ \frac{1}{2\Lambda^4} \left(i\bar{Q}\sigma^a\gamma^{\{\mu}\partial^{\nu\}}Q + \text{h.c.} \right) D_{\mu}H^{\dagger}\sigma^a D_{\nu}H & -\frac{1}{4\Lambda^4}W^a{}_{\mu\nu}W^a{}_{\rho}^{\mu} \left(i\bar{\psi}\gamma^{\{\rho}\partial^{\nu\}}\psi + \text{h.c.} \right) \\ \frac{1}{\psi} = Q, u_R, d_R & -\frac{1}{4\Lambda^4}B_{\mu\nu}W^a{}_{\rho}^{\mu} \left(i\bar{Q}\sigma^a\gamma^{\{\rho}\partial^{\nu\}}Q + \text{h.c.} \right) \end{aligned}$$

c=0

Positivity Constraints

Fundamental principles from unitarity/analyticity imply constraints on coefficient in front! unique of these dimension-8 Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi'hep-th/0602178 Bellazzini'1605, 06111

Bellazzini'1605.06111

$$\begin{aligned} \frac{1}{2\Lambda^4} \left(i\bar{\psi}\gamma^{\{\mu}\partial^{\nu\}}\psi + \text{h.c.} \right) D_{\mu}H^{\dagger}D_{\nu}H & -\frac{1}{4\Lambda^4}B_{\mu\nu}B^{\mu}{}_{\rho} \left(i\bar{\psi}\gamma^{\{\rho}\partial^{\nu\}}\psi + \text{h.c.} \right) \\ \frac{1}{2\Lambda^4} \left(i\bar{Q}\sigma^a\gamma^{\{\mu}\partial^{\nu\}}Q + \text{h.c.} \right) D_{\mu}H^{\dagger}\sigma^a D_{\nu}H & -\frac{1}{4\Lambda^4}W^a{}_{\mu\nu}W^a{}_{\rho}^{\mu} \left(i\bar{\psi}\gamma^{\{\rho}\partial^{\nu\}}\psi + \text{h.c.} \right) \\ \frac{1}{\psi} = Q, u_R, d_R & -\frac{1}{4\Lambda^4}B_{\mu\nu}W^a{}_{\rho}^{\mu} \left(i\bar{Q}\sigma^a\gamma^{\{\rho}\partial^{\nu\}}Q + \text{h.c.} \right) \end{aligned}$$

c=0

smaller viable parameter space

SM precision tests will define the new distance frontier

Precision is a collective goal:

SM precision tests will define the new distance frontier

Precision is a collective goal:

SM precision tests will define the new distance frontier

Precision is a collective goal:

SM precision tests will define the new distance frontier

Precision is a collective goal:

SM precision tests will define the new distance frontier

Precision is a collective goal:

> LHC good in High-E 2>2 processes

Challenges:

- Non-interference limits precision in learning about transverse vectors
- Longitudinals hidden in transverse background

- Azimuthal distributions crucial (Realistic in other processes? WZ? VBF?)
- SM precision program LHC completes LEP

Comparisons

high-E is unique, but it compares at lower-E with different effects:

Genuine SM precision test