QCD FOR HL-LHC AND BEYOND

ANDREA

BANFI

HL-LHC 2018 - 3 JULY 2018 - IPPP DURHAM

Concentrate on a few case studies relevant to discovery physics

- Perturbative QCD and Higgs characterisation
- BSM effects in loops: Higgs p_T distribution
- Jet-veto effects in WW production
- Boosted object searches

Important left-over topics, that however share similarities with the above

- Top quark production
- Double Higgs productions

HIGGS CHARACTERISATION AT LHC

So far, current characterisations of the Higgs boson are dominated by experimental uncertainties, so theory uncertainties play a limited role

[1606.02266]

- Observed $\pm 1\sigma$ ATLAS and CMS LHC Run 1 Th. uncert. γγ ΖZ WW ττ bb 1.5 -0.5 0 0.5 1.5 -4 -2 0 2 8 -2 0 2 6 6 8 0 2 6 -0.50 0.5 1 1 4 4 8 ggF VBF WH ZΗ ttH $\sigma \cdot B$ norm. to SM prediction

HIGGS CHARACTERISATION AT HL-LHC

- HL-LHC gives promise to reduce experimental uncertainty to 5%
- Theory sensitivity larger for ggH and ttH
- Focus on gluon fusion, but similar remarks hold for other channels and other processes

	300 fb^{-1}			3000 fb^{-1}		
[ATL-PHYS-PUB-2014-016]	Theory unc.:			Theory unc.:		
	All	Half	None	All	Half	None
κ _Z	8.1%	7.9%	7.9%	4.4%	4.0%	3.8%
κ_W	9.0%	8.7%	8.6%	5.1%	4.5%	4.2%
K _t	22%	21%	20%	11%	8.5%	7.6%
КЪ	23%	22%	22%	12%	11%	10%
$\kappa_{ au}$	14%	14%	13%	9.7%	9.0%	8.8%
κ_{μ}	21%	21%	21%	7.5%	7.2%	7.1%
Кg	14%	12%	11%	9.1%	6.5%	5.3%
κ_{γ}	9.3%	9.0%	8.9%	4.9%	4.3%	4.1%
$\kappa_{Z\gamma}$	24%	24%	24%	14%	14%	14%

PERTURBATIVE QCD

Production of numerically stable results requires also clever methods to achieve cancellation of infrared singularities between real and virtual corrections

QCD IS STRONG INTERACTIONS

Key to such accuracy: all loop integrals involve massless propagators

THE HIGGS TOTAL CROSS SECTION

 Exact calculation in the limit of infinite top mass (HEFT) significantly different with respect to threshold expansion in quark channels

[Mistlberger 1802.00833]

 All relevant massless integrals for 2→1 processes at N³LO known possibility of achieving 0.1% accuracy in DY total cross section

DIFFERENTIAL CROSS SECTIONS

- In differential cross section, experimental error is close to theory error
- Experimental error will shrink with higher luminosity and energy

high- p_T region, sensitive to new physics

HIGGS PT DISTRIBUTION

The Higgs p_T distribution presents various difficulties arising in many differential cross sections

- At high p_T one cannot use the HEFT limit, but needs to account for exact top-mass dependence in loops [Jones Kerner Luisoni 1802.00349]
- At small p_T we find large logarithms $\ln(m_H/p_T)$ that need to be resummed at all orders [Chen et al 1805.00736] [Bizon et al 1805.05916]
- Non-negligible shape distortions due to interference effects of amplitudes with top and bottom or charm quarks [Caola et al 1804.07632]
- New logarithms $\ln(p_T/m)$, where m is the mass of a quark running in loops, that can potentially become large both at high and at low p_T [Grazzini Sargsyan 1306.4581]

[AB Monni Zanderighi 1308.4634]

HIGGS AT HIGH P_T

New physics can give an extra ggH contact interaction

$$\mathcal{L} \supset -\kappa_t \frac{m_t}{v} h\bar{t}t + \kappa_g \frac{\alpha_s}{12\pi} \frac{h}{v} G^a_{\mu\nu} G^{\mu\nu}_a$$

$$\sim (\kappa_t + \kappa_g)$$

• In many new physics models (e.g. composite Higgs) $\kappa_t + \kappa_g = 1 \Rightarrow$ no information on BSM from Higgs total cross section

New physics can give an extra ggH contact interaction

$$\mathcal{L} \supset -\kappa_t \frac{m_t}{v} h\bar{t}t + \kappa_g \frac{\alpha_s}{12\pi} \frac{h}{v} G^a_{\mu\nu} G^{\mu\nu}_a$$

$$\kappa_t \times \frac{4m_t^2}{p_T^2} + \kappa_g$$

• Break top loop using an extra gluon \Rightarrow Higgs at high p_T

[AB Martin Sanz 1308.4771] [Azatov Paul 1309.5273]

[Grojean Salvioni Schlaffer Weiler 1308.4771]

HIGGS AT HIGH P_T

• Example: the Higgs (or jet) p_T spectrum shows significant deviations from the SM at high p_T in the presence of a top partner with $M_T \gg m_t$

[AB Martin Sanz 1308.4771]

CHARM YUKAWA COUPLING

Couplings to 2nd (and 1st) generation are very difficult to access

Still largely unconstrained

CHARM YUKAWA COUPLING

- Couplings to 2nd (and 1st) generation are very difficult to access
- Idea: probe these couplings through interference with top loops

[Bishara Haisch Monni Re 1606.09253]

• Both BSM searches and Yukawa coupling determination require perturbative control over the Higgs p_T spectrum with full mass dependence

- Both BSM searches and Yukawa coupling determination require perturbative control over the Higgs p_T spectrum with full mass dependence
- Recent calculation of Higgs+1jet@NLO with full mass dependence from numerical evaluation of two-loop integrals with sector decomposition code
 SECDEC [Jones Kerner Luisoni 1802.00349]
- Numerical integration over Feynman parameters with deformation of integration contour in the presence of threshold singularities

The K-factor for Higgs+1jet is large (about 2), of the same order as that for the Higgs total cross section ⇒ could things stabilise at NNLO?

 Such large K-factors plague ggH irrespective of whether full mass dependence is kept ⇒ theoretical understanding needed here

 Approximate methods (e.g. small mass expansion) give a comparable Kfactor ⇒ use such expansions for higher orders?

• Important contribution is logarithmically enhanced terms $\ln(p_T/m_t)$, but no clear indication that we should resum those at all orders, neither do we have a formalism to do it

PROBE OF BSM PHYSICS

• The simplest way to assess deviations from the SM is to consider the cross section $\sigma(p_T^{\text{cut}})$ for $p_T > p_T^{\text{cut}}$ and take the ratio

$$\delta(p_T^{\text{cut}}) = \frac{\sigma_{\text{BSM}}(p_T^{\text{cut}}) - \sigma_{\text{SM}}(p_T^{\text{cut}})}{\sigma_{\text{SM}}(p_T^{\text{cut}})}$$

• In the (κ_t, κ_g) framework

$$\mathcal{L} \supset -\kappa_t \frac{m_t}{v} h\bar{t}t + \kappa_g \frac{\alpha_s}{12\pi} \frac{h}{v} G^a_{\mu\nu} G^{\mu\nu}_a$$

$$\delta = \frac{\kappa_g}{\kappa_t} \delta_{\text{int}} + \left(\frac{\kappa_g}{\kappa_t}\right)^2 \delta_{\text{BSM}}$$

• The BSM contribution δ_{BSM} is known at NLO from SM HEFT and δ_{int} can be extracted from recent calculations

HIGGS AT HIGH PT AND SUSY

• For stops in the loops, since $\kappa_t = 1$, one gains with respect to the total Higgs cross section only for p_T larger than the mass of the lighter stop

[AB Bond Martin Sanz 1806.05598]

HIGGS AT HIGH PT AND SUSY

• For stops in the loops, since $\kappa_t = 1$, one gains with respect to the total Higgs cross section only for p_T larger than the mass of the lighter stop

- To compute δ_{BSM} and δ_{int} at NLO one needs the full dependence on the lighter stop mass at two-loops \Rightarrow possible with current techniques
- One expects similar K-factors as for other ggH cross sections \Rightarrow LO evaluation of $\delta(p_T^{\text{cut}})$ should be a good estimate \Rightarrow theory uncertainties?

JET VETOES

 In WW production, one puts a jet-veto to eliminate overwhelming top-antitop background

• The main object of study is the zero-jet cross section, obtained by imposing that all jets have $p_t < p_{t,veto}$

$$\sigma_{0-\text{jet}} \simeq \sigma_0 \left(1 - 2C_A \frac{\alpha_s(m_H)}{\pi} \ln^2 \frac{m_H}{p_{\text{t,veto}}} + \dots \right)$$

$$\downarrow$$

$$\sigma_{0-\text{jet}} \sim \sigma_0 e^{\underbrace{Lg_1(\alpha_s L)}_{\text{LL}}} \times \left(\underbrace{\begin{array}{c} 1 & + & \alpha_s & + \dots \\ G_2(\alpha_s L) & + & \alpha_s G_3(\alpha_s L) \\ NLL & NNLL \end{array}}_{\text{NNLL}} + \dots \right)$$

$$\sigma_{0-\text{jet}} \simeq \sigma_0 \left(1 - 2C_A \frac{\alpha_s(m_H)}{\pi} \ln^2 \frac{m_H}{p_{\text{t,veto}}} + \dots \right)$$

$$\downarrow$$

$$\sigma_{0-\text{jet}} \sim \sigma_0 e^{\frac{Lg_1(\alpha_s L)}{LL}} \times \left(\frac{1}{G_2(\alpha_s L)} + \frac{\alpha_s}{N\text{NLL}} + \frac{\alpha_s}{N\text{NLL}} + \dots \right)$$

$$\sigma_{0-\text{jet}} \simeq \sigma_0 \left(1 - 2C_A \frac{\alpha_s(m_H)}{\pi} \ln^2 \frac{m_H}{p_{\text{t,veto}}} + \dots \right)$$

$$\downarrow$$

$$\sigma_{0-\text{jet}} \sim \sigma_0 e^{\frac{Lg_1(\alpha_s L)}{LL}} \times \left(\frac{1}{G_2(\alpha_s L)} + \frac{\alpha_s + \dots}{G_3(\alpha_s L)} + \dots \right)$$

$$\sigma_{0-\text{jet}} \simeq \sigma_0 \left(1 - 2C_A \frac{\alpha_s(m_H)}{\pi} \ln^2 \frac{m_H}{p_{\text{t,veto}}} + \dots \right)$$

$$\downarrow$$

$$\sigma_{0-\text{jet}} \sim \sigma_0 e^{\frac{Lg_1(\alpha_s L)}{LL}} \times \left(\frac{1}{G_2(\alpha_s L)} + \frac{\alpha_s}{NLL} + \frac{\alpha_s + \dots}{NNLL} \right)$$

• Exclusive jet cross sections play an important role in Higgs physics, especially for $H \rightarrow WW$ N³LO+NNLL+LL_R v. NNLO+NNLL jet veto cross section

Resummations have reached a very high accuracy (NNLL+N³LO)

[AB Caola Dreyer Monni Salam Zanderighi Dulat 1511.02886]

 Reduction of uncertainty due to H+1jet@NNLO ⇒ increase accuracy to N³LL (conceptually feasible both in SCET and in QCD)?

WW AS BSM PROBE

• New physics (e.g. contact interactions) can modify the shape of distributions in WW production at high invariant mass \Rightarrow large logs $\ln(M_{WW}/p_{t,veto})$ in the tails of distributions [Bellm et al 1602.05141]

 Jet-veto resummations have to be exclusive in non-QCD particles so as to enable implementation of fiducial cuts

AUTOMATION OF RESUMMATIONS

 Automated implementation of SCET jet-veto resummation matched to NLO for colour singlets in the MADGRAPH framework available

[Becher Frederix Neubert 1412.8408]

 Alternative implementation of QCD using MCFM gives separate access to interference between BSM and SM [Arpino AB Kauer Jaeger 18xx.xxxx]

JET VETO AND BSM SEARCHES

 Jet-veto effects play an important role in WW production at high invariant mass, especially because BSM contributions arise in gg→WW, whereas SM is mainly qq→WW
 [Arpino AB Kauer Jaeger 18xx.xxxx]

- Gluons radiate twice as much as quarks, so imposing a jet veto reduces more the signal with respect to the background
- Note: as for Higgs at high-p_T, computing NLO corrections to gg →WW requires full control over quark-mass dependence in loops

RESUMMATIONS VS MC

- Can you forget about analytical resummations? In fact parton shower Monte-Carlo event generators are based the same physics
- First you need to understand the logarithmic accuracy of MC
- Recent progress in understanding the relationship between the two wrt
 - correct implementation of QCD matrix elements
 - coverage of multi-parton phase space (e.g. energy-momentum conservation)

[Hoeche Reichelt Siegert 1711.03497]

[Dasgupta Dreyer Hamilton Monni Salam 1805.09327]

BOOSTED OBJECTS

 Both HL-LHC and future colliders will produce boosted heavy objects, whose decay products fall in the same jet (e.g. boosted Higgs or tops)

[Butterworth Davison Rubin Salam 0802.2470]

 Key feature of boosted object taggers are groomers, procedures that clean jets from soft constituents irrelevant for mass reconstruction

INNOVATIVE GROOMER: SOFT DROP

- Groomed jet-mass distributions cumbersome to model in QCD due to the presence of the so-called non-global logs (NGLs)
- New groomers (mMDT, soft drop) do not have any NGLs ⇒ opens the way of solid analytical modelling of different taggers

[Dasgupta Fregoso Marzani Salam 1307.0007] [Larkoski Marzani Soyez Thaler 1402.0007]

$$\frac{\min(p_{Ti}, p_{Tj})}{p_{Ti} + p_{Tj}} > z_{\text{cut}} \left(\frac{\theta_{ij}}{R}\right)^{\beta}$$

 $\beta = 0$: mMDT

Qualitative features of jet mass distribution agrees between MC and resummations

fail

 θ_{ij}

pass

33

INNOVATIVE GROOMER: SOFT DROP

- Groomed jet-mass distributions cumbersome to model in QCD due to the presence of the so-called non-global logs (NGLs)
- New groomers (mMDT, soft drop) do not have any NGLs ⇒ opens the way of solid analytical modelling of different taggers

A NEW PRECISION ERA?

 Experimental uncertainty around 5% at the LHC ⇒ new era of precision measurements using boosted objects

• Competitive extraction (~10%) of the strong coupling α_s at hadron colliders

- Total cross sections at N³LO and many processes with massless particles in loops known at NNLO
- High-p_T Higgs sensitive to quark masses in loops ⇒ substantial progress needed in calculation of loop integrals with different mass scales
- Jet-veto resummation can play an important role in high-mass WW ⇒ beyond NNLL and implementation of fiducial cuts are realistic objectives
- New ideas for quantitative comparison of parton showers and resummation
- Impressive progress in analytical understanding of boosted object taggers opens the way to a new era of precision physics above EW scale

- Total cross sections at N³LO and many processes with massless particles in loops known at NNLO
- High-p_T Higgs sensitive to quark masses in loops ⇒ substantial progress needed in calculation of loop integrals with different mass scales
- Jet-veto resummation can play an important role in high-mass WW ⇒ beyond NNLL and implementation of fiducial cuts are realistic objectives
- New ideas for quantitative comparison of parton showers and resummation
- Impressive progress in analytical understanding of boosted object taggers opens the way to a new era of precision physics above EW scale

Thank you for your attention!