Flavour Anomalies & Rare Decays

LIPPS 112

Alessandro Cerri a.cerri@sussex.ac.uk

Introduction

- Preface
- Anomalies
 - What anomalies?
 - How large?
- Where from?
- What developments in the near future?
- What implications for the future?

Preface (caveat emptor?)

 Flavour has become a precision domain in the last 20-30 years

 Many fluctuations & neglected systematic effects have been inevitably seen

V_{ub} and V_{cb}

- Long-standing discrepancy btw inclusive and excl. determinations
- Disagreement is still there
- Promising new developments hint at forgotten systematics

V_{ub} and V_{cb}

- Long-standing discrepancy btw inclusive and excl. determinations
- Disagreement is still there
- Promising new developments hint at forgotten systematics

Grinstein, Kobach, arXiv:1703.08170 Bigi, Gambino, Schacht, arXiv:1703.0612

The Moral of the Story

- Precision gives more stringent tests
- More opportunities to look for new physics
- ...housekeeping is essential!
- High statistics (of results) → fluctuations are bound to happen
- Until confirmed we should not easily dismiss nor make incommensurate jumps

What are these Flavour Anomalies?

- Two broad categories:
 - "semi-rare" b decays
 - Two anomalies
 - ...plus some LFU troubles
 - Tree-level LFU tests
 - Somewhat of a LEP legacy

Semi-rare B decays

 $\xrightarrow{\ell^{-}}_{LQ} \stackrel{\ell^{-}}{\longleftarrow}_{s}$

- b→sµµ processes, loop-suppressed
- Potential contribution from new heavy particles → angles & BR

Semi-rare B decays

LQ

- b→sµµ processes, loop-suppressed
- Potential contribution from new heavy particles → angles & BR

Semi-rare B decays

- b→sµµ processes, loop-suppressed
- Potential contribution from new heavy particles → angles & BR

LFU Trouble

- R_K/R_{K*}:
 - SM: 1 at the ^½ level
 - QED O(10⁻²) [EPJC 76 (2016) 8440]
 - Form factors mostly cancel

Tree Level Troubles

•enter $R_D R_{D^*}$:

BaBar, PRL109,101802(2012)

Belle, PRD92,072014(2015)

Belle, PRD94,072007(2016)

Belle, PRL118,211801(2017)

LHCb, FPCP2017

0.3

0.4

Average

LHCb, PRL115,111803(2015)

HFLAV

0.6 R(D)

- All exp. Results above SM expectation
- Combined tension ~4.1σ
- Theory inputs reduce tension [JHEP 11 (2017) 061]

R(D*)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.2

0.5

D*+

Tree Level Troubles

•enter $R_D R_{D^*}$:

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)} = 0.71 \pm 0.17 \,(\text{stat}) \pm 0.18 \,(\text{syst})$$

- All exp. Results above SM expectation
- Combined tension
 ~4.1σ
- Theory inputs reduce tension [JHEP 11 (2017) 061]
- Bc decays show tension too (2σ-ish)

... other legacies:

• $B \rightarrow \tau v$ (Belle 2006, BaBar 2008, 2010, 2013) $BR(B \rightarrow \tau v) = \left(1.7^{+0.56+0.46}_{-0.49-0.51}\right) \cdot 10^{-4}$

Later Belle measurement relaxed the tension, except with BaBar

...however g anomaly cannot be accommodated with EFT [Filippuzzi et al. 1203.2092]

... other legacies:

• $B \rightarrow \tau v$ (Belle 2006, BaBar 2008, 2010, 2013) $BR(B \rightarrow \tau v) = \left(1.7^{+0.56+0.46}_{-0.49-0.51}\right) \cdot 10^{-4}$

Later Belle measurement relaxed the tension, except with BaBar

...however g anomaly cannot be accommodated with EFT [Filippuzzi et al. 1203.2092]

Flavour Anomalies: Summary

- Neutral Current
- b→sµµ
 - <4σ Angular observables in
 K*μμ
 - 3.5σ BR

debate...

- 2.6 σ LFU violation in R_{κ}
- (2.3⊕2.6)σ LFU violation in R_{κ*}

 $b \rightarrow s \ell^+ \ell^-$ [Albrecht+'17]

-2.0 -1.5 -1.0 -0.5 0.0 0.5 *C*₉^{NP μμ}

Several discrepancies, some

CNP HP

-1.5

- Charged Current
- b→cτv

Long standing tension

M. Nardecchia – HL/HE-LHC workshop

EFT and GPD

Off-shell (now-ish) → On-shell (future)

- Non-exhaustive picture, but hopefully conveying the importance of these anomalies – if confirmed – for GPD searches
- Didn't distinguish EFT and concrete motivated models addressing SM 'issues':
 - Naturalness
 - Origin of flavour
 - Renormalizability
 - (...maybe we shouldn't even start by trying to catch too many experimental birds with the same stone)

Good model/probe for both anomalies

Based on CMS 1703.03995, 1803.02864,

1704.09015,180511402

1706.07808

EFT and GPD Off-shell (now-ish) **→**On-shell (future)

20

What are the next steps?

- Are these anomalies real?
 - Run 2 data and Belle 2 hold the verdict!
 - Everyone and their sibling in the flavour community are waiting for R_D , R_{D^*} , R_K , R_{K^*} from LHCb & Belle 2
 - Additional input from related observables in B_c , bbaryons, $\tau \rightarrow \mu\mu\mu$ and co.
 - Are there any hints in GPD of EFT mediators?
- If they are real and they stay where they are, new physics might be within reach!
- ...however there's no guaranteed 'threshold'

Near Future

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II
EW Penguins				
$R_K \ (1 < q^2 < 6 { m GeV}^2 c^4)$	0.1 [255]	0.022	0.036	0.006
$R_{K^{st}} (1 < q^2 < 6 { m GeV}^2 c^4)$	0.1 [254]	0.029	0.032	0.008
R_{ϕ},R_{pK},R_{π}	_	0.07, 0.04, 0.11	_	0.02, 0.01, 0.03
CKM tests				
γ , with $B_s^0 \rightarrow D_s^+ K^-$	$(^{+17}_{-22})^{\circ}$ [123]	4°	-	1°
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [152]	1.5°	1.5°	0.35°
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.04 [569]	0.011	0.005	0.003
ϕ_s , with $B_s^0 o J/\psi \phi$	49 mrad [32]	14 mrad	-	4 mrad
ϕ_s , with $B_s^0 o D_s^+ D_s^-$	170 mrad [37]	35 mrad	-	9 mrad
$\phi^{sar{s}s}_{s}$, with $B^{0}_{s} ightarrow \phi\phi$	150 mrad [571]	60 mrad	-	17 mrad
a_{sl}^s	$33 imes 10^{-4}$ [193]	$10 imes 10^{-4}$	-	$3 imes 10^{-4}$
$ V_{ub} / V_{cb} $	$6\% \ [186]$	3%	1%	1%
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [244]	34%	-	10%
$ au_{B^0_s o \mu^+ \mu^-}$	22% [244]	8%	-	2%
$S_{\mu\mu}$	_	-	-	0.2
$b \rightarrow c l^- \bar{\nu}_l {f LUV} {f studies}$				
$\overline{R(D^*)}$	9% [199,202]	3%	2%	1%
$R(J/\psi)$	25% [202]	8%	_	2%

Great potential from LHCb, but definitely not the only player in probing these NP effects!

3 Jul 2018

A. Cerri - Durham

Other things to keep an eye on:

• τ→3μ

- SM (through v osc.): ~10⁻¹⁴
- BSM: up to 10⁻⁸

Expt.	Limit [10 ⁻⁸]		Ref.		
	Now	HL	Now	HL	
Belle/Belle 2	2.1	0.04	PLB687(2010)139	PoS FPCP2015 (2015) 049	
BaBar	3.3	-	PRD81(2010)11101	-	
LHCb Hadronic	4.6	0.6	JHEP02(2015)121	Extr. From Run 1 @ 3fb ⁻¹	
ATLAS W→τv Run 1	38	0.9	EPJC76(2016)5,232	Naïve Extr. From Run 1	
CMS Run 2	Soon	0.4	-	Simulated $D_s \rightarrow \tau v$	

τ→π/Κ v

- Possible direct searches!
- _______ ~~́
 - $\tau \mu$: <1.2/1.3 10⁻⁵ [Delphi'97, ATLAS 1804.09568]
 - τe: <10⁻⁵, <5.8×10⁻⁵ 2.3σ excess
 [Opal'95], [ATLAS 1804.09568]

Eur. Phys. J. C76 (2016) 5, 232

Other things to keep an eye on:

- Rare B decays (µµ, ee, µe)
 - Probe axial component→complement vector term of b→sµµ
 - Probe directly LFU through e.g. eµ
 - With lifetime: Probe NP structure
 - Clean observables accessible also to GPE

- Both LHCb and GPE contribute
 - BR
 - BR ratio: Bs/Bd has clean predictions
 - Lifetime: no reason GPE shouldn't perform well

Now

- Both LHCb and GPE contribute
 - BR
 - BR ratio: Bs/Bd has clean predictions
 - Lifetime: no reason GPE shouldn't perform well

Now

- Both LHCb and GPE contribute
 - BR
 - BR ratio: Bs/Bd has clean predictions
 - Lifetime: no reason GPE shouldn't perform well

- Both LHCb and GPE contribute
 - BR
 - BR ratio: Bs/Bd has clean predictions
 - Lifetime: no reason GPE shouldn't perform well

Summary

- Heavy Flavour studies are the prime probe of the flavour structure of NP at colliders
- Significant combined anomalies
 - "Long standing fluctuations"?
 - Systematic effects?
 - New physics?
 - The jury is still out, but due back in soon
- If confirmed
 - NP could be near
 - GPE can contribute to the on-going investigation
 - GPE in an excellent position to probe new physics scenarios
 - Strong implications for future colliders
- Else… next talk!