Flavour theory

Sebastian Jäger (University of Sussex)

Workshop 'Pushing the boundaries of the energy and intensity frontiers – the HL-LHC and beyond'

Durham, 19 April 2018

02/07/2018

Outline

1) Intensity frontier and new physics

2) Anomalies and effective contact interactions

3) UV models and future prospects

History: Beyond QED

Fermi's original description of beta decay (1934) (in modernised notation):

$$H_W \sim G_F \left(\bar{p} \gamma^\mu n \right) \left(\bar{e} \gamma_\mu \nu \right)$$

In modern language: nonrenormalizable, dim-6 operator.

The current-current structure (resembling a QED $2\rightarrow 2$ scattering amplitude) is suggestive of a massive vector-boson mediator

The precision frontier

After several further discoveries and insights, including

Lee, Yang 1956 parity violation Wu et al, Goldhaber et al 1957 Feynman, Gell-Mann 1957 V-A structure of weak interactions Shudarshan, Marshak 1957 universality of weak decays Gell-Mann, Levy 1960 **CP** violation Christenson et al 1964 electroweak symmetry breaking BEHGHK, Glashow, Salam, Weinberg charm to explain $K_{I} \rightarrow \mu \mu$ suppression Glashow, Iliopoulos, Maiani 1970 third generation to explain CPV Kobayashi, Maskawa 1972 the SM was complete.

Neutral currents, charm, W,Z,H, 3rd generation later discovered.

02/07/2018

spin 0

Higgs - sets mass scale of entire Standard Model

Renormalizable: may have cut-off >> M_W

But: naturalness? Dark matter? Point to TeV scale BSM

02/07/2018

Effective contact interactions

Heavy physics with mass scale M described by local effective Lagrangian at energies below M (many incarnations)

Effective Lagrangian dimension-5,6 terms describes **all** BSM physics to O(E²/M²) accuracy. **Systematic & simple**. E.g.

Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Buchmuller, Wyler 1986 Grzadkowski, Misiak, Iskrzynski, Rosiek 2010
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	operators (vertices) are catalogued for
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	arbitrary (heavy) new physics
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Only trace of PSM physics is in their
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	(Wilson) coefficients

Much slower decoupling with M than in high-pT physics.

Possibility to probe well beyond energy frontier.

Where to look

Observables with suppressed and/or controlled SM contribution - flavour-changing neutral currents, eg $b \rightarrow s \mu^+ \mu^-$ and $b \rightarrow s \gamma$ $\begin{array}{cccc} B { \longrightarrow } K^{(*)} \hspace{0.1cm} \mu^{+} \mu^{-}, \hspace{0.1cm} B { \longrightarrow } K^{(*)} e^{+} e^{-}, \hspace{0.1cm} B_{s} { \longrightarrow } \varphi \mu^{+} \mu^{-} \\ B { \longrightarrow } K^{(*)} \hspace{0.1cm} \nu \end{array}$ Babar, Belle LHCb. ATLAS. CMS Belle₂ $B \rightarrow X_s \mu^+\mu^-, B \rightarrow X_s \gamma$ Babar, Belle, Belle2 s→dvv $K^+ \rightarrow \pi^+ \vee \nu$ NA62 (CERN) - lepton-flavour ratios, eg $BR(B \rightarrow K^{(*)} \mu^+ \mu^-)/BR(B \rightarrow K^{(*)}e^+e^-) - 1$ Babar, Belle, LHCb Belle₂ $BR(B \rightarrow D^{(*)} TV)/BR(B \rightarrow D^{(*)}IV) - (SM)$ - CP violation, eg

$$\begin{array}{ll} \mathsf{K}_{\mathsf{L}} & \to \pi \, \pi & (\epsilon_{\mathsf{K}}, \, \epsilon'_{\mathsf{K}}) \\ \mathsf{K}_{\mathsf{L}} & \to \pi^0 \, v \, v \end{array}$$

..., NA48, KTeV

KOTO

Summary: flavour anomalies

observable	Anomaly	Significance (sigma)
BR(B ->{K,K*,phi} mu mu) at low dilepton mass q2	Lowish w.r.t expectation	1-2 ?
B->K*mu mu angular distribution (low q2)	P5' off for some q2	2-3 ?
RD(*) = BR(B->D(*)tau nu)/BR(B->D(*)l nu)	Enhanced w.r.t. SM	4.1
Lepton-universality ratios (RK, RK*)	Below SM	3.7 (3 observables combined)
ε'/ε (direct CPV in KL->ππ)	Below SM	2.9

LHCb: rapidly increasing dataset

 $\mathsf{R}_{\mathsf{K}(*)},\,\mathsf{R}_{\mathsf{D}(*)}\,$: theoretical errors neglibible. Large statistical significance. Systematic effects or BSM signal?

Anomaly I: semileptonic decays

For some time B-factories and LHCb have consistently shown semileptonic B ->D (D*) TV decay rates larger than expected (relative to the rate for light leptons).

A large effect; theory error negligible

What operators?

Several possible contact interactions $(\bar{c}\Gamma b)(\bar{\nu}_{\tau}\Gamma'\tau)$

with different spin (Dirac) structure.

Several further clues:

- measured shape of differential decay distribution

Eg Ligeti et al 2015,16

- avoiding excessive contributions to $\rm B_{c}$ decay $_{\rm Grinstein \ et \ al \ 2016, \ldots}$
- interference with SM amplitude to enhance effect

favour a purely left-handed coupling $(\bar{c}_L \gamma^\mu b_L) (\bar{\nu}_\tau \gamma_\mu \tau_L)$ with coefficient ~ 10% of SM value

Rare semileptonic B-decay

many results from Babar, Belle, LHCb, ATLAS, CMS Sensitive to several contact interactions: C9: dilepton from vector current $(\bar{s}\gamma_{\mu}P_{L}b)(\bar{l}\gamma^{\mu}l)$ C10: dilepton from axial current $(\bar{s}\gamma_{\mu}P_{L}b)(\bar{l}\gamma^{\mu}\gamma^{5}l)$ C7: dilepton from dipole $(\bar{s}\sigma^{\mu\nu}P_{R}b)F_{\mu\nu}$

Alternative basis with chiral leptons $C_L = (C_9 - C_{10})/2, \quad C_R = (C_9 + C_{10})/2$

Impact of 4-quark operators

Also **purely hadronic** operators are important, primarily:

SM contribution is accidentally almost purely left-chiral

02/07/2018

Rare B-decay: observables

Branching ratios (differential in dilepton mass):

 $B \rightarrow K^{(*)}\mu\mu$, $B \rightarrow K^{(*)}ee$, $B_s \rightarrow \phi\mu\mu$

Lepton universality ratios

$$R_{K^{(*)}}[a,b] = \frac{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} \mu^{+} \mu^{-}) dq^{2}}{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} e^{+} e^{-}) dq^{2}}$$

differential angular distribution for B->VII : 3 angles, dilepton mass q²

7 angular differential observables: (A_{FB}, P₅', etc) ψ $K^$ $l^ \theta_l$ B^0 θ_{K^*} l^+ π^+

02/07/2018

Anomaly II: Lepton-flavour ratios at LHCb

$$R_{K^{(*)}}[a,b] = \frac{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} \mu^{+} \mu^{-}) dq^{2}}{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} e^{+} e^{-}) dq^{2}}$$

Geng, Grinstein, SJ, Martin Camalich, Ren, Shi arxiv:1704.05446

Theory uncertainties negligible relative to experiment.

 $p(SM) = 2.1 \times 10^{-4} (3.7\sigma)$

Suggests nonzero, muon-specific C₁₀^{BSM} - not pure C₉

02/07/2018

Fit to new physics: LUV only

Assume here that the BSM effect is in the muonic mode

Geng, Grinstein, SJ, Martin Camalich, Ren, Shi arxiv:1704.05446 Also Capdevila et al, Ciuchini et al, Altmannshofer et al, D'Amico et al, Hiller & Nisandzic

Obs.	Expt.	SM	$\delta C_L^\mu = -0.5$	$\delta C_9^{\mu} = -1$	$\delta C_{10}^{\mu} = 1$	$\delta C_9^{\prime \mu} = -1$
$R_K [1, 6] \mathrm{GeV}^2$	0.745 ± 0.090	$1.0004^{+0.0008}_{-0.0007}$	$0.773_{-0.003}^{+0.003}$	$0.797\substack{+0.002 \\ -0.002}$	$0.778^{+0.007}_{-0.007}$	$0.796^{+0.002}_{-0.002}$
R_{K^*} [0.045, 1.1] GeV ²	0.66 ± 0.12	$0.920^{+0.007}_{-0.006}$	$0.88\substack{+0.01\\-0.02}$	$0.91^{+0.01}_{-0.02}$	$0.862^{+0.016}_{-0.011}$	$0.98^{+0.03}_{-0.03}$
R_{K^*} [1.1, 6] GeV ²	0.685 ± 0.120	$0.996\substack{+0.002\\-0.002}$	$0.78\substack{+0.02\\-0.01}$	$0.87^{+0.04}_{-0.03}$	$0.73_{-0.04}^{+0.03}$	$1.20^{+0.02}_{-0.03}$
R_{K^*} [15, 19] GeV ²	-	$0.998\substack{+0.001\\-0.001}$	$0.776_{-0.002}^{+0.002}$	$0.793^{+0.001}_{-0.001}$	$0.787^{+0.004}_{-0.004}$	$1.204_{-0.008}^{+0.007}$

Theory uncertainties negligible.

 1σ and 3σ confidence regions

 $C_{10}^{BSM} > 0$ favoured

 $p(C_9 \& C_{10}) = 0.158$

SM point excluded at 3.78 σ

Considerable degeneracy (flat direction in χ^2)

$R_{\kappa}^{(*)}$ and C_{μ}

Assume here that the BSM effect is in the muonic mode, and no right-handed currents.

Because in the SM, $|C_R|$, $|C_7| << |C_L|$, BR \approx const $|C_L^{SM} + C_L^{BSM}|^2 + ... \approx$ const $|4 + C_L^{BSM}|^2$ +positive

 $BR(B \rightarrow K(*)\mu\mu) =$ SM value

Only C₁^{BSM} can interfere destructively: $R_{\kappa}^{(*)}$ point to purely left-handed coupling

 $(\bar{s}_L \gamma^\mu b_L) (\bar{\mu}_L \gamma_\mu \mu_L)$

with ~ -(10-15)% of SM value

Adding $B_s \rightarrow \mu \mu$

Geng, Grinstein, SJ, Martin Camalich, Ren, Shi arxiv:1704.05446

Selective probe of C_{10} (and C_{10} ')

Theory error negligible relative to exp (will hold till the end of HL-LHC !)

Considerably narrows the allowed fit region p= 0.191

SM point excl. at 3.76 σ

Fit prefers nonzero BSM effect $C_L = (C_9 - C_{10})/2$

 $C_R = (C_9 + C_{10})/2$ not well constrained and consistent with zero

1-parameter C_L fit: best fit -0.61. 1 σ [-0.78, -0.46], p = 0.339 SM point (origin) excluded at 4.16 sigma D2/07/2018 Sebastian Jaeger - Pushing frontiers, Durham 02/07/2018

Adding $B \rightarrow K^* \mu \mu$, ee angular data

Geng, Grinstein, SJ, Martin Camalich, Ren, Shi arxiv:1704.05446

Serves to determine best-fit region even better.

SM pull 4.17 σ

(but p(SM) now up to to 0.086)

Wilson coefficient value $C_L=0$ again excluded at high confidence.

Questions

- 1) How to corroborate the anomalies ?
- 2) Scale of new physics ?
- 3) Dynamical models (UV completion of the EFT)?
- 4) Prospects for LHC discoveries ?

Rare decays: amplitude anatomy

 C_{o} enters multiplied by a form factor, and with additive corrections:

 C_i degenerate with form factor uncertainties and virtual charm SJ, Martin Camalich 2012, 2014 Cancel out in lepton-flavour ratios $R_{K(*)}$, $R_{D(*)}$ (to <~ 1%): no issue Relevant for rates and angular observables (P_5 ')

controlled computation (so far) only for B->K form factors recent conceptual advances in lattice QCD (B -> V form factors) heavy-quark relations and and light-cone sum rules

02/07/2018

Fits of hadronic parameters to data?

Bobeth, Chrzaszcz, Van Dyk, Virto 2017

Basic idea: reduce theory dependence of long-distance virtual charm by using data & analyticity

- use/assume analyticity of the virtual-charm dilepton mass
- Use theory input only at q2 <~ 0
- Data to fix/constrain the residues at the pole
- Conformal mapping to increase separation of the input data from the cut; polynomial fit

k	0	1	2
$\operatorname{Re}[\alpha_k^{(\perp)}]$	-0.06 ± 0.21	-6.77 ± 0.27	18.96 ± 0.59
$\mathrm{Re}[\alpha_k^{(\parallel)}]$	-0.35 ± 0.62	-3.13 ± 0.41	12.20 ± 1.34
$\operatorname{Re}[\alpha_k^{(0)}]$	0.05 ± 1.52	17.26 ± 1.64	_
$\mathrm{Im}[\alpha_k^{(\perp)}]$	-0.21 ± 2.25	1.17 ± 3.58	-0.08 ± 2.24
$\operatorname{Im}[\alpha_k^{(\parallel)}]$	-0.04 ± 3.67	-2.14 ± 2.46	6.03 ± 2.50
$\operatorname{Im}[\alpha_k^{(0)}]$	-0.05 ± 4.99	4.29 ± 3.14	-

Results disfavour attributing effects to virtual-charm

No new information on form factors (but see LHCb's fit to $B \rightarrow K \mu \mu$)

02/07/2018

Sebastian Jaeger - Pushing frontiers, Durham 02/07/2018

-1.0

Belle 2

Belle 2: an experiment with very different systematics Statistics disadvantage relative to LHC, but better idenfication of electrons in final states

Scale of new physics & no-lose theorem

Di Luzio, Nardecchia 2017

Recall that B-decay anomalies point to (at least) the interactions

$$\frac{1}{\Lambda^2} \left(\bar{c}_L \gamma^\mu b_L \right) \left(\bar{\nu}_\tau \gamma_\mu \tau_L \right) \qquad \qquad \frac{1}{\Lambda^2} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\mu}_L \gamma_\mu \mu_L \right)$$

numerically $\Lambda \sim 3$ TeV and $\Lambda \sim 30$ TeV.

Recall in the case of the Fermi theory, $G_F \sim g^2/M_W^2$

Redoing the calculation here, $M_{NP} = g_{NP} \Lambda \le 4\pi \Lambda$. For the rare decay anomalies, at most 300-400 TeV.

Partial-wave unitarity: maximal NP scale below 100 TeV.

If the NP is less than maximally flavour-violating, or the NP is weakly coupled, the scale will be 1-2 orders of magnitudes lower.

While the bounds are (so far) high, the fact that there are any at all should be encouraging, further refinements may be possible.

Tree-level mediators: leptoquarks

Scalar or vector leptoquarks can generate interactions

(more possibilities at loop level Eg Bauer, Neubert; Becirevic et al)

02/07/2018

Possible mediators: W', Z'

- appear as resonances in composite models (KK excitations in RS)

- Z' exchange contributes to Bs mixing at tree-level (unlike leptoquarks)

...

Isidori et al, Quiros et al, Ligeti et al, Becirevic et al, Crivellin et al,

A Z' model for $R_{K(*)}$

Accommodating *all* b->s I I anomalies *requires* a muon-specific C_L – type interaction

$$\frac{1}{\Lambda^2} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\mu}_L \gamma_\mu \mu_L \right)$$

with $\Lambda \sim 30 \text{ TeV}$

However, C_R is weakly constrained and can also be present.

Anomaly-free Z' model with gauged L_{μ} - L_{τ} , nonminimal (dim-6) coupling to quarks, can eg come from heavy vectorlike quarks:

The small coupling to quarks suppresses contributions to Bs mixing

Also Crivellin et al, ...

SU(2) structure & global picture

Two SU(2) invariants (O_T / O_S) for each operator once doublet structure of fermions considered

Both operators contribute to further processes that are experimentally constraints, in particular:

$$B \rightarrow K^* vv$$

In a given model there may be further correlations (eg to mixing)

02/07/2018

Global fit & single mediators

Two SU(2) invariants (O_T / O_S) for each operator once doublet structure of fermions considered

Multi-mediator and (for $R_{K(*)}$) loop-level scenarios possible!

Composite leptoquark?

Basic idea of composite Higgs models:

Higgs = bound state of a new strong sector (with TeV-ish confinement/conformal symmetry breaking scale)
 at least SU(3)_C x SU(2)_L x SU(2)_R x U(1)_X symmetry [partly gauged]

2) SM fermions are mixtures of elementary and composite particles can generate flavour hierarchies leading BSM effects:

Composite leptoquark?

The SM representation (3, 1, 2/3) appears in the restriction of the Pati-Salam (SU(4) x SU(2) x SU(2)) adjoint to the SM gauge group.

Increasing SU(3)xSU(2)xSU(2)xU(1) to SU(4)xSU(2)xSU(2)xU(1), get spin-1 vector leptoquark states with precisely these quantum numbers.

Some recent models:

3-site SU(4) x SU(2) x SU(2) gauge model

Bordone, Cornella, Fuentes-Martin, Isidori arXiv:1712.01368, arXiv:1805.09328

[SU(4) x SO(5) x U(1)] / [SU(4) x SO(4) x U(1)] Nambu-Goldstone Higgs

1.

model Barbieri, Tesi arXiv:1712.06844

SU(4) x SU(2) x SU(2) Randall-Sundrum (warped ED) model (elementary Higgs, but partially composite matter)

Blanke, Crivellin arXiv:1801.07256

02/07/2018

Prospects for LHC direct searches

(see also talk by A Cerri)

Mediator of $R_{D(*)}$ may be in LHC reach. The partially composite models predict TeV-scale leptoquark, colour octet, and Z' particles, predominantly coupled to 3rd generation particles

Some relevant search modes:

tau pair production (t-channel VLQ, s-channel Z') leptoquark pair production

dijet (colour-octet-mediated)

Also composite fermions & scalars: more model-dependent

For tree-level $R_{K(*)}$ origin, mediator typically out of LHC reach (naïve scale ~ 30 TeV), though model-dependent

Future collider direct searches

Recall partial-wave unitarity bounds (conservative) of ~100 from RK(*) / 10 TeV from RD(*)

- Consider simplified Z' and LQ models of RK(*)

Allanach, Gripaios, You arXiv:1710.06363

FCC-hh 100 TeV 1 ab⁻¹ covers all of viable Z' parameter space, 33 TeV LHC "most",

Leptoquark coverage slightly less perfect

02/07/2018

Other flavour frontiers

K->pi nu nu

epsilon'

Delta M_K as a precision constraint

Conclusions

Precision frontier has a good track record and the potential to probe beyond the energy frontier

Several theoretically robust anomalies, and further ones which give a consistent picture. Different systematics at upcoming Belle2 experiment. LHC experiments will retain statistics edge

Recent increase in model-building; specifically composite leptoquark and Z' models

If anomalies confirmed, imply upper bounds on NP scale

02/07/2018

BACKUP

Rare decays: amplitude anatomy

C₉ enters multiplied by a form factor, and with additive corrections:

shifts of C_i degenerate with form factor uncertainties and virtualcharm effects. Cancels out only in lepton-flavour ratios (to < ~ 1%)

Form factor *ratios* relevant to angular observables; constrained by heavy-quark limit; power corrections? SJ, Martin Camalich 2012, 2014

No controlled computation of most form factor in most of parameter space; typically light-cone sum rules. Ball&Braun; Ball& Zwicky; Bharucha et al 2015 Sebastian Jaeger - Pushing frontiers, Durham 02/07/2018 36

Anomaly III: several low branching ratios

Schematically for $B \rightarrow K \mu \mu$ (neglecting small imaginary parts)

$$H_{V} = C_{7}T + C_{9}V + h \qquad H_{A} = C_{10}V$$

$$BR \propto (|H_{V}|^{2} + |H_{A}|^{2}) = \frac{1}{2}(C_{7}T + h_{0} + 2C_{R}V)^{2} + \frac{1}{2}(C_{7}T + h_{0} + 2C_{L}V)^{2}$$
Global fit to b->s I I data
$$C_{7}, h_{0}, \text{ and } C_{R} \text{ are small in the SM}$$
BR essentially is determined by the product
$$C_{L} \cdot V \text{ of a Wilson coefficient and a form factor (V cancelled out for R_{K})}$$
suggests 10-15% reduction of C_L
But perfectly degenerate with form factor V !
However, consistent global picture.

Anomaly IV: The (in)famous P5'

Simone Bifani, seminar at CERN (overlaid predictions from SJ&Martin Camalich 2014)

Modest discrepancy around 4-6 GeV, suggesting reduced C₉

SM theory is subtle – form factors, long-distance virtual-charm somewhat uncertain

02/07/2018

Angular observables

Numerous independent observables. Each a distribution in dilepton mass.

$$I_{2}^{c} = -F \frac{\beta^{2}}{2} \left(|H_{V}^{0}|^{2} + |H_{A}^{0}|^{2} \right), \qquad \text{"longitudinal" rate} \\ (\text{sim. to scalar BR}) \\ I_{2}^{s} = F \frac{\beta^{2}}{8} \left(|H_{V}^{+}|^{2} + |H_{V}^{-}|^{2} \right) + (V \to A) \qquad \text{"transverse" rate} \qquad \text{Usually reported} \\ \text{as BR and FL} \\ I_{6}^{s} = F\beta \operatorname{Re} \left[H_{V}^{-} (H_{A}^{-})^{*} - H_{V}^{+} (H_{A}^{+})^{*} \right] \qquad \text{Lepton forward-backward} \qquad \text{Usually reported} \\ \text{as AFB or P2} \\ I_{4} = F \frac{\beta^{2}}{4} \operatorname{Re} \left[(H_{V}^{-} + H_{V}^{+}) (H_{V}^{0})^{*} \right] + (V \to A). \\ I_{5} = F \left\{ \frac{\beta}{2} \operatorname{Re} \left[(H_{V}^{-} - H_{V}^{+}) (H_{A}^{0})^{*} \right] + (V \leftrightarrow A) \\ I_{3} = -\frac{F}{2} \operatorname{Re} \left[H_{V}^{+} (H_{V}^{-})^{*} \right] + (V \to A) \\ I_{9} = F \frac{\beta^{2}}{2} \operatorname{Im} \left[H_{V}^{+} (H_{V}^{-})^{*} \right] + (V \to A) \\ \text{Usually reported} \\ \text{as AFB or P2} \\ \text{Usually reported} \\ \text{as AFB or P2} \\ \text{Often discuss P4'} \\ \text{and P5' instead} \\ \text{Probe right-handed currents}} \\ \text{Note of the location of$$

02/07/2018

Must C₉ violate lepton flavour?

Geng, Grinstein, SJ, Martin Camalich, Ren, Shi arxiv:1704.05446

Modified C_{10} needed to suppress R_{K}^{*} (both bins)

Modest preference for modified C_9 (over C_{10}) is due to angular observables in $B \rightarrow K^* \mu\mu$

A model with (for example) nonzero C_L^{μ} and in addition an ordinary, **lepton-flavouruniversal**, C_9 , could describe the data similarly well or better

Eg. 'charming BSM' scenario

SJ, Kirk, Lenz, Leslie arXiv:1701.09183

Anomaly V: direct CP violation in Kaons

Precisely known experimentally for a decade

$$\begin{split} & (\varepsilon'/\varepsilon)_{\exp} = (16.6 \pm 2.3) \times 10^{-4} & \text{average of NA48} \\ & (\text{CERN})_{\text{and KTeV}} \\ & \left| \frac{\eta_{00}}{\eta_{+-}} \right|^2 \simeq 1 - 6 \operatorname{Re}(\frac{\varepsilon'}{\varepsilon}) & \text{defines } \operatorname{Re}(\varepsilon'/\varepsilon) \text{ experimentally} \\ & \text{left-hand side is measured} \\ & \eta_{00} = \frac{A(K_{\mathrm{L}} \to \pi^0 \pi^0)}{A(K_{\mathrm{S}} \to \pi^0 \pi^0)}, & \eta_{+-} = \frac{A(K_{\mathrm{L}} \to \pi^+ \pi^-)}{A(K_{\mathrm{S}} \to \pi^+ \pi^-)} \end{split}$$

(magnitudes directly measurable from decay rates)

Major progress in lattice QCD computations of nonperturbative matrix elements allows controlled errors for the first time

Good near-term prospects

02/07/2018

State of phenomenology (NLO)

$$(\varepsilon'/\varepsilon)_{\rm SM} = (1.9 \pm 4.5) \times 10^{-4}$$

 $(\varepsilon'/\varepsilon)_{exp} = (16.6 \pm 2.3) \times 10^{-4}$ 2.9 σ discrepancy

Buras, Gorbahn, SJ, Jamin arXiv:1507.06345

(see also Kitahara, Nierste, Tremper 1607.06727) (see also Kitahara, Nierste, Tremper 1607.06727)

	quantity	error on ε'/ε	quantity	error on ε'/ε
	$B_6^{(1/2)}$	4.1	$m_d(m_c)$	0.2
parameterise hadronic	NNLO	1.6	q	0.2
matrix elements	$\hat{\Omega}_{\mathrm{eff}}$	0.7	$B_8^{(1/2)}$	0.1
values from RBC-UKQCD	p_3	0.6	$\mathrm{Im}\lambda_t$	0.1
2015	$B_8^{(3/2)}$	0.5	p72	0.1
	p_5	0.4	p_{70}	0.1
	$m_s(m_c)$	0.3	$\alpha_s(M_Z)$	0.1
	$m_t(m_t)$	0.3		
				1

all in units of 10^{-4}

(still) completely dominated by $\langle Q_6
angle_0 \propto B_6^{1/2}$

next are NNLO and isospin breaking

NNLO computation (partial)

Cerda-Sevilla, Gorbahn, SJ, Kokulu, wip

NNLO QCD-penguin corrections tiny; excellent behaviour of perturbation theory; cuts residual perturbative error in half – this is not the reason for the apparent tension!

Natural scalar leptoquark explanations?

The representations under the SM gauge group that work seem 'unusual' – not present in MSSM, not easy in composite models

To explain only the theoretically robust lepton-universality ratios in rare decays, one can also *enhance the electron decay rate*. This does not require interference with the SM, so various chiralities work.

- Eg hyperfolded SUSY with SU(2) singlet "stop" of charge 4/3 can generate $b_R \rightarrow s_R e_R^+ e_R^-$ Interesting interplay with collider searches.

Must C9 show LUV ?

Geng, Grinstein, SJ, Martin Camalich, Ren, Shi arxiv:1704.05446

Modified C₁₀ needed to suppress RK* (both bins)

Modest preference for modified C_9 (over C_{10}) is due to angular observables in B->K* mu mu

This means a model with (for example) nonzero C_L^{μ} and in addition an ordinary, **lepton-flavour-universal**, C_9 , can describe the data similarly well or better

Eg. 'charming BSM' scenario

SJ, Kirk, Lenz, Leslie arXiv:1701.09183

B has spin zero => $\lambda = \lambda'$

Observing Φ requires interferences $A(\lambda \mu \rho) A(\lambda 2)^{3} \mu \Phi (\lambda 1 - \lambda 2) \Phi$

 $C_7^{\text{eff}}(4.6\text{GeV}) = 0.02 C_1(M_W) - 0.19 C_2(M_W)$ $C_9(4.6\text{GeV}) = 8.48 C_1(M_W) + 1.96 C_2(M_W)$

(In SM, O(50%) of total in both cases)

note that h and y are q2-dependent

At one loop, radiative decay constrains C5..C10, but not C1..C4. Focus on the latter. Then consider lifetime (mixing) observables

02/07/2018

High NP scale – global analysis

SJ, Kirk, Lenz, Leslie arxiv:1701.09183

Blue – $B \rightarrow X_s \gamma$, green – lifetime ration, brown –lifetime difference

02/07/2018

Sebastian Jaeger - Pushing frontiers, Durham 02/07/2018