Parton Showers

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

HL-LHC & Beyond, IPPP, 4.4.2018

- motivating parton showers
- current parton showers (LO)
- parton shower accuracy
- improving parton showers
- persistent problems
- harsh realities and wild dreams

Motivation			

motivating parton showers

- ▲日を ▲聞を ▲居を - 居 - めのの

F. Krauss Parton Showers

Motivation			

motivation: why care?

- QCD radiation omnipresent at the LHC
- enters as signal (and background) in high- p_{\perp} analyses
 - multi-jet signatures

 $\longrightarrow \textit{multijet merging \& higher-order matching} \quad \ (\textit{not the topic today})$

• inner-jet structures e.g. from "fat jets"

 \longrightarrow parton shower algorithms

• begs the question:

can we improve on parton showers and increase their precision?

(keep in mind: accuracy vs. precision)

Motivation			

another systematic uncertainty

• parton showers are approximations, based on

leading colour, leading logarithmic accuracy, spin-average

• parametric accuracy by comparing Sudakov form factors:

$$\Delta = \exp\left\{-\int \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \,\left[A\log\frac{k_{\perp}^2}{Q^2} + B\right]\right\}\,,$$

where A and B can be expanded in $\alpha_{S}(k_{\perp}^{2})$

• Q_T resummation includes $A_{1,2,3}$ and $B_{1,2}$

(transverse momentum of Higgs boson etc.)

イロト イ伺ト イヨト イヨト

• showers usually include terms $A_{1,2}$ and B_1

A= cusp terms ("soft emissions"), $B\sim$ anomalous dimensions γ

Status		

current parton showers (LO)

|▲口▶|▲圖▶|▲圖▶|▲圖▶|| 直||| 釣ゑ@

F. Krauss Parton Showers

Status		

implementation in DIRE

• evolution and splitting parameter $((ij) + k \rightarrow i + j + k)$:

$$\kappa_{j,ik}^2 = \frac{4(p_i p_j)(p_j p_k)}{Q^4}$$
 and $z_j = \frac{2(p_j p_k)}{Q^2}$

splitting functions including IR regularisation

 (a la Curci, Furmanski & Petronzio, Nucl.Phys. B175 (1980) 27-92)

$$\begin{split} P_{qq}^{(0)}(z,\,\kappa^2) &= & 2C_F\left[\frac{1-z}{(1-z)^2+\kappa^2}-\frac{1+z}{2}\right]\,,\\ P_{qg}^{(0)}(z,\,\kappa^2) &= & 2C_F\left[\frac{z}{z^2+\kappa^2}-\frac{2-z}{2}\right]\,,\\ P_{gg}^{s(0)}(z,\,\kappa^2) &= & 2C_A\left[\frac{1-z}{(1-z)^2+\kappa^2}-1+\frac{z(1-z)}{2}\right]\,,\\ P_{gg}^{(0)}(z,\,\kappa^2) &= & T_R\left[z^2+(1-z)^2\right] \end{split}$$

- ${\, \bullet \, }$ renormalisation/factorisation scale given by $\mu = \kappa^2 Q^2$
- combine gluon splitting from two splitting functions with different spectators k → accounts for different colour flows

Status		

LO results for Drell-Yan

(example of accuracy in description of standard precision observable)

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● のへの

	Accuracy		

parton shower accuracy

|▲口▶|▲圖▶|▲圖▶|▲圖▶|| 直||| 釣ゑ@

F. Krauss Parton Showers

	Accuracy		

how to assess formal precision?

• PS proven to be NLL accurate for simple observables, provided

Catani, Marchesini, Webber, NPB349(1991)635

- soft double-counting removed (\nearrow before) and
- 2-loop cusp anomalous dimension included
- not entirely clear what this means numerically, because
 - parton shower is momentum conserving, NLL is not
 - parton shower is unitary, NLL approximations break this
- differences can be quantified by
 - designing an MC that reproduces NLL exactly
 - removing NLL approximations one-by-one
- employ well-established NLL result as an example
 - observable: thrust in $e^+e^- \rightarrow$ hadrons
 - method: CAESAR

Banfi,Salam,Zanderighi, hep-ph/0407286

・ロト ・同ト ・ヨト ・ヨ

this discussion is technical, but necessary to show that equivalence at NLL does not imply identical numerical results

	Accuracy		

differences between pure NLL and parton shower

Hoeche, Reichelt, Siegert, arXiv:1711.03497

• consider observable V depending additively on emission i:

$$V_i(k_i) = \left(\frac{k_{i\perp}}{Q}\right)^a e^{-b_i \eta_i}$$

• isolated differences in resolved/unresolved splitting probability:

$$\begin{split} R_{\rm PS}(v) &= 2 \int_{Q^2 v}^{Q^2} \frac{d\xi}{\xi} \int_{z_{\rm min}}^{z_{\rm max}} dz \frac{\alpha_S \left(\xi(1-z)^{\frac{2b}{2+b}}\right)}{2\pi} C_F \left[\frac{2}{1-z} - (1+z)\right] \Theta \left(\log \frac{(1-z)^{\frac{2a}{2+b}}Q^2}{\xi}\right) \\ R_{\rm NLL}(v) &= 2 \int_{Q^2 v}^{Q^2} \frac{d\xi}{\xi} \left[\int_{0}^{1} dz \frac{\alpha_S \left(\xi(1-z)^{\frac{2b}{2+b}}\right)}{2\pi} \frac{2C_F}{1-z} \Theta \left(\log \frac{(1-z)^{\frac{2a}{2+b}}Q^2}{\xi}\right) - \frac{C_F \alpha_S(\xi)}{\pi} B_q\right] \end{split}$$

- z-integration in soft terms (violation of local 4-momentum)
- potential double counting in anti-collinear direction (sectorize)
- vanilla parton shower uses different scale definition

	Accuracy		

local momentum conservation and unitarity

- NLL→PS in z^{coll}_{>v,max} (phase-space sectorization)
- NLL \rightarrow PS in $\mu^2_{>v,coll}$ (conventional)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- NLL \rightarrow PS in $z_{<v,\max}^{\text{soft}}$ (from PS unitarity)
- NLL→PS in µ²_{<v,soft} (from PS unitarity)

	Accuracy		

running coupling and global momentum conservation

- NLL→PS in 2-loop CMW < v, soft (from PS unitarity)
- NLL→PS in 2-loop CMW overall (conventional)

- NLL→PS in observable (use experimental definition)
- NLL \rightarrow PS in evolution variable

・ロト ・部ト ・ヨト ・ヨト

- tuned comparison of differences between formally equivalent calculations
- simplest process and simplest observable, but still large differences
- origin of differences traced to treatment of kinematics & unitarity
- at NLL accuracy, none of the methods is formally superior
 - \rightarrow Difference is a systematic uncertainty & needs to be kept in mind

	Improvements	

improving parton showers

F. Krauss

Parton Showers

	Improvements	

including NLO splitting kernels

(Hoeche, FK & Prestel, 1705.00982, and Hoeche & Prestel, 1705.00742)

<ロト <四ト < 回ト < 回

expand splitting kernels as

$${\cal P}(z,\,\kappa^2)\,=\,{\cal P}^{(0)}(z,\,\kappa^2)\,+\,rac{lpha_{\,{
m S}}}{2\pi}\,{\cal P}^{(1)}(z,\,\kappa^2)$$

- aim: reproduce DGLAP evolution at NLO include all NLO splitting kernels
- three categories of terms in $P^{(1)}$:
 - cusp (universal soft-enhanced correction) (already included in original showers)
 - $\bullet~$ corrections to $1 \rightarrow 2$
 - ullet new flavour structures (e.g. $q \to q')$, identified as $1 \to 3$
- new paradigm: two independent implementations

	Improvements	

subtle symmetry factors

• observations for LO PS in final state:

- only $P_{qq}^{(0)}$ used but not $P_{qg}^{(0)}$
- $P_{gg}^{(0)}$ comes with "symmetry factor" 1/2
- challenge this way of implementing symmetry through:

(Jadach & Skrzypek, hep-ph/0312355)

$$\sum_{i=q,g} \int_{0}^{1-\epsilon} dz \, z \, P_{qi}^{(0)}(z) = \int_{\epsilon}^{1-\epsilon} dz \, P_{qq}^{(0)}(z) + \mathcal{O}(\epsilon)$$
$$\sum_{i=q,g} \int_{0}^{1-\epsilon} dz \, z \, P_{gi}^{(0)}(z) = \int_{\epsilon}^{1-\epsilon} dz \left[\frac{1}{2} P_{gg}^{(0)}(z) + n_f P_{gq}^{(0)}(z)\right] + \mathcal{O}(\epsilon)$$

• net effect: replace symmetry factors by parton marker z

	Improvements	

validation of $1 \rightarrow 3$ splittings

- ▲ロト ▲暦 ト ▲ 臣 ト ▲ 臣 - めんの

	Improvements	

physical results: DY at LHC

(untuned showers vs. 7 TeV ATLAS data, optimistic scale variations)

	Improvements	

physical results: differential jet rates at LHC

(untuned showers, optimistic scale variations)

	Improvements	

leading colour differential two-loop soft corrections

(Dulat, Hoeche & Prestel, 1805.03757)

- analyse two-emission soft contribution and compare with iterated single emissions
- capture effect by reweighting original parton shower, with
 - accounting for finite recoil
 - including first $1/N_c$ corrections

(another way to solve "problem" in Dasgupta et al., 1805.09327)

incorporating spin correlations

IPPP

	Improvements	

reweighting

	Improvements	

including $1/N_c$ effects

	Improvements	

scale uncertainties

F. Krauss

Parton Showers

		Problems	

persistent problems

F. Krauss

Parton Showers

		Problems	

dealing with heavy quarks

- $g
 ightarrow q ar{q}$ beyond "shower-approximation" \longrightarrow no soft gluon
- recent analyses showed problems in II showers (see below)
- heavy quarks also problematic in initial state: no PDF support for $Q^2 \le m_Q^2 \longrightarrow$ quarks stop showering
- possible solutions:
 - naive: ignore and leave for beam remnants (SHERPA)
 - better: enforce splitting in region around m_Q^2 (PYTHA) longrightarrow effectively produces collinear Q and gluon in IS

・ロト ・回ト ・ヨト

		Problems	

g ightarrow Q ar Q — a systematic nightmare

 parton showers geared towards collinear & soft emissions of gluons

(double log structure)

- g
 ightarrow q ar q only collinear
- old measurements at LEP of $g \to b\bar{b}$ and $g \to c\bar{c}$ rate

•

• fix this at LHC for modern showers

(important for tībb)

• questions: kernel, scale in α_S

(example: k_{\perp} vs. m_{bb})

Parton Showers

		Problems	

- ATLAS measurement in $b\bar{b}$ production
- use decay products in $B o J/\Psi(\mu\mu) + X$ and $B o \mu + X$
- use muons as proxies, most obvious observable $\Delta R(J\Psi, \mu)$

		Summary

harsh realities and wild dreams

F. Krauss

Parton Showers

			Summary
Summa	rv		

- implemented NLO DGLAP kernels into two independent showers will allow cross checks/validation of NP effects
- cross-validated implementations $\mathsf{PYTHIA}\longleftrightarrow\mathsf{SHERPA}$
- matching to NNLO/multijet merging at NLO ongoing work
- extension to include loop-corrections to $1\to 2$ straightforward will allow to use triple-collinear splitting functions throughout
- future plans: soft-gluon emissions and non-trivial colour correlations
- in SHERPA: implement forced splittings for heavy quarks at threshold

		Summary

Points for further investigation

• compare shower with analytic reummation

maybe in the spirit of Hoeche, Reichelt & Siegert, 1711.03497 (e^+e^- there, shower vs. CAESAR)

- compare two shower implementations in SHERPA, HERWIG, PYTHIA
- treatment of heavy flavours in IS:
 - \longrightarrow forced transitions to gluons at/around mass threshold

(different in Z w.r.t. W production)

probably need to check y-dependence of flavour composition

- non-perturbative effects: intrinsic k_{\perp} :
 - initial state partons "kicked": $\langle k_{\perp}
 angle pprox 1-2$ GeV

(usually parametrised by Gaussian and tuned to Z- p_{\perp})

イロト イヨト イヨト イヨト

usually flavour-blind and x-independent

(non-default option of x-dependent in PYTHIA)

mind the gap: accuracy vs. precision

		Summary

connection to fragmentation functions

DGLAP for FFs:

$$\frac{\mathrm{d} x D_{\mathsf{a}}(x, t)}{\mathrm{d} \log t} = \sum_{b=q,g} \int_{0}^{1} \mathrm{d} \tau \int_{0}^{1} \mathrm{d} z \, \delta(x-\tau z) \frac{\alpha_{\mathsf{S}}}{2\pi} \left[z P_{\mathsf{a} \mathsf{b}}(z) \right]_{+} \tau D_{\mathsf{b}}(\tau, t) \, .$$

• rewrite for definition of "+"-function, $[zP_{ab}(z)]_+ = \lim_{\epsilon \to 0} zP_{ab}(z,\epsilon)$: $P_{ab}(z,\epsilon) = P_{ab}(z)\Theta(1-z-\epsilon) - \delta_{ab} \sum_{c=q,g} \frac{\Theta(1-z-\epsilon)}{\epsilon} \int_0^1 d\xi \,\xi P_{ac}(\xi)$

$$\frac{\mathrm{d}\,\log D_{a}(x,t)}{\mathrm{d}\,\log t} = \underbrace{-\sum_{c=q,g} \int_{0}^{1-\epsilon} \mathrm{d}\xi \,\frac{\alpha_{S}}{2\pi} \,\xi P_{ac}(\xi)}_{\mathrm{derivative of Sudakov}} + \sum_{b=q,g} \int_{x}^{1-\epsilon} \frac{\mathrm{d}z}{z} \frac{\alpha_{S}}{2\pi} \,P_{ac}(z) \,\frac{D_{b}(\frac{x}{z},t)}{D_{a}(x,t)}$$

		Summary

re-introduce Sudakov form factor

$$\Delta_{a}(t,t_{0}) = \exp\left\{-\int_{t_{0}}^{t} \frac{\mathrm{d}t'}{t'} \sum_{c=q,g} \int_{0}^{1-\epsilon} \mathrm{d}\xi \frac{\alpha_{S}}{2\pi} \xi P_{ac}(\xi)\right\}$$

to express equation above through generating functional $D_a(x, t, \mu^2) = D_a(x, t)\Delta_a(\mu^2, t)$:

$$\frac{\mathrm{d}\,\log\mathcal{D}_{\mathsf{a}}(x,t,\mu^2)}{\mathrm{d}\,\log t} = \sum_{b=q,g} \int_{x}^{1-\epsilon} \frac{\mathrm{d}z}{z} \frac{\alpha_S}{2\pi} \, P_{\mathsf{ac}}(z) \, \frac{D_b(\frac{x}{z},t)}{D_{\mathsf{a}}(x,t)}$$

 add initial states (PDFs) & arrive at argument(s) for Sudakov form factors when jets not measured

$$\sum_{i \in IS} \sum_{b=q,g} \int_{x_i}^{1-\epsilon} \frac{\mathrm{d}z}{z} \frac{\alpha_S}{2\pi} P_{ba_i}(z) \frac{f_b(\frac{x_i}{z},t)}{f_{a_i}(x,t)} + \sum_{j \in FS} \sum_{b=q,g} \int_{x_i}^{1-\epsilon} \mathrm{d}z \, z \frac{\alpha_S}{2\pi} \, P_{a_j b}(z) \, .$$

・ロト ・同ト ・ヨト ・ヨ