# Instability effects in top pair production at threshold

Christoph Reißer

Max-Planck-Institut für Physik, Munich



IPPP Internal Seminar · Durham · 12 Oct 2007

### Outline

- Motivation
- Velocity nonrelativistic QCD (vNRQCD)
- Status for  $\sigma_{tot}(e^+e^- \rightarrow t\overline{t})$  at threshold
- Top instability, electroweak effects
- Phase space matching
- Outlook, Summary



 $\underline{e^+e^-}$  collisions: c.m. energy  $\sqrt{s}\approx 340-360~\text{GeV}$ 



- $\Rightarrow$  Perturbation theory in  $\alpha_s$  breaks down  $v \sim \alpha_s$
- $\Rightarrow$  Nonrelativistic QCD  $\simeq$  Schrödinger theory at LO



 $\underline{e^+e^-}$  collisions: c.m. energy  $\sqrt{s}\approx 340-360~\text{GeV}$ 

• Top quarks are nonrelativistic

$$v=\sqrt{1-\frac{4m_t^2}{s}}\ll 1$$

- Top quarks decay fast:  $t \rightarrow Wb$ 

$$\Gamma_t \approx 1.5 \text{ GeV} \gg \Lambda_{\rm QCD}$$

- $\Rightarrow$  No bound states
- ⇒ Smooth line-shape
- ⇒ Non-perturbative
   effects suppressed
   Fadin, Khoze (JETP Lett. 46, 1987)





IPPP Internal Seminar · Durham · 12 Oct 2007

 $\underline{e^+e^-}$  collisions: c.m. energy  $\sqrt{s}\approx 340-360~\text{GeV}$ 

• Top quarks are nonrelativistic

$$\mathsf{v}=\sqrt{1-\frac{4\mathsf{m}_t^2}{\mathsf{s}}}\ll 1$$

• Top quarks decay fast:  $t \rightarrow Wb$ 

$$\Gamma_t \approx 1.5 \; \text{GeV} \gg \Lambda_{\rm QCD}$$

- ⇒ Instead of process  $e^+e^- \rightarrow t\bar{t}$  consider  $e^+e^- \rightarrow bW^+\bar{b}W^-$  or even include W decay products
- $\Rightarrow$  Interferences of double and single resonant diagrams
- $\Rightarrow$  New theoretical concepts for treatment beyond LO



 $\underline{e^+e^-}$  collisions: c.m. energy  $\sqrt{s}\approx 340-360~\text{GeV}$ 

• Top quarks are nonrelativistic

$$\mathsf{v} = \sqrt{1 - rac{4\mathsf{m}_{\mathsf{t}}^2}{\mathsf{s}}} \ll 1$$

- Top quarks decay fast:  $t \rightarrow Wb$ 

 $\label{eq:GeV} \Gamma_t \approx 1.5 \; \text{GeV} \gg \Lambda_{\rm QCD}$ 





IPPP Internal Seminar · Durham · 12 Oct 2007

 $\underline{e^+e^-}$  collisions: c.m. energy  $\sqrt{s}\approx 340-360~\text{GeV}$ 

• Top quarks are nonrelativistic

$$\mathsf{v}=\sqrt{1-\frac{4\mathsf{m}_t^2}{\mathsf{s}}}\ll 1$$

• Top quarks decay fast:  $t \rightarrow Wb$ 

$$\Gamma_t \approx 1.5 \; \text{GeV} \gg \Lambda_{\rm QCD}$$

- ⇒ Instead of process  $e^+e^- \rightarrow t\bar{t}$  consider  $e^+e^- \rightarrow bW^+\bar{b}W^-$  or even include W decay products
- $\Rightarrow$  Interferences of double and single resonant diagrams
- $\Rightarrow$  New theoretical concepts for treatment beyond LO



 $\underline{e^+e^-}$  collisions: c.m. energy  $\sqrt{s}\approx 340-360~\text{GeV}$ 

• Top quarks are nonrelativistic

$$v=\sqrt{1-\frac{4m_t^2}{s}}\ll 1$$

• Top quarks decay fast:  $t \rightarrow Wb$ 

$$\Gamma_t \approx 1.5 \text{ GeV} \gg \Lambda_{\rm QCD}$$

- Measured cross section  $\sigma^{obs}(s) = \int_0^1 dx \, \mathcal{L}(x) \sigma^{theo}(x^2 s)$  contains
  - beam spread
  - beamstrahlung
  - ISR
  - → pure QED not considered in this talk





IPPP Internal Seminar · Durham · 12 Oct 2007

- Simulations of Threshold Scan ( $\int \mathcal{L} dt \sim 300 \, {\rm fb}^{-1}$ ): Martinez, Miquel (Eur. Phys. J. C 27, 2003)
  - Top quark mass

 $(\delta m_t)^{
m exp} \sim 50 \ {
m MeV}$ 





IPPP Internal Seminar · Durham · 12 Oct 2007

- Simulations of Threshold Scan ( $\int \mathcal{L} dt \sim 300 \, \mathrm{fb}^{-1}$ ): Martinez, Miquel (Eur. Phys. J. C 27, 2003) Sensitivity to sta
  - Top quark mass

 $(\delta m_t)^{
m exp} \sim 50 \; MeV$ 

Strong coupling

 $(\delta \alpha_{s}(M_{Z}))^{exp} \sim 0.001$ 





IPPP Internal Seminar · Durham · 12 Oct 2007

• Simulations of Threshold Scan  $(\int \mathcal{L} dt \sim 300 \, \mathrm{fb}^{-1})$ : Martinez, Miquel (Eur. Phys. J. C 27, 2003) • Top quark mass  $(\delta m_t)^{\mathrm{exp}} \sim 50 \, \mathrm{MeV}$ • Strong coupling

 $(\delta \alpha_{s}(M_{Z}))^{exp} \sim 0.001$ 

• Top decay width

 $(\delta\Gamma_t)^{\mathrm{exp}}\sim$  50 MeV





IPPP Internal Seminar · Durham · 12 Oct 2007

- Simulations of Threshold Scan ( $\int \mathcal{L} dt \sim 300 \, \mathrm{fb}^{-1}$ ): Martinez, Miquel (Eur. Phys. J. C 27, 2003)
  - Top quark mass

 $(\delta m_t)^{
m exp} \sim 50 \; {
m MeV}$ 

• Strong coupling

 $(\delta \alpha_{\rm s}({\rm M_Z}))^{
m exp} \sim 0.001$ 

• Top decay width

 $(\delta\Gamma_t)^{\mathrm{exp}}\sim$  50 MeV

Top Yukawa coupling (light Higgs)

 $(\delta y_t/y_t)^{\mathrm{exp}} \sim 0.35$ 





IPPP Internal Seminar · Durham · 12 Oct 2007

- Simulations of Threshold Scan ( $\int \mathcal{L} dt \sim 300 \, \mathrm{fb}^{-1}$ ): Martinez, Miquel (Eur. Phys. J. C 27, 2003)
  - Top quark mass

 $(\delta m_t)^{
m exp} \sim 50 \; MeV$ 

Strong coupling

 $(\delta \alpha_{s}(M_{Z}))^{\mathrm{exp}} \sim 0.001$ 

• Top decay width

 $(\delta\Gamma_t)^{\mathrm{exp}}\sim$  50 MeV

• Top Yukawa coupling (light Higgs)

 $(\delta y_t/y_t)^{\rm exp} \sim 0.35$ 

 $\Rightarrow$  Theory goal

$$(\delta\sigma_{
m tot}/\sigma_{
m tot}) \leq 3\,\%$$



Relevant scales

 $\label{eq:mt} \begin{array}{ll} m_t \mbox{ (hard)} & \gg & \mathbf{p} \sim m_t v \mbox{ (soft)} & \gg & \mathsf{E} \sim m_t v^2 \mbox{ (ultrasoft)} \end{array}$ 



IPPP Internal Seminar · Durham · 12 Oct 2007

**Relevant scales** 

 $m_t$  (hard)  $\gg p \sim m_t v$  (soft)  $\gg E \sim m_t v^2$  (ultrasoft)

Momentum regions Beneke, Smirnov (Nucl. Phys. B 522, 1998)

 $(k^0, \mathbf{k}) \sim (\mathbf{m_t}, \mathbf{m_t})$ hard soft  $(k^0, \mathbf{k}) \sim (\mathbf{m_t v}, \mathbf{m_t v})$ potential  $(k^0, \mathbf{k}) \sim (\mathbf{m}_t \mathbf{v}^2, \mathbf{m}_t \mathbf{v})$ ultrasoft  $(k^0, \mathbf{k}) \sim (\mathbf{m}_t \mathbf{v}^2, \mathbf{m}_t \mathbf{v}^2)$ 



**Relevant scales** 

 $m_t$  (hard)  $\gg p \sim m_t v$  (soft)  $\gg E \sim m_t v^2$  (ultrasoft)

Momentum regions Beneke, Smirnov (Nucl. Phys. B 522, 1998)

hard  $(k^0, \mathbf{k}) \sim (\mathbf{m}_t, \mathbf{m}_t)$ soft  $(k^0, \mathbf{k}) \sim (\mathbf{m_t v}, \mathbf{m_t v})$ potential  $(k^0, \mathbf{k}) \sim (\mathbf{m}_t \mathbf{v}^2, \mathbf{m}_t \mathbf{v})$ ultrasoft  $(k^0, \mathbf{k}) \sim (\mathbf{m_t v^2}, \mathbf{m_t v^2})$ 

• Heavy quark 4-momentum  $p^{\mu} = (m, 0) + (0, p) + (k^{0}, k)$ Heavy quark spinor  $\psi \to \sum_{\mathbf{p}} e^{-i\mathbf{p}\cdot\mathbf{x}}\psi_{\mathbf{p}}(\mathbf{x})$ 

Luke, Manohar, Rothstein (Phys. Rev. D 61, 2000)



Relevant scales

 $m_t$  (hard)  $\gg p \sim m_t v$  (soft)  $\gg E \sim m_t v^2$  (ultrasoft)

Momentum regions Beneke, Smirnov (Nucl. Phys. B 522, 1998)

hard  $(k^0, \mathbf{k}) \sim (\mathbf{m}_t, \mathbf{m}_t)$ soft  $(k^0, \mathbf{k}) \sim (\mathbf{m_t v}, \mathbf{m_t v})$ potential  $(k^0, \mathbf{k}) \sim (\mathbf{m}_t \mathbf{v}^2, \mathbf{m}_t \mathbf{v})$ ultrasoft  $(k^0, \mathbf{k}) \sim (\mathbf{m}_t \mathbf{v}^2, \mathbf{m}_t \mathbf{v}^2)$ 

- Heavy quark 4-momentum  $p^{\mu} = (m, 0) + (0, p) + (k^0, k)$ Heavy quark spinor  $\psi \to \sum_{\mathbf{p}} e^{-i\mathbf{p}\cdot\mathbf{x}} \psi_{\mathbf{p}}(\mathbf{x})$
- **Resonant modes**

potential quarks  $\psi_{\mathbf{p}}, \chi_{\mathbf{p}}$ soft gluons  $\mathsf{A}^{\mu}_{\mathsf{a}}$ ultrasoft gluons  $\mathsf{A}^{\mu}$ 

Luke, Manohar, Rothstein (Phys. Rev. D 61, 2000)



IPPP Internal Seminar · Durham · 12 Oct 2007

Relevant scales  $m_t$  (hard)  $\gg p \sim m_t v$  (soft)  $\gg E \sim m_t v^2$  (ultrasoft)
Power counting  $v \sim \alpha_s \ll 1$ 







• Relevant scales  

$$m_t \text{ (hard)} \gg p \sim m_t v \text{ (soft)} \gg E \sim m_t v^2 \text{ (ultrasoft)}$$
  
• Power counting  $v \sim \alpha_s \ll 1$   
 $(\frac{\alpha_s}{v}) \sim 1$   $(\alpha_s \ln v) \sim 1$   
 $LL \sim (\frac{\alpha_s}{v})^n \sum_m (\alpha_s \ln v)^m$   
 $NLL \sim \{\alpha_s, v\} (\frac{\alpha_s}{v})^n \sum_m (\alpha_s \ln v)^m$   
 $NNLL \sim \{\alpha_s^2, \alpha_s v, v^2\} (\frac{\alpha_s}{v})^n \sum_m (\alpha_s \ln v)^m$ 



IPPP Internal Seminar · Durham · 12 Oct 2007

 $\mathcal{L} = \mathcal{L}_{usoft} + \mathcal{L}_{pot} + \mathcal{L}_{soft}$ 

Luke, Manohar, Rothstein (Phys. Rev. D 61, 2000) Hoang, Stewart (Phys. Rev. D 67, 2003)



Luke, Manohar, Rothstein (Phys. Rev. D 61, 2000) Hoang, Stewart (Phys. Rev. D 67, 2003)

$$\mathcal{L} = \mathcal{L}_{ ext{usoft}} + \mathcal{L}_{ ext{pot}} + \mathcal{L}_{ ext{soft}}$$

• 
$$\mathcal{L}_{\text{usoft}} = \sum_{\mathbf{p}} \psi_{\mathbf{p}}^{\dagger} \left[ i \mathsf{D}^{0} - \frac{(\mathbf{p} - i \mathbf{D})^{2}}{2\mathsf{m}} + \frac{\mathbf{p}^{4}}{8\mathsf{m}^{3}} + \dots \right] \psi_{\mathbf{p}}$$

$$\mathsf{D}^{\mu} = \partial^{\mu} + \mathsf{ig}_{\mathsf{s}}\mathsf{A}^{\mu}$$





$$\mathcal{L} = \mathcal{L}_{usoft} + \mathcal{L}_{pot} + \mathcal{L}_{soft}$$

$$\mathbf{Luke, Manohar, Rothstein (Phys. Rev. D 61, 2000)}$$

$$\mathbf{Hoang, Stewart (Phys. Rev. D 67, 2003)}$$

$$\mathcal{L}_{usoft} = \sum_{\mathbf{p}} \psi_{\mathbf{p}}^{\dagger} \left[ i D^{0} - \frac{(\mathbf{p} - i \mathbf{D})^{2}}{2m} + \frac{\mathbf{p}^{4}}{8m^{3}} + \dots \right] \psi_{\mathbf{p}}$$

$$D^{\mu} = \partial^{\mu} + i g_{s} A^{\mu}$$

$$\mathbf{L}_{pot} = -\sum_{\mathbf{p}, \mathbf{p}'} \left[ \frac{\mathcal{V}_{c}}{(\mathbf{p} - \mathbf{p}')^{2}} + \dots \right] \psi_{\mathbf{p}'}^{\dagger} \psi_{\mathbf{p}} \chi_{-\mathbf{p}'}^{\dagger} \chi_{-\mathbf{p}}$$



IPPP Internal Seminar · Durham · 12 Oct 2007

$$\mathcal{L} = \mathcal{L}_{usoft} + \mathcal{L}_{pot} + \mathcal{L}_{soft}$$
Hoang, Stewart (Phys. Rev. D 61, 2000)  
Hoang, Stewart (Phys. Rev. D 67, 2003)  

$$\mathcal{L}_{usoft} = \sum_{\mathbf{p}} \psi_{\mathbf{p}}^{\dagger} \left[ i D^{0} - \frac{(\mathbf{p} - i D)^{2}}{2m} + \frac{\mathbf{p}^{4}}{8m^{3}} + \dots \right] \psi_{\mathbf{p}}$$

$$D^{\mu} = \partial^{\mu} + i g_{s} A^{\mu}$$

$$\mathcal{L}_{pot} = -\sum_{\mathbf{p}, \mathbf{p}'} \left[ \frac{\mathcal{V}_{c}}{(\mathbf{p} - \mathbf{p}')^{2}} + \dots \right] \psi_{\mathbf{p}'}^{\dagger} \psi_{\mathbf{p}} \chi_{-\mathbf{p}'}^{\dagger} \chi_{-\mathbf{p}}$$

$$\mathcal{L}_{soft} = -g_{s}^{2} \sum_{\mathbf{p}, \mathbf{p}', \mathbf{q}, \mathbf{q}'} \left[ \frac{1}{2} \psi_{\mathbf{p}'}^{\dagger} [A_{\mathbf{q}'}^{\mu}, A_{\mathbf{q}}^{\nu}] U_{\mu\nu} \psi_{\mathbf{p}} + \dots \right]$$

$$\frac{\mathcal{V}_{\mathcal{V}_{a}} \mathcal{V}_{a}}{\mathcal{V}_{a}} - \frac{\mathcal{V}_{a}}{\mathcal{V}_{a}} + \frac{\mathcal{V}_{a}}{\mathcal{V}_{a}}$$



IPPP Internal Seminar · Durham · 12 Oct 2007

<u>Currents</u> for production and annihilation of  $t\bar{t}$  pairs:

• <sup>3</sup>S<sub>1</sub> vector currents  $\mathbf{O}_{\mathbf{p},1}^{i} = \psi_{\mathbf{p}}^{\dagger} \,\boldsymbol{\sigma}^{i} \,\tilde{\chi}_{-\mathbf{p}}^{*}, \quad \mathbf{O}_{\mathbf{p},2}^{i} = \psi_{\mathbf{p}}^{\dagger} \, \frac{\mathbf{p}^{2}}{\mathbf{m}_{t}^{2}} \,\boldsymbol{\sigma}^{i} \,\tilde{\chi}_{-\mathbf{p}}^{*}$ 



<u>Currents</u> for production and annihilation of  $t\bar{t}$  pairs:

- <sup>3</sup>S<sub>1</sub> vector currents  $\mathbf{O}_{\mathbf{p},1}^{i} = \psi_{\mathbf{p}}^{\dagger} \, \boldsymbol{\sigma}^{i} \, \tilde{\chi}_{-\mathbf{p}}^{*}, \quad \mathbf{O}_{\mathbf{p},2}^{i} = \psi_{\mathbf{p}}^{\dagger} \, \frac{\mathbf{p}^{2}}{\mathbf{m}_{t}^{2}} \, \boldsymbol{\sigma}^{i} \, \tilde{\chi}_{-\mathbf{p}}^{*}$
- <sup>3</sup>P<sub>1</sub> axial vector current  $\mathbf{O}_{\mathbf{p},3}^{i} = \frac{-i}{2m_{t}} \psi_{\mathbf{p}}^{\dagger} \left[ \boldsymbol{\sigma}^{i}, \boldsymbol{\sigma} \cdot \mathbf{p} \right] \tilde{\chi}_{-\mathbf{p}}^{*}$



<u>Currents</u> for production and annihilation of  $t\bar{t}$  pairs:

- <sup>3</sup>S<sub>1</sub> vector currents  $\mathbf{O}_{\mathbf{p},1}^{i} = \psi_{\mathbf{p}}^{\dagger} \, \boldsymbol{\sigma}^{i} \, \tilde{\chi}_{-\mathbf{p}}^{*}, \quad \mathbf{O}_{\mathbf{p},2}^{i} = \psi_{\mathbf{p}}^{\dagger} \, \frac{\mathbf{p}^{2}}{\mathsf{m}_{t}^{2}} \, \boldsymbol{\sigma}^{i} \, \tilde{\chi}_{-\mathbf{p}}^{*}$
- <sup>3</sup>P<sub>1</sub> axial vector current  $\mathbf{O}_{\mathbf{p},3}^{i} = \frac{-i}{2m_{t}} \psi_{\mathbf{p}}^{\dagger} \left[ \boldsymbol{\sigma}^{i}, \boldsymbol{\sigma} \cdot \mathbf{p} \right] \tilde{\chi}_{-\mathbf{p}}^{*}$

Attach initial state leptons (gauge invariance if ew. effects beyond LO included):

$$\mathbf{O}_{\mathbf{p},\sigma} = [\mathbf{\bar{e}} \gamma_{\mathsf{i}}(\gamma_5) \mathbf{e}] \mathbf{O}_{\mathbf{p},\sigma}^{\mathsf{i}}$$



<u>Currents</u> for production and annihilation of  $t\bar{t}$  pairs:

- <sup>3</sup>S<sub>1</sub> vector currents  $\mathbf{O}_{\mathbf{p},1}^{i} = \psi_{\mathbf{p}}^{\dagger} \, \boldsymbol{\sigma}^{i} \, \tilde{\chi}_{-\mathbf{p}}^{*}, \quad \mathbf{O}_{\mathbf{p},2}^{i} = \psi_{\mathbf{p}}^{\dagger} \, \frac{\mathbf{p}^{2}}{\mathsf{m}_{t}^{2}} \, \boldsymbol{\sigma}^{i} \, \tilde{\chi}_{-\mathbf{p}}^{*}$
- <sup>3</sup>P<sub>1</sub> axial vector current  $\mathbf{O}_{\mathbf{p},3}^{i} = \frac{-i}{2m_{t}} \psi_{\mathbf{p}}^{\dagger} \left[ \boldsymbol{\sigma}^{i}, \boldsymbol{\sigma} \cdot \mathbf{p} \right] \tilde{\chi}_{-\mathbf{p}}^{*}$

Attach initial state leptons (gauge invariance if ew. effects beyond LO included):

$$\mathbf{O}_{\mathbf{p},\sigma} = [\mathbf{\bar{e}} \gamma_{\mathsf{i}}(\gamma_5) \mathbf{e}] \mathbf{O}^{\mathsf{i}}_{\mathbf{p},\sigma}$$

Contribution to Lagrangian:





IPPP Internal Seminar · Durham · 12 Oct 2007

# vNRQCD (stable quarks)

<u>Total cross section</u> from  $e^+e^- \rightarrow e^+e^-$  using the Optical Theorem Strassler, Peskin (Phys. Rev. D 43, 1991)  $\sigma_{tot} \propto Im \left[ i \sum_{\mathbf{p},\mathbf{p}'} \int d^4x \, e^{-i\hat{\mathbf{q}}\cdot\mathbf{x}} \left\langle 0 \left| T\left(C(\mu)\mathbf{O}_{\mathbf{p}}^{\dagger}(0)\right)\left(C(\mu)\mathbf{O}_{\mathbf{p}'}(\mathbf{x})\right) \right| 0 \right\rangle \right]$ 







# vNRQCD (stable quarks)

<u>Total cross section</u> from  $e^+e^- \rightarrow e^+e^-$  using the Optical Theorem Strassler, Peskin (Phys. Rev. D 43, 1991)  $\sigma_{tot} \propto Im \left[ i \sum_{\mathbf{p},\mathbf{p}'} \int d^4x \, e^{-i\hat{\mathbf{q}}\cdot\mathbf{x}} \left\langle \mathbf{0} \left| \mathsf{T} \left( \mathsf{C}(\mu) \mathbf{O}_{\mathbf{p}}^{\dagger}(\mathbf{0}) \right) \left( \mathsf{C}(\mu) \mathbf{O}_{\mathbf{p}'}(\mathbf{x}) \right) \right| \mathbf{0} \right\rangle \right]$ 

$$\propto \operatorname{Im}\left[\mathsf{C}(\mu)^2 \,\mathsf{G}(\mathbf{0},\mathbf{0},\mathsf{E})\right]$$

$$\left(-\frac{\nabla^2}{m_t} - \frac{\nabla^4}{4m_t^3} + \mathsf{V}(\mathbf{r}) - \mathsf{E}\right)\mathsf{G}(\mathbf{r}, \mathbf{r}', \mathsf{E}) = \delta^{(3)}(\mathbf{r} - \mathbf{r}')$$

$$V(\mathbf{p},\mathbf{p}') = \left[\frac{\mathcal{V}_c}{\mathbf{k}^2} + \frac{\mathcal{V}_k \pi^2}{m_t |\mathbf{k}|} + \frac{\mathcal{V}_r(\mathbf{p}^2 + {\mathbf{p}'}^2)}{2m_t^2 \mathbf{k}^2} + \frac{\mathcal{V}_2 + 2\mathcal{V}_s}{m_t^2}\right], \mathbf{k} = \mathbf{p} - \mathbf{p}'$$



IPPP Internal Seminar · Durham · 12 Oct 2007

#### Fixed order scheme

Hoang, Teubner; Penin et al; Melnikov et al Beneke, Signer, Smirnov; Sumino et al; Yakovlev et al Steinhauser, Kniehl, ...

$$\left(rac{lpha_{\sf s}}{\sf v}
ight)\sim 1$$

$$\begin{array}{ll} \mathsf{LO} & \sim \left(\frac{\alpha_{\mathsf{s}}}{\mathsf{v}}\right)^{\mathsf{n}} \\ \mathsf{NLO} & \sim \left\{\alpha_{\mathsf{s}},\mathsf{v}\right\} \times \left(\frac{\alpha_{\mathsf{s}}}{\mathsf{v}}\right)^{\mathsf{n}} \\ \mathsf{NNLO} & \sim \left\{\alpha_{\mathsf{s}}^{2},\alpha_{\mathsf{s}}\mathsf{v},\mathsf{v}^{2}\right\} \times \left(\frac{\alpha_{\mathsf{s}}}{\mathsf{v}}\right)^{\mathsf{n}} \\ \mathsf{NNNLO} & \sim \left\{\alpha_{\mathsf{s}}^{3},\alpha_{\mathsf{s}}^{2}\mathsf{v},\alpha_{\mathsf{s}}\mathsf{v}^{2},\mathsf{v}^{3}\right\} \times \left(\frac{\alpha_{\mathsf{s}}}{\mathsf{v}}\right)^{\mathsf{n}} \text{ work in progress} \end{array}$$

- large NNLO correction
- scale dependence  $\rightarrow$  large uncertainty in normalization of cross section



# **Theory status (QCD)**

#### **RGE** improved computations

$$\begin{split} & \left(\frac{\alpha_{\rm s}}{\rm v}\right) \sim 1 & \alpha_{\rm s} \ln {\rm v} \sim 1 \\ & {\rm LL} & \sim \left(\frac{\alpha_{\rm s}}{\rm v}\right)^{\rm n} \sum_{\rm m} \left(\alpha_{\rm s} \ln {\rm v}\right)^{\rm m} \\ & {\rm NLL} & \sim \left\{\alpha_{\rm s}, {\rm v}\right\} \times \left(\frac{\alpha_{\rm s}}{\rm v}\right)^{\rm n} \sum_{\rm m} \left(\alpha_{\rm s} \ln {\rm v}\right)^{\rm m} \\ & {\rm NNLL} & \sim \left\{\alpha_{\rm s}^{2}, \alpha_{\rm s} {\rm v}, {\rm v}^{2}\right\} \times \left(\frac{\alpha_{\rm s}}{\rm v}\right)^{\rm n} \sum_{\rm m} \left(\alpha_{\rm s} \ln {\rm v}\right)^{\rm m} \text{ work in progress} \\ & \rightarrow \delta \sigma_{\rm tot} / \sigma_{\rm tot} \sim \pm 6 \,\% \end{split}$$

- log terms summed into coefficients through RGE
- reduced scale dependence

pNRQCD Brambilla, Pineda, Soto, Vairo; Pineda, Signer

vNRQCD Luke, Manohar, Rothstein; Hoang, Stewart



IPPP Internal Seminar · Durham · 12 Oct 2007

 $\Gamma_t \sim m_t \alpha \approx \mathsf{E}_{\rm kin} \sim m_t \alpha_s^2$ 

• LL:  $E \rightarrow E + i\Gamma_t$  Fadin, Khoze (1987)



 $\Gamma_t \sim m_t \alpha \approx E_{\rm kin} \sim m_t \alpha_s^2$ 

- LL:  $E \rightarrow E + i\Gamma_t$  Fadin, Khoze (1987)
- NLL:



 $\Gamma_t \sim m_t \alpha \approx E_{\rm kin} \sim m_t \alpha_s^2$ 

- LL:  $E \rightarrow E + i\Gamma_t$  Fadin, Khoze (1987)
- NLL:

"only QCD corrections to  $\Gamma_t$ "

Melnikov, Yakovlev (1994) Fadin, Khoze, Martin, Stirling (1995)



 $\Gamma_t \sim m_t \alpha \approx E_{\rm kin} \sim m_t \alpha_s^2$ 

- LL:  $E \rightarrow E + i\Gamma_t$  Fadin, Khoze (1987)
- NLL:

"only QCD corrections to  $\Gamma_t$ "

Melnikov, Yakovlev (1994) Fadin, Khoze, Martin, Stirling (1995)

"NNLO phase space divergencies  $\rightarrow$  NLL RG effects" Hoang, CJR (2005)



 $\Gamma_t \sim m_t \alpha \approx E_{\rm kin} \sim m_t \alpha_s^2$ 

- LL:  $E \rightarrow E + i\Gamma_t$  Fadin, Khoze (1987)
- NLL:

"only QCD corrections to  $\Gamma_t$ " Melnikov, Yakovlev (1994)

Melnikov, Yakovlev (1994) Fadin, Khoze, Martin, Stirling (1995)

"NNLO phase space divergencies  $\rightarrow$  NLL RG effects" Hoang, CJR (2005)

"phase space matching"  $\rightarrow$  w.i.p.


$\Gamma_t \sim m_t \alpha \approx E_{\rm kin} \sim m_t \alpha_s^2$ 

- LL:  $E \rightarrow E + i\Gamma_t$  Fadin, Khoze (1987)
- NLL:

"only QCD corrections to  $\Gamma_t$ "

Melnikov, Yakovlev (1994) Fadin, Khoze, Martin, Stirling (1995)

"NNLO phase space divergencies  $\rightarrow$  NLL RG effects" Hoang, CJR (2005)

"phase space matching"  $\rightarrow$  w.i.p.

• NNLL:



 $\Gamma_t \sim m_t \alpha \approx E_{\rm kin} \sim m_t \alpha_s^2$ 

- LL:  $E \rightarrow E + i\Gamma_t$  Fadin, Khoze (1987)
- NLL:

"only QCD corrections to  $\Gamma_t$ "

Melnikov, Yakovlev (1994) Fadin, Khoze, Martin, Stirling (1995)

"NNLO phase space divergencies  $\rightarrow$  NLL RG effects" Hoang, CJR (2005)

"phase space matching"  $\rightarrow$  w.i.p.

• NNLL:

Matrixelement corrections (real & imaginary)

Hoang, CJR (2005, 2006)



 $\Gamma_t \sim m_t \alpha \approx E_{\rm kin} \sim m_t \alpha_s^2$ 

- LL:  $E \rightarrow E + i\Gamma_t$  Fadin, Khoze (1987)
- NLL:

```
"only QCD corrections to \Gamma_t" Melnikov, Yakovlev (1994)
Fadin, Khoze, Martin, Stirling (1995)
"NNLO phase space divergencies \rightarrow NLL RG effects"
Hoang, CJR (2005)
"phase space matching" \rightarrow w.i.p.
```

• NNLL:

Matrixelement corrections (real & imaginary)

Hoang, CJR (2005, 2006)

NNLL running from phase space divergencies  $\rightarrow$  not yet started



### **Electroweak corrections in vNRQCD**

**Electroweak effects** 

i) Usual (non-imaginary) electroweak effects



- i) Usual (non-imaginary) electroweak effects
- ii) Wb cuts, interference effects



- i) Usual (non-imaginary) electroweak effects
- ii) Wb cuts, interference effects
- iii) Phase space matching















IPPP Internal Seminar · Durham · 12 Oct 2007





IPPP Internal Seminar · Durham · 12 Oct 2007

#### Effective theory for unstable particles

- Replacement rule  $E \rightarrow E + i\Gamma_t$  at LL Fadin, Khoze (JETP Lett. 46, 1987)
- Complex matching conditions
  - $\rightarrow$  at NNLL contain interferences (in a few slides)
  - $\rightarrow$  UV phase space divergencies arise (in a few slides)
  - $\rightarrow$  Phase space matching necessary (end of talk)
- Effective Lagrangian non-hermitian
- Total cross section through the optical theorem using unitarity of the underlying theory



#### Effective theory for unstable particles

- Replacement rule  $E \rightarrow E + i\Gamma_t$  at LL Fadin, Khoze (JETP Lett. 46, 1987)
- Complex matching conditions
  - $\rightarrow$  at NNLL contain interferences (in a few slides)
  - $\rightarrow$  UV phase space divergencies arise (in a few slides)
  - $\rightarrow$  Phase space matching necessary (end of talk)
- Effective Lagrangian non-hermitian
- Total cross section through the optical theorem using unitarity of the underlying theory
- ⇒ Contributions from real Wb final states included in EFT matching conditions
- ⇒ EFT does not describe details of decay mechanism → inclusive treatment
- $\gg$  In analogy to absorptive processes in the optical theory



## **Instability beyond LL (inclusive)**

Quark bilinear operators:

- Dilatation of lifetime at NNLL
- $O(\alpha_s)$  QCD corrections to  $\Gamma_t$  at NLL Jeżabek, Kühn (Nucl. Phys. B 314, 1989)  $O(\alpha_s^2)$  QCD and  $O(\alpha)$  electroweak corrections to  $\Gamma_t$  at NNLL Blokland, Czarnecki, Ślusarczyk, Tkachov (Phys. Rev. Lett. 93, 2004)



## **Instability beyond LL (inclusive)**

Quark bilinear operators:

- Dilatation of lifetime at NNLL
- $O(\alpha_s)$  QCD corrections to  $\Gamma_t$  at NLL Jeżabek, Kühn (Nucl. Phys. B 314, 1989)  $O(\alpha_s^2)$  QCD and  $O(\alpha)$  electroweak corrections to  $\Gamma_t$  at NNLL Blokland, Czarnecki, Ślusarczyk, Tkachov (Phys. Rev. Lett. 93, 2004)

Gluon interactions and potentials:

$$\underbrace{\begin{smallmatrix} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

• electroweak corrections either beyond NNLL or contributions to  $\sigma_{tot}$  cancel due to gauge invariance





IPPP Internal Seminar · Durham · 12 Oct 2007

## **Instability beyond LL (inclusive)**

Quark bilinear operators:

- Dilatation of lifetime at NNLL
- O(α<sub>s</sub>) QCD corrections to Γ<sub>t</sub> at NLL Jeżabek, Kühn (Nucl. Phys. B 314, 1989)
   O(α<sub>s</sub><sup>2</sup>) QCD and O(α) electroweak corrections to Γ<sub>t</sub> at NNLL Blokland, Czarnecki, Ślusarczyk, Tkachov (Phys. Rev. Lett. 93, 2004)

Gluon interactions and potentials:





IPPP Internal Seminar · Durham · 12 Oct 2007

#### Currents:







#### Currents:







#### Currents:







NNLL usual hard corrections (real parts) (pure QED effects not included)

- $\delta \sigma_{\rm tot}^{\rm ew} = 2 \, N_c \, \, {
  m Im} \left[ 2 \, C_{\rm LL}^{\rm born} \, C_{\rm NNLL}^{\rm ew} \, G_{\rm LL}(0,0,E+i\Gamma_t) \right]$  $= \sigma_{\rm tot,LL} \cdot \Delta^{\rm ew}$
- $\overline{\text{MS}}$  definition for  $\alpha$ :  $\alpha^{n_f=8}(\mu) =$  $\frac{\alpha}{1 - \frac{\alpha}{3\pi} \sum_{i=e,\mu,\tau} \mathsf{Q}_{i}^{2} \ln\left(\frac{\mu^{2}}{\mathsf{m}_{i}^{2}}\right) - \frac{\alpha}{3\pi} \sum_{i=u,d,c,s,b} \mathsf{N}_{c} \mathsf{Q}_{i}^{2} \ln\left(\frac{\mu^{2}}{\mathsf{m}_{i}^{2}}\right)}$ 
  - $\Rightarrow \alpha^{n_f=8}(\mu=m_t)$  absorbs LL vacuum polarization through leptons and quarks
  - $\Rightarrow$  Remaining correction  $\Delta^{ew, \overline{MS}}$  characterized by Higgs exchange Jeżabek, Kühn (Phys. Lett. B 316, 1993)





IPPP Internal Seminar · Durham · 12 Oct 2007



⇒ Shift of normalization by 5.7% (m<sub>H</sub> = 115 GeV) or 2.4 % (m<sub>H</sub> = 200 GeV) with respect to m<sub>H</sub> = 1000 GeV



IPPP Internal Seminar · Durham · 12 Oct 2007

## **Imaginary electrow. matching beyond LL**

#### Currents:



 $e^{+}$ 

$$= \left[ \mathsf{C}_{\mathrm{LL}}^{\mathrm{born}} + \mathsf{C}_{\mathsf{NLL}}^{\mathrm{QCD}} + \mathsf{C}_{\mathsf{NNLL}}^{\mathrm{QCD}} + \mathsf{C}_{\mathsf{NNLL}}^{\mathrm{ew}} + \mathsf{i} \, \mathsf{C}_{\mathsf{NNLL}}^{\mathsf{bW}, \mathsf{abs}} + \dots \right] \cdot \left( \begin{array}{c} e^{+} \\ e^{-} \end{array} \right) \cdot \left( \begin{array}{c} e^{+} \\ e^{+} \end{array} \right) \cdot \left( \begin{array}{c$$

- >> bW-cuts of electroweak 1-loop diagrams  $O(\alpha)$
- bW-cuts are gauge invariant
- bW treated as stable particles
- $\Rightarrow$  NNLL instability effects



Hoang, CJR (Phys. Rev. D 71, 2005)



IPPP Internal Seminar · Durham · 12 Oct 2007

Optical Theorem 
$$\Rightarrow \sigma_{tot} = 2 N_c Im \left[ C(\mu)^2 G(0, 0, E + i\Gamma_t) \right]$$

 $\sigma_{\rm tot} = 2 \,\mathsf{N}_{\mathsf{c}} \,\mathrm{Im} \left[\mathsf{C}_{\mathrm{LL}}^{\mathrm{born}} \left(\mathsf{C}_{\mathrm{LL}}^{\mathrm{born}} + 2 \,\mathsf{C}_{\mathrm{NNLL}}^{\mathrm{ew}} + 2 \,\mathsf{i} \,\mathsf{C}_{\mathrm{NNLL}}^{\mathrm{abs,bW}}\right) \mathsf{G}_{\mathrm{LL}} + \dots \right]$ 



$$\begin{split} & \text{Optical Theorem} \Rightarrow \left[ \sigma_{\text{tot}} = 2 \, \text{N}_{\text{c}} \, \operatorname{Im} \left[ C(\mu)^2 \, \text{G}(0, 0, \text{E} + i\Gamma_{\text{t}}) \right] \right] \\ & \sigma_{\text{tot}} = 2 \, \text{N}_{\text{c}} \, \operatorname{Im} \left[ C_{\text{LL}}^{\text{born}} \left( C_{\text{LL}}^{\text{born}} + 2 \, C_{\text{NNLL}}^{\text{ew}} + 2 \, \text{i} \, C_{\text{NNLL}}^{\text{abs,bW}} \right) \text{G}_{\text{LL}} + \dots \right] \\ & = 2 \, \text{N}_{\text{c}} \Big\{ \left[ \left( C_{\text{LL}}^{\text{born}} \right)^2 + 2 \, C_{\text{LL}}^{\text{born}} \, C_{\text{NNLL}}^{\text{ew}} \right] \, \operatorname{Im}[\text{G}_{\text{LL}}] + 2 \, C_{\text{LL}}^{\text{born}} \, C_{\text{NNLL}}^{\text{abs,bW}} \, \operatorname{Re}[\text{G}_{\text{LL}}] + \dots \Big\} \end{split}$$







IPPP Internal Seminar · Durham · 12 Oct 2007

$$\begin{split} & \text{Optical Theorem} \Rightarrow \left[ \sigma_{\text{tot}} = 2 \, \mathsf{N}_{c} \, \operatorname{Im} \left[ \mathsf{C}(\mu)^{2} \, \mathsf{G}(0, 0, \mathsf{E} + \mathsf{i} \mathsf{\Gamma}_{t}) \, \right] \right] \\ & \sigma_{\text{tot}} = 2 \, \mathsf{N}_{c} \, \operatorname{Im} \left[ \mathsf{C}_{\text{LL}}^{\text{born}} \left( \mathsf{C}_{\text{LL}}^{\text{born}} + 2 \, \mathsf{C}_{\text{NNLL}}^{\text{ew}} + 2 \, \mathsf{i} \, \mathsf{C}_{\text{NNLL}}^{\text{abs,bW}} \right) \mathsf{G}_{\text{LL}} + \dots \right] \\ & = 2 \, \mathsf{N}_{c} \Big\{ \left[ \left( \mathsf{C}_{\text{LL}}^{\text{born}} \right)^{2} + 2 \, \mathsf{C}_{\text{LL}}^{\text{born}} \, \mathsf{C}_{\text{NNLL}}^{\text{ew}} \right] \, \operatorname{Im}[\mathsf{G}_{\text{LL}}] + \underbrace{2 \, \mathsf{C}_{\text{LL}}^{\text{born}} \, \mathsf{C}_{\text{NNLL}}^{\text{abs,bW}} \, \operatorname{Re}[\mathsf{G}_{\text{LL}}] + \dots \Big\} \end{split}$$

Interference of double-resonant and single-resonant bW<sup>+</sup>bW<sup>-</sup> final state diagrams





IPPP Internal Seminar · Durham · 12 Oct 2007

## **Phase space divergence**

Optical Theorem  $\Rightarrow \sigma_{tot} = 2 N_c Im \left[ C(\mu)^2 G(0, 0, E + i\Gamma_t) \right]$ 

• NNLL decay correction

$$\Delta^{\Gamma,1}\sigma_{\rm tot} = 2\,\mathsf{N}_{\mathsf{c}}\Big\{2\,\mathsf{C}_{\mathrm{LL}}^{\mathrm{born}}\,\mathsf{C}_{\mathrm{NNLL}}^{\mathsf{abs,bW}}\,\mathrm{Re}[\mathsf{G}_{\mathrm{LL}}] + \dots\Big\}$$

contains logarithmic UV phase space divergence



from  $\mathcal{O}(\alpha_s)$  term in Green function

$$= \mathsf{G}_{\mathsf{LL}}^{\mathcal{O}(\alpha_{\mathsf{s}})} = \alpha_{\mathsf{s}}(\mu) \,\mathsf{C}_{\mathsf{F}} \frac{\mathsf{m}_{\mathsf{t}}^2}{4\pi} \left[ \frac{1}{4\epsilon} - \ln\left(\frac{-\mathsf{i}\mathsf{m}_{\mathsf{t}}\mathsf{v}}{\mu}\right) + \frac{1}{2} - \ln 2 \right]$$



IPPP Internal Seminar · Durham · 12 Oct 2007

## **Phase space divergence**

Optical Theorem  $\Rightarrow \sigma_{tot} = 2 N_c Im \left[ C(\mu)^2 G(0, 0, E + i\Gamma_t) \right]$ 

• NNLL decay correction

 $\Delta^{\Gamma,1}\sigma_{tot} = 2 N_c \left\{ 2 C_{LL}^{born} C_{NNLL}^{abs,bW} \operatorname{Re}[G_{LL}] + \dots \right\}$ contains logarithmic UV phase space divergence





IPPP Internal Seminar · Durham · 12 Oct 2007

## **Phase space divergence**

Optical Theorem  $\Rightarrow \sigma_{tot} = 2 N_c Im \left[ C(\mu)^2 G(0, 0, E + i\Gamma_t) \right]$ 

NNLL decay correction

$$\Delta^{\Gamma,1}\sigma_{
m tot} = 2 \,\mathsf{N}_{\mathsf{c}} \Big\{ 2 \,\mathsf{C}^{\mathrm{born}}_{\mathrm{LL}} \,\mathsf{C}^{\mathsf{abs,bW}}_{\mathrm{NNLL}} \,\mathrm{Re}[\mathsf{G}_{\mathrm{LL}}] + \dots \Big\}$$

contains logarithmic UV phase space divergence



- NLL mixing effect:
  - $\Rightarrow$  Anomalous dimension for operator:

$$\mathsf{i}\,\mathsf{C}(\mu)\cdot\left(\begin{smallmatrix}e^+&e^-\\e^-&e^+\end{smallmatrix}
ight)$$

- $\Rightarrow$  Running  $\rightarrow$  correction  $\Delta^{\Gamma,2}\sigma_{tot}$ 
  - $\sqrt{s}$ -independent
  - scale-dependent

- Matching coefficient  $\gg$ 
  - $C(\mu = m_t, \Lambda)$

determination by

phase space matching



# **Imaginary matching: Numerical analysis**

Total cross section: LL + NLL + NNLL decay effects (absorptive parts)



 $\Rightarrow$  LL peak position shifted by 30 - 50 MeV



IPPP Internal Seminar · Durham · 12 Oct 2007

### **Phase space matching**

Hoang, Ruiz-Femenía, CJR (w.i.p.)





IPPP Internal Seminar · Durham · 12 Oct 2007

### **Phase space matching**

Hoang, Ruiz-Femenía, CJR (w.i.p.)



alternative approach see Beneke, Falgari, Schwinn, Signer, Zanderighi (2007)



IPPP Internal Seminar · Durham · 12 Oct 2007

Cutoff scaling:  $\Lambda^2 \lesssim m_t^2$ 

Captures resonance region, excludes unphysical parts of the phase space



Cutoff scaling:  $\Lambda^2 \lesssim m_t^2$ 

- Captures resonance region, excludes unphysical parts of the phase space
- Good convergence of the  $\left(\frac{E}{\Lambda}\right)^n \left(\frac{\Gamma_t}{\Lambda}\right)^m$  expansion



Cutoff scaling:  $\Lambda^2 \lesssim m_t^2$ 

- Captures resonance region, excludes unphysical parts of the phase space
- Good convergence of the  $\left(\frac{E}{\Lambda}\right)^n \left(\frac{\Gamma_t}{\Lambda}\right)^m$  expansion
- Power counting breaking: natural scaling  $\Lambda^2 \sim m_t^2 v^2$



Cutoff scaling:  $\Lambda^2 \lesssim m_t^2$ 

- Captures resonance region, excludes unphysical parts of the phase space
- Good convergence of the  $\left(\frac{E}{\Lambda}\right)^n \left(\frac{\Gamma_t}{\Lambda}\right)^m$  expansion
- Power counting breaking: natural scaling  $\Lambda^2 \sim m_t^2 v^2$ 
  - Higher dimensional operators will not be suppressed



Cutoff scaling:  $\Lambda^2 \lesssim m_t^2$ 

- Captures resonance region, excludes unphysical parts of the phase space
- Good convergence of the  $\left(\frac{E}{\Lambda}\right)^n \left(\frac{\Gamma_t}{\Lambda}\right)^m$  expansion
- Power counting breaking: natural scaling  $\Lambda^2 \sim m_t^2 v^2$ 
  - Higher dimensional operators will not be suppressed
  - + But:  $\frac{\Lambda}{m} < 1$  yields sufficient suppression (choose e.g.  $\Lambda \approx 0.6 \, m_t$ )

 $\rightarrow$  mild power counting breaking


## **Phase space cutoff**

Cutoff scaling:  $\Lambda^2 \lesssim m_t^2$ 

- Captures resonance region, excludes unphysical parts of the phase space
- Good convergence of the  $\left(\frac{E}{\Lambda}\right)^n \left(\frac{\Gamma_t}{\Lambda}\right)^m$  expansion
- Power counting breaking: natural scaling  $\Lambda^2 \sim m_t^2 v^2$ 
  - Higher dimensional operators will not be suppressed
  - + But:  $\frac{\Lambda}{m} < 1$  yields sufficient suppression (choose e.g.  $\Lambda \approx 0.6 m_t$ )

 $\rightarrow$  mild power counting breaking

Physical cutoff  $\Lambda$ 

 Cutoff corresponds to maximal invariant mass of an experimentally measured Wb pair that is assigned to a top decay event

Cross section is differential in experimental parameter  $\Lambda$ :  $\sigma(\Lambda)$ 



## **Finite renormalization**

How to incorporate into effective theory framework?

Phase space effects arise at the level of e<sup>+</sup>e<sup>-</sup> forward scattering (optical theorem) → Matching conditions for (e<sup>+</sup>e<sup>-</sup>)(e<sup>+</sup>e<sup>-</sup>) operators
 e.g. kinetic energy insertion





# **Finite renormalization**

How to incorporate into effective theory framework?

Phase space effects arise at the level of e<sup>+</sup>e<sup>-</sup> forward scattering (optical theorem) → Matching conditions for (e<sup>+</sup>e<sup>-</sup>)(e<sup>+</sup>e<sup>-</sup>) operators
 e.g. kinetic energy insertion



• Finite imaginary renormalization of every effective theory operator that corresponds to a full theory diagram with a cut through bW lines, e.g.

$$\begin{array}{cccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$



IPPP Internal Seminar · Durham · 12 Oct 2007

C. J. Reißer – p.24

Suppose formal counting  $\Lambda^2 \lesssim m_t^2$ 

**NLL** Born level (leading  ${}^{3}S_{1}$  current correlator)





Suppose formal counting  $\Lambda^2 \lesssim m_t^2$ 

**NLL** Born level (leading  ${}^{3}S_{1}$  current correlator)

**NLL** Insertions of bilinear operators and higher order current correlators



 $\sim \frac{\Gamma_{t}}{\Lambda} + \dots$ 

Suppose formal counting  $\Lambda^2 \lesssim m_t^2$ 

Born level (leading  ${}^{3}S_{1}$  current correlator) NLL

 $\sim \frac{\Gamma_{t}}{\Lambda} + \dots$ 

Insertions of bilinear operators and higher order current correlators NLL

• kinetic energy insertions  $\frac{\mathbf{p}^4}{8m_t^3}$   $\sim \frac{\Gamma_t \Lambda}{m_t^2} + \dots$ 





Suppose formal counting  $\Lambda^2 \lesssim m_t^2$ 

NLL Born level (leading  ${}^{3}S_{1}$  current correlator)

NLL Insertions of bilinear operators and higher order current correlators

- kinetic energy insertions  $\frac{\mathbf{p}^4}{8m_t^3}$   $\sim \frac{\Gamma_t \Lambda}{m_t^2} + \dots$ 
  - lifetime dilatation insertions  $(-i\Gamma_t)\frac{\mathbf{p}^2}{4m_t^2}$   $\sim \frac{\Gamma_t\Lambda}{m_t^2} + \dots$



 $\sim \frac{I_t}{\Lambda} + \dots$ 

Suppose formal counting  $\Lambda^2 \lesssim m_t^2$ 

NLL Born level (leading  ${}^{3}S_{1}$  current correlator)

NLL Insertions of bilinear operators and higher order current correlators

- kinetic energy insertions  $\frac{\mathbf{p}^4}{8m_t^3}$   $\sim \frac{\Gamma_t \Lambda}{m_t^2} + \dots$
- lifetime dilatation insertions  $(-i\Gamma_t)\frac{\mathbf{p}^2}{4m_t^2}$   $\sim \frac{\Gamma_t\Lambda}{m_t^2} + \dots$
- correlator of leading and subleading  ${}^{3}S_{1}$   ${}^{p^{2}/m^{2}}$   $\sim \frac{\Gamma_{t}\Lambda}{m_{t}^{2}} + \dots$



 $\sim \frac{\Gamma_{t}}{\Lambda} + \dots$ 

Suppose formal counting  $\Lambda^2 \lesssim m_t^2$ 

NLL Born level (leading  ${}^{3}S_{1}$  current correlator)

**Insertions of bilinear operators and higher order current correlators** 

- kinetic energy insertions  $\frac{\mathbf{p}^4}{8m_*^3}$
- lifetime dilatation insertions  $(-i\Gamma_t)\frac{\mathbf{p}^2}{4m^2}$
- correlator of leading and subleading <sup>3</sup>S<sub>1</sub>
- ${}^{3}P_{1}$  correlator

$$\sim \frac{\Gamma_t \Lambda}{m_t^2} + \dots$$

$$\sim \frac{\Gamma_{t}\Lambda}{m_{t}^{2}} + \dots$$

$$\sim \frac{\Gamma_{t}\Lambda}{m_{t}^{2}} + \dots$$

$$p^{2/m^{2}} \longrightarrow \sim \frac{\Gamma_{t}\Lambda}{m_{t}^{2}} + \dots$$



 $\sim \frac{\Gamma_t}{\Lambda} + \dots$ 

Suppose formal counting  $\Lambda^2 \lesssim m_t^2$ 

NLL Born level (leading  ${}^{3}S_{1}$  current correlator)

NLL Insertions of bilinear operators and higher order current correlators

- kinetic energy insertions  $\frac{\mathbf{p}^4}{8m_t^3}$   $\sim \frac{\Gamma_t \Lambda}{m_t^2} + \dots$
- lifetime dilatation insertions  $(-i\Gamma_t)\frac{\mathbf{p}^2}{4m_t^2}$   $\sim \frac{\Gamma_t\Lambda}{m_t^2} + \dots$
- correlator of leading and subleading  ${}^{3}S_{1}$   ${}^{p^{2}/m^{2}}$   $\sim \frac{\Gamma_{t}\Lambda}{m_{t}^{2}} + \dots$
- <sup>3</sup>P<sub>1</sub> correlator
- interference diagrams





IPPP Internal Seminar · Durham · 12 Oct 2007

 $\sim \frac{I_t}{\Lambda} + \dots$ 

Suppose formal counting  $\Lambda^2 \lesssim m_t^2$ 

NLL Born level (leading  ${}^{3}S_{1}$  current correlator)

NLL Insertions of bilinear operators and higher order current correlators

- kinetic energy insertions  $\frac{\mathbf{p}^4}{8m_t^3}$   $\sim \frac{\Gamma_t \Lambda}{m_t^2} + \dots$
- lifetime dilatation insertions  $(-i\Gamma_t)\frac{\mathbf{p}^2}{4m_t^2}$   $\sim \frac{\Gamma_t\Lambda}{m_t^2} + \dots$
- correlator of leading and subleading  ${}^{3}S_{1}$   ${}^{p^{2}/m^{2}}$   $\sim \frac{\Gamma_{t}\Lambda}{m_{t}^{2}} + \dots$
- <sup>3</sup>P<sub>1</sub> correlator
- interference diagrams
- $\Rightarrow$  Matching conditions for  $(e^+e^-)(e^+e^-)$  operators



IPPP Internal Seminar · Durham · 12 Oct 2007

 $\gamma \sim \frac{\Gamma_{\rm t}\Lambda}{m_{\rm t}^2} + \dots$ 

 $\sim \frac{\Gamma_{\rm t}\Lambda}{m_{\star}^2} + \dots$ 

 $\sim \frac{\Gamma_{t}}{\Lambda} + \dots$ 

 $\begin{array}{l} \mbox{Suppose formal counting} \hline \Lambda^2 \lesssim m_t^2 \\ \hline \mbox{NNLL} & \mathcal{O}(\alpha_s) \\ \hline \mbox{} \\ \mbox{} \mbox{} \\ \mbox{} \mbox{} \\ \mbox{} \\ \mbox{} \\ \mbox{} \\ \mbox{} \\ \mbox{} \\ \mbox{} \mbox{}$ 







IPPP Internal Seminar · Durham · 12 Oct 2007

C. J. Reißer – p.26





IPPP Internal Seminar · Durham · 12 Oct 2007

C. J. Reißer – p.26



NLL Combinations of  $\mathcal{O}(\alpha_s)$  corrections and bilinear operators or subleading currents





NNLL Combinations of  $\mathcal{O}(\alpha_s)$  corrections and bilinear operators or subleading currents

⇒ Imaginary matching conditions for currents and  $(e^+e^-)(e^+e^-)$  operators



C. J. Reißer – p.26

#### Numerical effects



-6

-4



IPPP Internal Seminar · Durham · 12 Oct 2007

C. J. Reißer – p.27

2

0

• Completion of phase space matching  $\rightarrow$  publication



- Completion of phase space matching → publication
- Investigate effects of ultrasoft gluons in phase space matching



- Completion of phase space matching → publication
- Investigate effects of ultrasoft gluons in phase space matching
- $O(\alpha_s)$  corrections to imaginary current matching conditions  $\rightarrow$  NNLL running of  $(e^+e^-)(e^+e^-)$  operators



- Completion of phase space matching → publication
- Investigate effects of ultrasoft gluons in phase space matching
- $O(\alpha_s)$  corrections to imaginary current matching conditions  $\rightarrow$  NNLL running of  $(e^+e^-)(e^+e^-)$  operators
- QED contributions: ISR, Coulomb singularities





- Threshold scan allows for precise  $m_t, y_t, \Gamma_t, \alpha_s$  determination
- Effective theory approach crucial to sum up threshold contributions



## **Summary**

- Threshold scan allows for precise  $m_t, y_t, \Gamma_t, \alpha_s$  determination
- Effective theory approach crucial to sum up threshold contributions

Unstable top leads to

- Complex matching conditions
- UV divergencies
- Matching conditions for the tt phase space that depend on definition of "threshold top pair event"
- Cutoff involves mild power counting breaking
- Corrections at NLL and NNLL order

