
Machine Learning with D0 → K 0
s π

+π− at LHCb

Martha Hilton

martha.hilton@cern.ch

University of Manchester

January 8, 2019

Martha Hilton YETI 2019 January 8, 2019 1 / 17



Background

D0 → K 0
s π

+π−

Mixing parameters:

x ≡ (m1 −m2)

Γ
y ≡ (Γ1 − Γ2)

2Γ

Mass Eigenstates: ∣∣D1,2

〉
= p

∣∣∣D0
〉
± q

∣∣∣D̄0
〉
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Background

World Average
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Background

Neutral Meson Mixing
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The LHCb Detector

The LHCb Detector
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The LHCb Detector

Data samples

Single-tagged: B− → D0(→ K 0
s π

+π−)µ−ν̄µ
Double-tagged: B̄0 → D∗+(→ D0(→ K 0

s π
+π−)π+)µ−ν̄µ

VELO: Vertex Locator

TT and T1-T3: Tracking stations located before and after the
dipole magnet
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Stripping and Trigger Selection

The LHCb Data Flow
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Stripping and Trigger Selection

Pre-Selection

Pre-selection Requirements

B meson flight distance χ2: χ2
FD > 100

χ2
FD : Difference between the χ2 of the primary vertex fit with and

without the particle

Probability that the muon is a muon: ProbNNmu ≥ 0.6

Pion does not look like a muon

Decay Tree Fitter

Kinematic refit with known D0 and K 0
s masses

Fit must have converged

Fit quality must be good: χ2 < 25
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Machine Learning

What is Machine Learning?

Types of Machine Learning:

Supervised: Data points have
known outcome

Unsupervised: Data points
have unknown outcome

Types of Supervised Learning:

Regression: Predicted
quantity is continuous

Classification: Predicted
quantity is a category
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Decision Trees

Boosted Decision Trees

Features: properties of the
data used for prediction

Target: predicted category or
label of the data

Label: the target value for a
single data point
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Decision Trees

Gradient Boosted Decision Trees

Gradient Boosting is an ensembling technique

Prediction is done by an ensemble of estimators

Gradient boosting provides improved predictions by combining an
ensemble of estimators

Weak Learner: A decision tree which does not perform very well
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XGBoost

XGBoost

XGBoost: eXtreme Gradient
Boosting

Can be used in a range of
computing environments:
parallelisation and distributed
computing

XGBoost is much faster than
other gradient boosting
implementations

Martha Hilton YETI 2019 January 8, 2019 12 / 17



Boosting to Uniformity

Boosting to Uniformity

It is important to have flat
efficiency in decay time and
Dalitz variables to avoid biases
uBoost uses a combination of
FlatnessLoss and AdaLoss
FlatnessLoss: penalises
non-uniformity
AdaLoss: penalises poor
predictions like regular boosting
Loss Function:
L = LAdaLoss + αLFL
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Machine Learning in D0 → K0
s π

+π−

BDT Input Variables

mcorr (B): corrected mass of the B-meson candidate with respect to
the best primary vertex

Corrected Mass: Mass corrected for the missing transverse energy of
the neutrino

θDIRA of the B-meson candidate

DIRA (Direction Angle): The angle between a line drawn from the
primary vertex to the decay vertex of the particle and the sum of the
4-momentum of its decay products

χ2/ndof of the B-meson decay vertex

χ2 of the B-meson primary vertex

pT of the muon candidate

pT of the D0 candidate

χ2/ndof of the D0 meson decay vertex
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Machine Learning in D0 → K0
s π

+π−

Multivariate Analysis

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver operating characteristic

ROC AdaBoost (area = 0.89)
ROC GradientBoost (area = 0.91)
ROC UGradientBoost (area = 0.90)
ROC XGBoost (area = 0.91)
Luck
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Machine Learning in D0 → K0
s π

+π−

Mass Plots
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Delta mass: δm = m(D∗)−m(D0)
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Summary

Summary

Measure mixing parameters of D0 meson using D0 → K 0
s π

+π− decay
at LHCb detector

Mixing is suppressed in the charm sector and experimentally
challenging

D0 → K 0
s π

+π− offers direct access to the mixing parameters x and y

Machine learning is crucial for the amplitude fit used in this analysis
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