Introduction EVV	SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook

Event-level classification of Electroweak SUSY events using ML techniques

Matt Sullivan matthew.james.sullivan@cern.ch

Supervisors: Yanyan Gao, Monica D'Onofrio

YETI2019

イロト イボト イヨト イヨト

Introduction	EW SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook
•	oo		00000	0
Introductio	n			

- Electroweak SUSY searches at ATLAS
 - Motivation
 - $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ pair-production
- $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ prospects at HL-LHC
 - HL-LHC prospects overview
 - Signal selection with BDTs
 - HL-LHC projected limits
- Current R&D XGBoost & DNNs:
 - Improving signal-background discrimination
 - Per-background classification

<ロ> <部> <き> <き> <き> <き</p>

Introduction	EW SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook
0	●○		00000	O
Motivation				

Electroweak SUSY searches usually involve direct production of 'EWK-inos' and sleptons:

 EWK-inos: mixtures of SUSY partners to EWK gauge bosons and Higgs

Motivation:

- Low mass EWK-inos may address various open questions (DM, hierarchy problem...)
- EWK SUSY could be dominant SUSY process at LHC if squarks & gluinos are decoupled
- Large CoM energies and datasets → ideal conditions for EWK SUSY searches

Cross-sections for a number of SUSY pair-production processes at $\sqrt{s}=13~{\rm TeV}$

3

イロト イポト イヨト

Introduction	EW SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook
O	⊙●		00000	0
$ ilde{\chi}_1^\pm ilde{\chi}_2^0$ pair	ir-production			

Simplified model of $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ pair-production

Model assumptions:

• BR
$$(\tilde{\chi}_1^{\pm} \to W \; \tilde{\chi}_1^0) = 100\%$$

• BR
$$(\tilde{\chi}_2^0 \to h \, \tilde{\chi}_1^0) = 100\%$$

•
$$m(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_2^0)$$

 The Higgs, h, is the lightest SUSY Higgs, with SM-like mass and couplings:

$$-m_{h} = 125 \text{ GeV}$$

- BR
$$(h \rightarrow b\bar{b}) = 58\%$$

For 500 GeV $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$, massless $\tilde{\chi}_1^0$: $\sigma = 46.4 {\rm fb}$ • Current result excludes this process up to m($\tilde{\chi}_1^\pm/\tilde{\chi}_2^0$) $\sim 550~{\rm GeV}$

イロト イヨト イヨト イヨト

Combined paper with other final states: <u>ArXiv</u>

Matt Sullivan matthew.james.sullivan@cern.ch Electroweak SUSY searches using ML techniques

Introduction	EW SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook
		000		

HL-LHC prospects overview

- HL-LHC projection: derive expected exclusion (2σ) and discovery (5σ) limits for this channel at ATLAS with HL-LHC dataset!
- Make preliminary selection requiring 1 lepton, 2 jets from b-quarks + E_T^{miss} > 200 GeV
- Separate signal models into 3 regions:

Signal yield $\times 1000.$ All backgrounds estimated directly from Monte Carlo.

イロト イポト イヨト

 Train a Boosted Decision Tree (BDT) on signal in each region and tt background

Signal co	Jaction with RD	Te		
	00	000	00000	
Introduction	EW SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook

Signal selection with BDTs

- BDT classifies event as signal or background with prediction
 - $\in [-1,1]$
 - Prediction ightarrow 1 = signal-like
 - Prediction \rightarrow -1 = background-like
- Optimise cut on output of BDT using significance (assume 15% uncertainty)

イロト イポト イヨト

э

Processes	SR-M1 (>0.25)	SR-M2 (>0.35)	SR-M3 (>0.30)
tī	38.9 ± 8.4	8.7 ± 3.3	2.5 ± 1.8
single top	28.3 ± 4.8	10.7 ± 3.2	5.4 ± 2.5
W+jets	22.2 ± 5.4	3.0 ± 2.0	2.0 ± 1.8
ttV	5.1 ± 2.4	2.0 ± 1.4	1.0 ± 1.0
Diboson	2.0 ± 2.0	-	-
total background	96.5 ± 11.8	24.4 ± 5.2	10.9 ± 3.4
$m(ilde{\chi}^\pm_1/ ilde{\chi}^0_2$, $ ilde{\chi}^0_1) = (500, 300) \; GeV$	20.7 ± 4.8	4.6 ± 2.3	1.0 ± 1.0
m $(ilde{\chi}_{1.}^{\pm}/ ilde{\chi}_{2}^{0}$, $ ilde{\chi}_{1}^{0})=$ (800, 420) GeV	44.3 ± 2.3	33.6 ± 2.0	21.2 ± 1.6
m $(ilde{\chi}_1^\pm/ ilde{\chi}_2^0$, $ ilde{\chi}_1^0)=(1000,1)$ GeV	32.2 ± 1.8	31.9 ± 1.8	28.9 ± 1.7

Matt Sullivan matthew.james.sullivan@cern.ch Electroweak SUSY searches using ML techniques

イロト イヨト イヨト イヨト

Introduction	EW SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook
0	oo		●0000	O
R&D: Ne	w techniques			

- HL-LHC analysis used BDTs implemented with TMVA
 - Quick, easy, established in HEP
- Many new packages & techniques gaining interest from HEP community:
 - XGBoost: eXtreme Gradient Boosted decision trees
 - Keras: High-level Python interface to Tensorflow neural networks
- Use these techniques to build better classifiers:
 - 1ℓbb̄ analysis: target low mass splitting region (experimentally difficult!)
 - $Wt + E_T^{miss}$ 2HDM+a analysis: Stronger background rejection through classification

 $Wt + E_T^{miss}$ 2HDM+a diagrams

3

ヘロト 人間 とくほ とくほとう

R&D. Si	gnal/hackground	classification		
			00000	
Introduction	EW SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook

- Binary classification:
 - 1: m $({ ilde \chi}_1^\pm/{ ilde \chi}_2^0$, ${ ilde \chi}_1^0)=$ (400, 200) GeV
 - 0: tt background
- Train an XGBoost classifier and a Deep Neural Network (DNN)
 - 50k events from each class split 50:50 for train/test
- Use following variables as inputs:
 - High-level (HL): m_{bb} , m_{CT} , m_T , E_T^{miss} , $\Delta R(b1, b2)$
 - Low-level (LL): $p_T^{\ell_1}$, η^{ℓ_1} , ϕ^{ℓ_1} , $p_T^{b_1}$, η^{b_1} , ϕ^{b_1} , $p_T^{b_2}$, η^{b_2} , ϕ^{b_2}
- 3 sets of trainings: HL only, LL only, <u>HL+LL</u>

• All trainings converge quickly w/GPU acceleration

- XGBoost *O*(10*s*)
- DNN O(100s)
- XGBoost classifier has higher AUC than DNN - stats limited by signal MC
- Low-level variables carry much discrimination power
 - XGBoost feature importance = times feature is in final decision tree
- Additional features: $\phi^{E_T^{miss}}$, $m_{\ell b1}$, $m_{\ell b2}$

3

R&D: Classification of multiple backgrounds

- Signal vs tt idealised scenario
 - Low $m_T \to W+$ jets dominant
 - High $m_T
 ightarrow Wt$ dominant
- Initial studies into per-background classification:
 - Same features as previously shown used to train
 - 50k events from each background class split 50:50 for train/test
- 3 classes:
 - $t\overline{t}$, Wt, W+jets

<<p>(日)

	00 I. I. C	000	00000	0
Introduction	EW SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook

- - First attempt at classifying different backgrounds underway
 - What we learn:
 - Input features allow accurate classification of $t\bar{t}$
 - Wt classification not as accurate - additional features, more training events?
 - Feature importance very different!
 - $m_T \& m_{CT}$ used in previous analyses as background discriminators

イロト イボト イヨト イヨト

Introduction	EW SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook
0	oo		00000	●
Conclusion	S			

- Strong motivations for $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$ searches
- HL-LHC $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ prospects analysis:
 - Signal selection done with BDTs
 - Exclusion limit: 1280 GeV
 - Discovery limit: 1080 GeV
- Currently studying potential improvements to Run-2 analysis:
 - Signal selection using XGBoost/DNN
 - Classifying individual backgrounds using multiclass XGBoost/DNN

Thanks for listening! Any questions?

イロン 不得 とうせい きゅうしゅう

Introduction	EW SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook

Backup

Matt Sullivan matthew.james.sullivan@cern.ch Electroweak SUSY searches using ML techniques

₹ 9 Q (P

イロト イヨト イヨト ・

Kinematic variable definitions								
0	00	000	00000	0				
Introduction	EW/ SLISY @ ATLAS	HI_IHC prospects	Current R&D	Outlook				

$$\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} \tag{1}$$

$$m_T = \sqrt{2p_T^\ell E_T^{miss} \left(1 - \cos\Delta\phi\right)} \tag{2}$$

$$m_{CT} = \sqrt{\left(E_T^{b_1} + E_T^{b_2}\right)^2 - \left(\mathbf{p}_T^{b_1} - \mathbf{p}_T^{b_2}\right)^2}$$

Boost-corrected m_{CT}: https://arxiv.org/abs/0910.0174

$$E_T^{miss} = \left| \mathbf{p}_T^{miss} \right| \tag{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

(3)

Introduction	EW SUSY @ ATLAS	HL-LHC prospects	Current R&D	Outlook
0	oo		00000	0
BDT out	puts			

0	00	000	00000	0			
DNN parameter scan							

Low-level variable training only [excluding $\varphi(MET)$]

Matt Sullivan matthew.james.sullivan@cern.ch Electroweak SUSY searches using ML techniques

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで