Future colliders

Freya Blekman

Interuniversity Institute for High Energies, Vrije Universiteit Brussel, Belgium

Thanks to A. Blondel, P. Azzi, P. Giacomelli and many other collaborators

Outline

- Why?
- Future colliders
 - a short overview for younger scientists (in no particular order)
- Physics reach (highlights)

what about detectors?

- I will not talk about detector design but the executive summary is that there are multiple detector prototypes on the market
- Many more details on detectors in Nigel Watson's talk later this workshop
- All general-purpose detectors with excellent performance at least similar but usually much better than modern LHC detectors, including excellent b and c quark tagging, low (<1 GeV) energy photon and lepton measurement capabilities and high rapidity acceptance
 - ATLAS/CMS-like but with suitable resolution, efficiency, acceptance
 - More ambitious using really cutting edge technologies such as monolithic active pixels, modern drift chambers using si-detector technology, next-generation highly granular calorimetry etc
- Both full and fast simulation are commonly used, while parameterized detector simulation (e.g. DELPHES) is also frequently used for more phenomenology-oriented studies

VRIJE

UNIVERSITEIT

Why new colliders?

- Why build a better telescope?
- Why build a better microscope?

Let's focus on the physics and on what we know

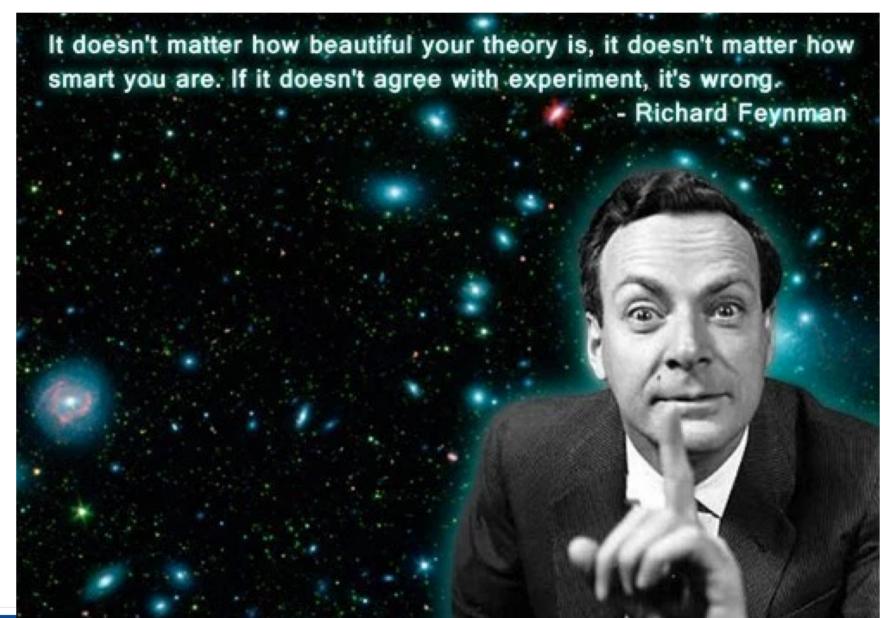
Outstanding Questions in Particle Physics circa 2011 Quarks and leptons: why 3 families? masses and mixing **EWSB** CP violation in the lepton sector ☐ Does the Higgs boson exist? matter and antimatter asymmetry baryon and charged lepton number violation Physics at the highest E-scales: □ how is gravity connected with the other forces? do forces unify at high energy? Dark matter: composition: WIMP, sterile neutrinos, axions, other hidden sector particles, ... **Neutrinos:** • one type or more? u masses and and their origin only gravitational or other interactions? \Box what is the role of H(125)? Majorana or Dirac? The two epochs of Universe's accelerated expansion: **CP** violation primordial: is inflation correct? \Box additional species \rightarrow sterile v? which (scalar) fields? role of quantum gravity? \Box today: dark energy (why is Λ so small?) or gravity modification? ICHEP 2016 -- I. Shipsey

Outstanding Questions in Particle Physics circa 2016 ... there has never been a better time to be a particle physicist!

Higgs boson and EWSB	Quarks and leptons: □ why 3 families? □ masses and mixing □ CP violation in the lepton sector □ matter and antimatter asymmetry □ baryon and charged lepton number violation			
cosmological EW phase transition	Physics at the highest E-scales: how is gravity connected with the other forces? do forces unify at high energy?			
 □ composition: WIMP, sterile neutrinos, axions, other hidden sector particles, □ one type or more ? □ only gravitational or other interactions ? 	Neutrinos: □ v masses and and their origin □ what is the role of H(125)?			
The two epochs of Universe's accelerated expansion: ☐ primordial: is inflation correct? which (scalar) fields? role of quantum gravity? ☐ today: dark energy (why is Λ so small?) or gravity modification? ☐ ICHEP 2016	 □ Majorana or Dirac? □ CP violation □ additional species → sterile v? 			

These questions are compelling, difficult and intertwined \rightarrow require multiple approaches high-E colliders, neutrino experiments (solar, short/long baseline, reactors 0νββ decays), cosmic surveys (CMB, optical/IR spectroscopic and photometric), dark matter direct, indirect and astrophysical detection, precision measurements of rare decays and phenomena, dedicated searches (WIMPS, axions, dark-sector particles), ...

Main questions and main approaches to address them

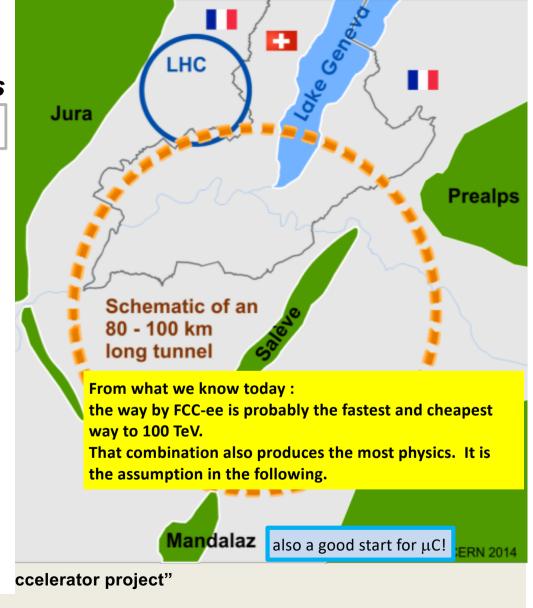

	High-E colliders	High-precision experiments	Neutrino experiments	Dedicated searches	Cosmic surveys
Higgs , EWSB	×				
Neutrinos			X	X	X
Dark Matter	×			×	X
Flavour, CP-violation	X	×	×	×	
New particles and forces	X	×	×	×	
Universe acceleration					×

These complementary approaches are ALL needed: their combination is crucial to explore the largest range of E scales, properly interpret signs of new physics, and build a coherent picture of the underlying theory.

Curiosity!

Future Circular Colliders at CERN

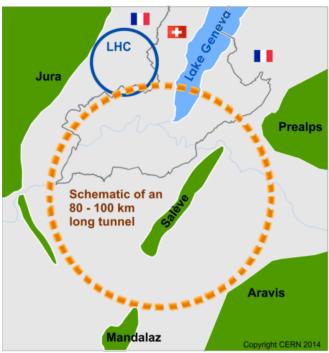
International collaboration to Study Colliders fitting in a new ~100 km infrastructure, fitting in the Genevois


- ~16 T magnets **Ultimate goal:** 100 TeV pp-collider (FCC-hh)
- defining infrastructure requirements

Two possible first steps:

- e⁺e⁻ collider (FCC-ee) High Lumi, E_{CM} =90-400 GeV
- HE-LHC $16T \Rightarrow 27 \text{ TeV}$ in LEP/LHC tunnel

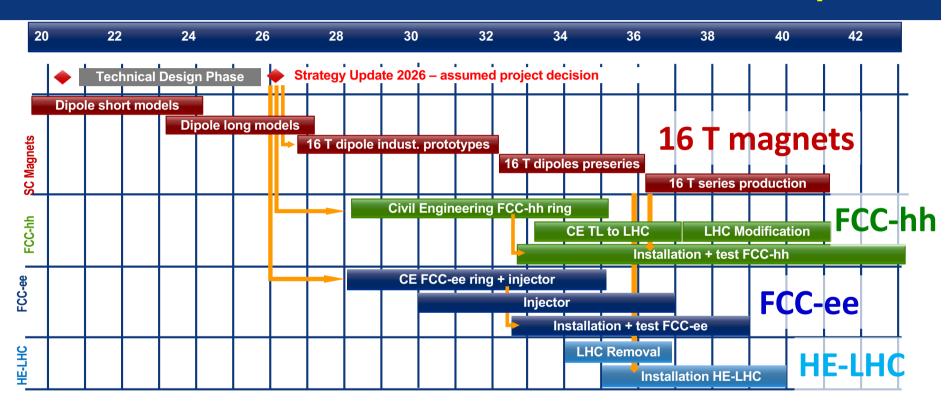
Possible addition:


p-e (FCC-he) option

Freya Blekman, YETI 2019

Future Circular Collider FCC-ee

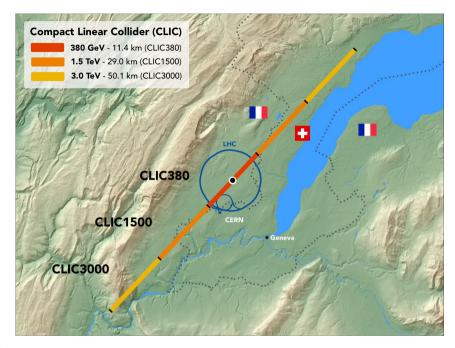
- High-luminosity ee circular collider proposed in new 80-100 km tunnel near CERN
- Flexible centre-of-mass-energy from 90 to 400
 GeV
- Top physics run at 365 GeV
- Schedule (and physics) complementary to LHC and in synergy with upgrade to FCC-hh (pp @ 100 TeV)

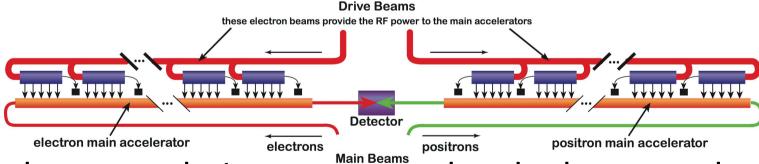

- With precision measurements, 20-50 fold improvement on many SM parameters such as
 - $m_7 m_W m_{top} \sin^2 \theta_W^{eff} R_B$, $\alpha_{OFD} \alpha_S$, top and Higgs couplings
- Potential to directly or indirectly discover BSM physics
 - Understand BSM through quantum effects in loops
 - DM as invisible decay of H as Higgs factory
 - FCNC in Z and ttbar, flavour physics

Possible Timeline of the FCCs

Technical Schedule for each of the 3 options

schedule constrained by 16 T magnets & CE


- → earliest possible physics starting dates
- FCC-ee: 2039
- FCC-hh: 2043
- HE-LHC: 2040 (with HL-LHC stop LS5 / 2034)

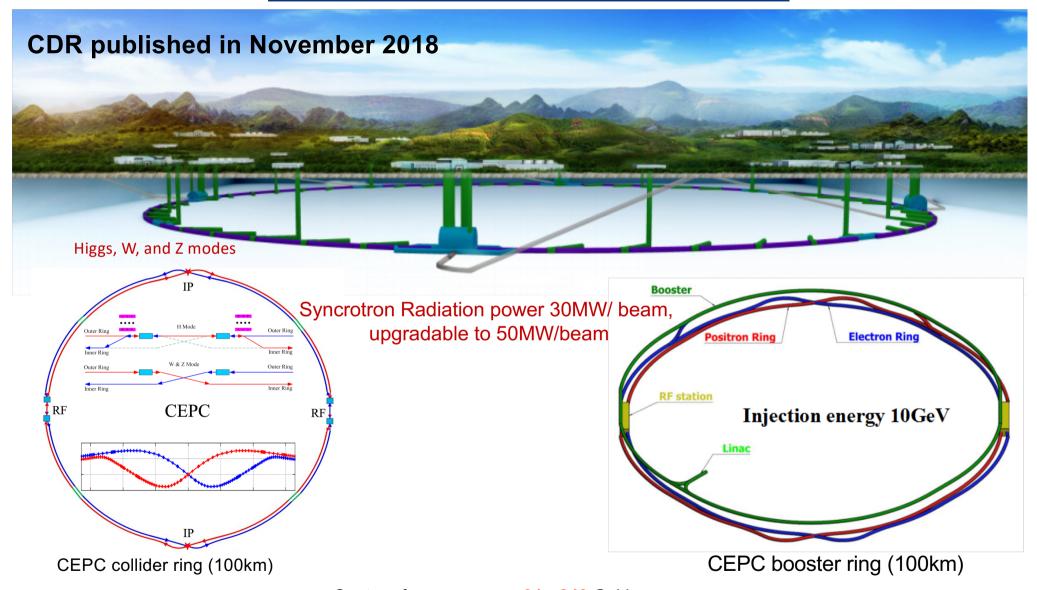


CLiC: Compact Linear Collider

 Future e+e- collider with access to >=TeV sqrt(s)

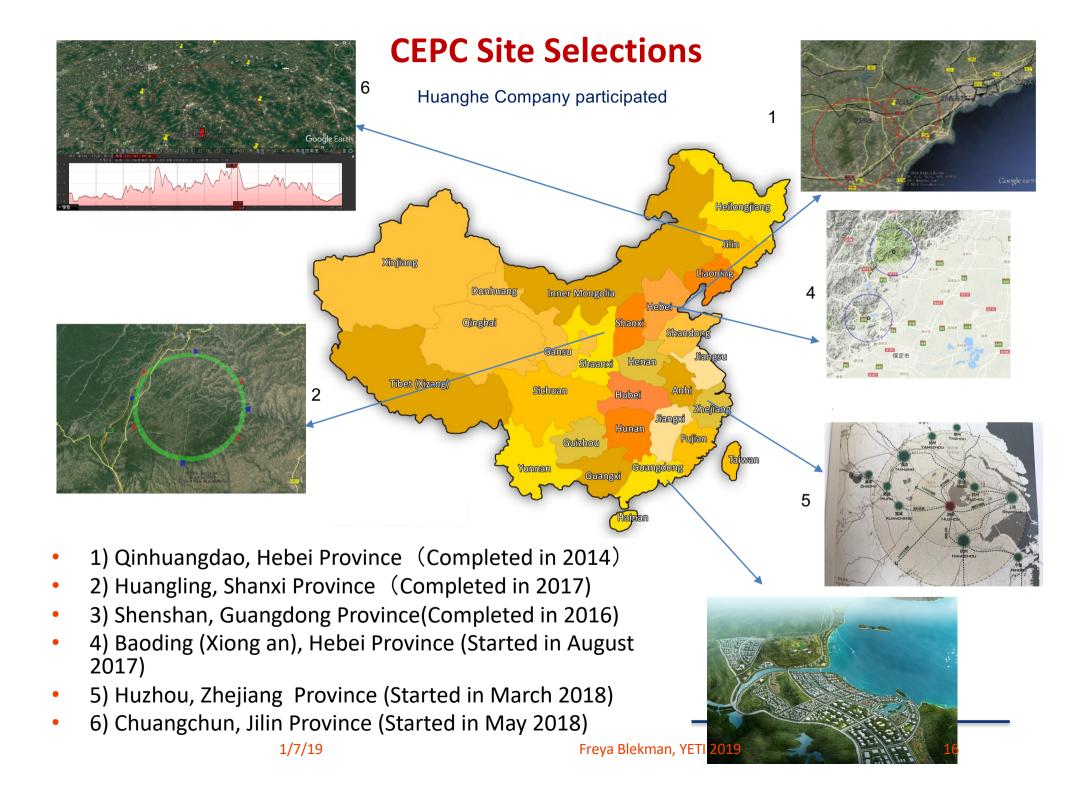
Energy scenarios (staged)				
sqrt(s) [GeV]	Integrated luminosity [fb ⁻¹]			
380	500			
350 (top scan)	100			
1500	1500			
3000	3000			

Accelerator techniques are novel and rely on two beam acceleration involving gradients over 100 MV/m!


UNIVERSITEI^{*}

BRUSSEL

International Linear Collider ILC



Circular colliders: CEPC

Center of mass energy 91 - 240 GeV Max. luminosity (\sqrt{s} =240 GeV) 3 x 10³⁴ cm⁻²s⁻¹ Later install SPPC (pp collider) \sqrt{s} = 100-120 TeV

CEPC

- Studies for site ongoing
- Qing Huang Dao "Site 1" (close to Beijing) is used for studies CDR

Top quark runs currently part of potential upgrade

Lumi.	Higgs	W	Z	Z(2T)
×10 ³⁴	2.93	11.5	16.6	32.1

Source: X. Lou, ICHEP18 plenaries

VRIJE

BRUSSEL

Source: X. Lou, ICHEP18 plenaries

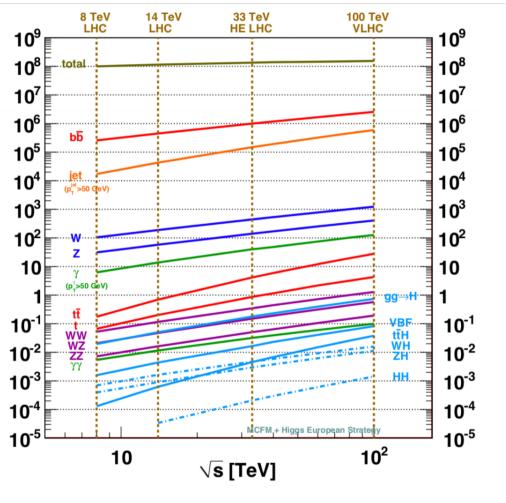
Paths to realizing the e⁺e⁻ collider(s)

ILC ILC250 is ready

"The 2018 Asian Li 28 May to 1 June. A scientific importan hosting the project supported Europea end of 2018 if the I

is being held in Fukuoka, Japan from imously endorsed stressing the government to declare interest in he European Strategy Group, which pdate in 2013, needs input by the eport."

CLIC Can be implemented at CERN, as an international project, after completion of the LHC.


FCC-ee Can be implemented at CERN, as an international project, after the LHC.

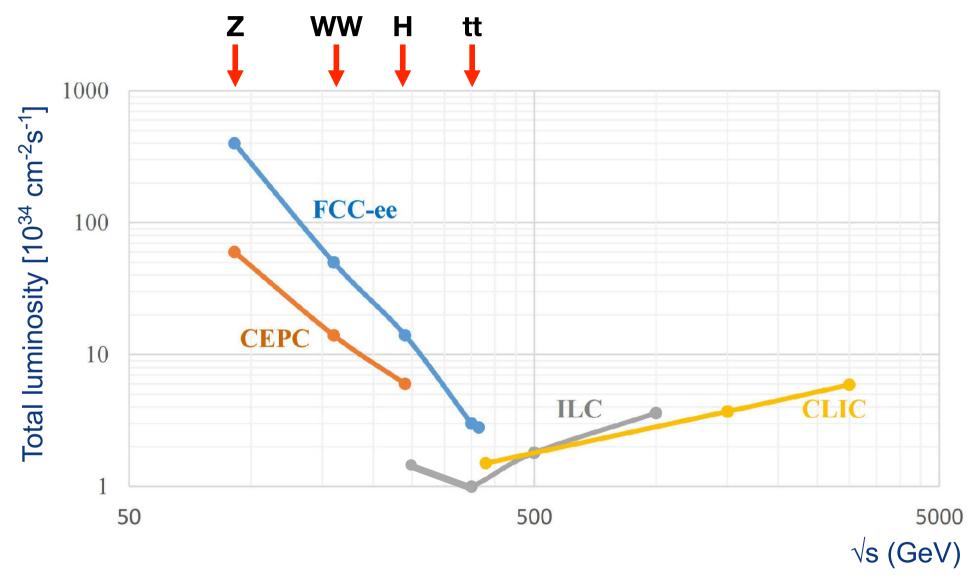
CEPC: Chinese Government: "actively initiating major-international science project..."
国发 (2018) 5号 (2018.3.14) http://www.gov.cn/zhengce/content/2018-03/28/content_5278056.htm

- focuses on "frontier science, large-fundamental science, global focus, international collaboration, ..."
- by year 2020, 3-5 projects will be chosen to go into "preparatory stage", among which 1-2 projects will be selected. More projects will be selected in later years.
- This is a likely path to realize CEPC.

FCC-hh: 100 TeV proton-proton collider

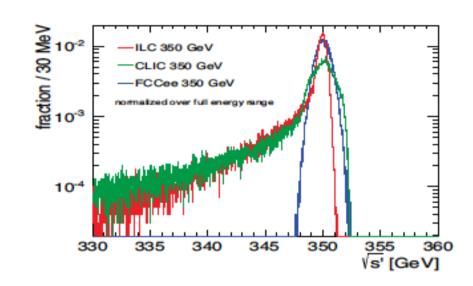
- Nigel Watson will discuss more
- Physics- and analysis-wise this machine very similar to LHC but with larger cross sections/better S/B ratio
 - parton luminosities!
 - And BIG analysis challenges: almost everything boosted, more forward production
 - But for that you can design a detector that can do that

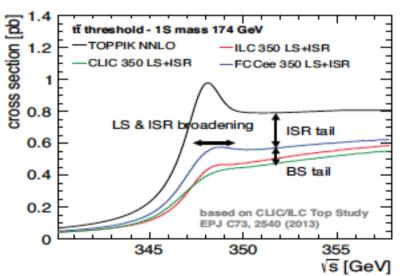
FCC-hh discovery potential highlights


FCC-hh is a HUGE discovery machine (if nature ...), but not only.

FCC-hh physics is dominated by three features:

- Highest center of mass energy \rightarrow a big step in high mass reach!
 - ex: strongly coupled new particles up to >30 TeV
 - Excited quarks, Z', W', up to ~tens of TeV
 - Give the final word on natural Supersymmetry, extra Higgs etc.. reach up to 5-20 TeV Sensitivity to high energy phenomena in e.g. WW scattering
- HUGE production rates for single and multiple production of SM bosons (H, W, Z) and quarks
 - Higgs precision tests using ratios to e.g. $\gamma\gamma/\mu\mu/\tau\tau/ZZ$, ttH/ttZ @<% level
 - Precise determination of triple Higgs coupling (~3% level) and quartic Higgs coupling
 - detection of rare decays $H \rightarrow V\gamma$ (V= ρ , ϕ , J/ ψ , Υ , Z...)
 - search for invisibles (DM searches, RH neutrinos in W decays)
 - renewed interest for long lived (very weakly coupled) particles.
 - rich top and HF physics program
- Cleaner signals for high Pt physics
 - allows clean signals for channels presently difficult at LHC (e.g. $H \rightarrow bb$)

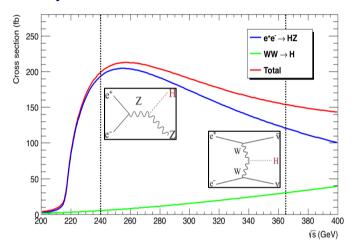

Future lepton colliders luminosities

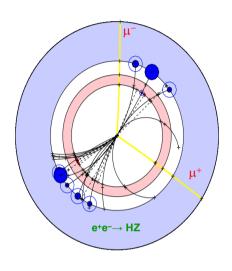


Clear advantage in luminosity for circular colliders vs. linear colliders. Linear colliders (CLIC) have higher energy reach, but less than a pp collider.

Collider: does it matter which one?

- The threshold shape is affected by ISR and luminosity profile
 - Width of turn-on affected by width luminosity peak
 - Possibility to shift below threshold energy means reduction in effective cross section

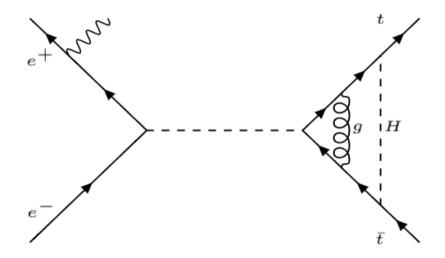


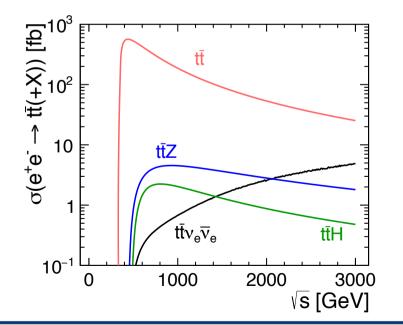


- Both sample size and knowledge of uncertainty centre-of-mass create important uncertainties
- ISR/luminosity profile sharper for circular machines
- can be optimised for expected physics performance

Circular e⁺e⁻ colliders: FCC-ee, CepC

- Basic measurements similar for all e⁺e⁻colliders
 - Some differences in experimental conditions

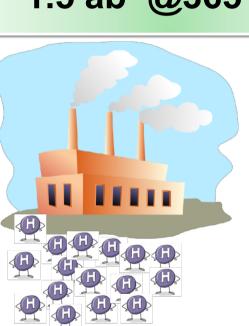

- $e^+e^- \rightarrow HZ$ at $\sqrt{s} = 240-250$ GeV : Higgs boson are tagged with a Z and $m_{Recoil} = m_H$
 - Measure σ_{HZ} ($\propto g_{HZ}^2$) independently of H decay: absolute determination of g_{HZ}
 - Measure $\sigma_{HZ} \times BR(H \rightarrow invisible)$ and many exclusive decays $\sigma_{HZ} \times BR(H \rightarrow XX)$
 - Infer Higgs width Γ_{H} from $\sigma_{HZ} \times BR(H \rightarrow ZZ)$ ($\propto g_{HZ}^{4}/\Gamma_{H}$)
 - ullet Fit couplings g_{HX} from BR(H ightarrow XX) and Γ_{H} in a model-independent manner
- $e^+e^- \rightarrow HZ$ completed with WW fusion at $\sqrt{s} = 350-365$ GeV at FCC-ee
 - ullet Improves all precisions, especially on g_{HW} and Γ_H
 - First glance at top Yukawa coupling λ_t and Higgs self coupling λ_H (next slides)

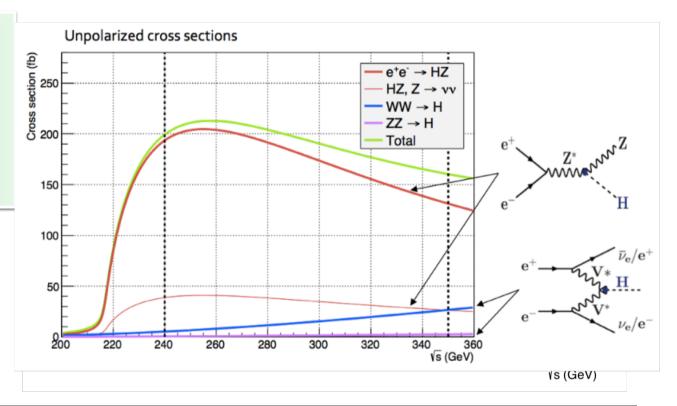


Analysis at lepton colliders

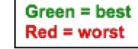
crash course for a hadron collider physicist

- At lepton colliders, measurement of photons from ISR can be used to accurately measure centre-of-mass of each event
- Triggers are not really an issue typically
- Relatively few backgrounds that are SMbased (few 'fake' backgrounds)ß
- Strategy jet reconstruction is very different: typically fitting all information in event for the expected jet multiplicity
 - And different jet reconstruction algorithms
 - So effectively *always* 4 jets in HH->bbbb, ttbar->l+jets, etc




Higgs width at FCC-ee (or CPEC)

FCC-ee 5 ab-1@240 GeV ~1.5 ab⁻¹@365 GeV

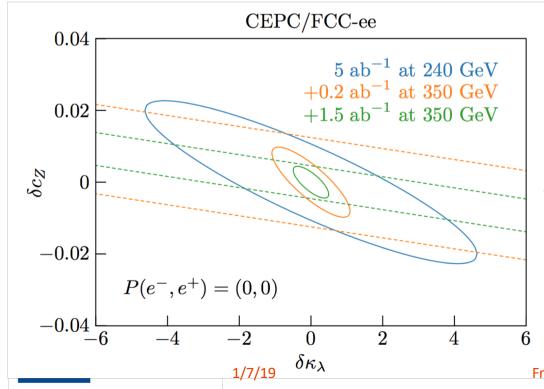


	FCC-ee	FCC-ee
	240 GeV	365 GeV
Total Integrated Luminosity (ab ⁻¹)	5	1.5
# Higgs bosons from e ⁺ e ⁻ →HZ	1,000,000	180,000
# Higgs bosons from fusion process	25,000	45,000

Comparison with other e⁺e⁻ colliders

 Just from the sheer number of Higgs bosons, CPEC and FCCee have a clear gain beyond other ee colliders

Collider	μ Coll ₁₂₅	ILC ₂₅₀	CLIC ₃₈₀	LEP3240	CEPC ₂₅₀	FCC-ee ₂₄₀	FCC-ee ₃₆₅
Years	6	15	7	6	7	3	4
Lumi (ab ⁻¹)	0.005	2	0.5	3	5	5	1.5
δ m _H (MeV)	0.1	14	110	10	5	7	6
δΓ _H / Γ _H (%)	6.1	3.8	6.3	3-7	2.6	2.8	1.6
δ g нь / gнь (%)	3.8	1.8	2.8	1.8	1.3	1.4	o.68
δ g нw / g нw (%)	3.9	1.7	1.3	1.7	1.2	1.3	0.47
δ g нτ / g нτ (%)	6.2	1.9	4.2	1.9	1.4	1.4	0.80
δ g нγ / g нγ (%)	n.a.	6.4	n.a.	6.1	4.7	4.7	3.8
δ g _{Ημ} / g _{Ημ} (%)	3.6	13	n.a.	12	6.2	9.6	8.6
δ g нz / g нz (%)	n.a.	0.35	0.80	0.32	0.25	0.25	0.22
δ g нс/ g нс (%)	n.a.	2.3	6.8	2.3	1.8	1.8	1.2
δ g нց / g нց (%)	n.a.	2.2	3.8	2.1	1.4	1.7	1.0
BR _{invis} (%) _{95%CL}	SM	< 0.3	< 0.6	< 0.5	< 0.15	< 0.3	< 0.25
BR _{EXO} (%) _{95%CL}	SM	< 1.8	< 3.0	< 1.6	< 1.2	< 1.2	< 1.1

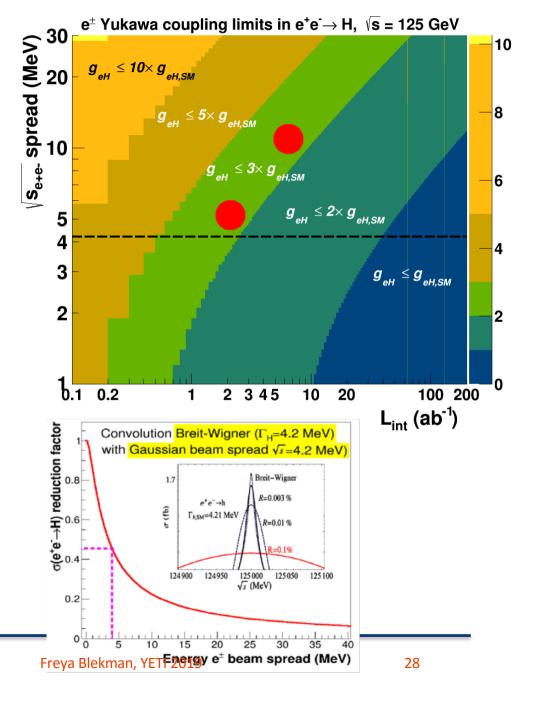

Higgs self-coupling

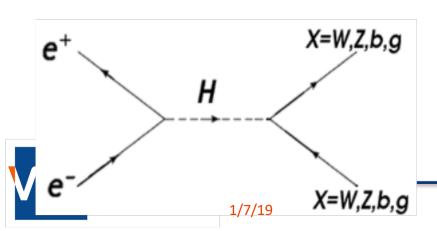
$$\sigma_{Zh} = \left| \begin{array}{c} \mathbf{e} \\ \mathbf{e} \end{array} \right|^{2} + 2 \operatorname{Re} \left[\begin{array}{c} \mathbf{z} \\ \mathbf{e} \end{array} \right]^{2} \cdot \left(\begin{array}{c} \mathbf{e}^{+} \\ \mathbf{e} \end{array} \right)^{2} \right]$$

$$\delta_{\sigma}^{240} = 100 \left(2\delta_{Z} + 0.014\delta_{h} \right) \%$$

Very large HZ datasets allow gZH measurements of extreme precision

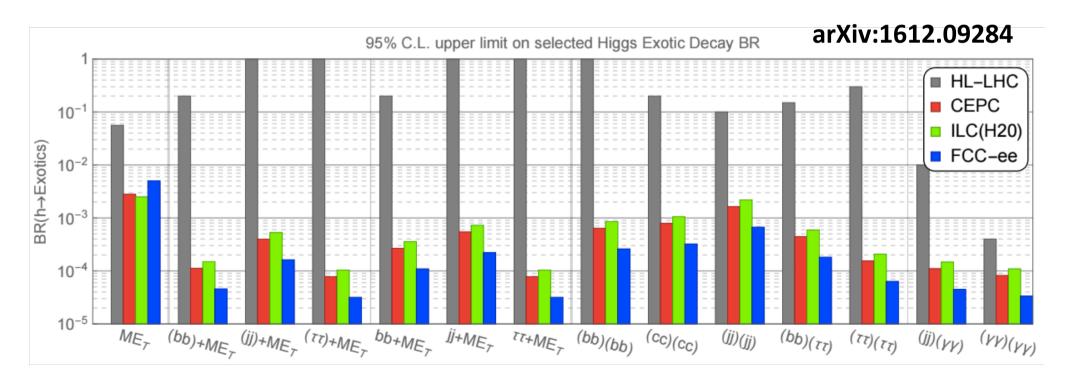
Indirect and model-dependent probe of Higgs self-coupling

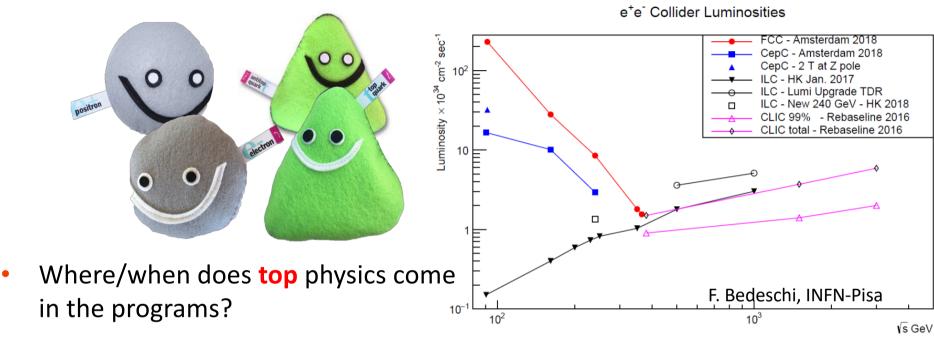

A precision on $\delta \kappa_{\lambda}$ of $\pm 40\%$ can be achieved, and of $\pm 35\%$ in combination with HL-LHC.


If c_Z if fixed to its SM value, then the precision on $\delta \kappa_\lambda$ improves to $\pm 20\%$

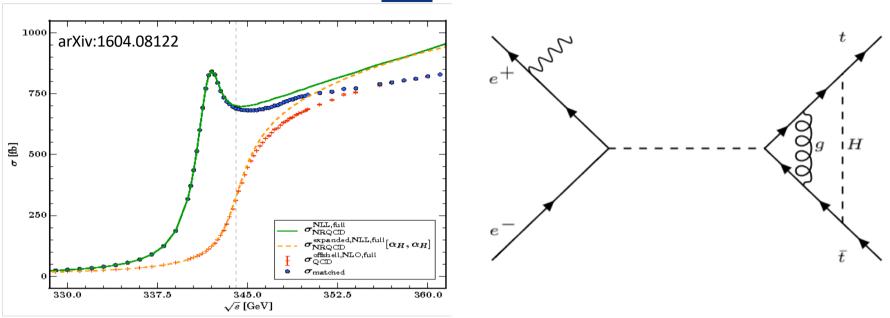
electron Yukawa coupling

s-channel Higgs production


- unique opportunity for measurement close to SM sensitivity
- ♣ highly challenging; σ(ee → H) = 1.6 fb;
- various Higgs decay channels studied
- studied monochromatization scenarios
 - baseline: 6 MeV energy spread, L
 = 2 ab⁻¹
 - optimized: 10 MeV energy spread,
 L = 7 ab⁻¹
 - limit ~3.5 times SM in both cases

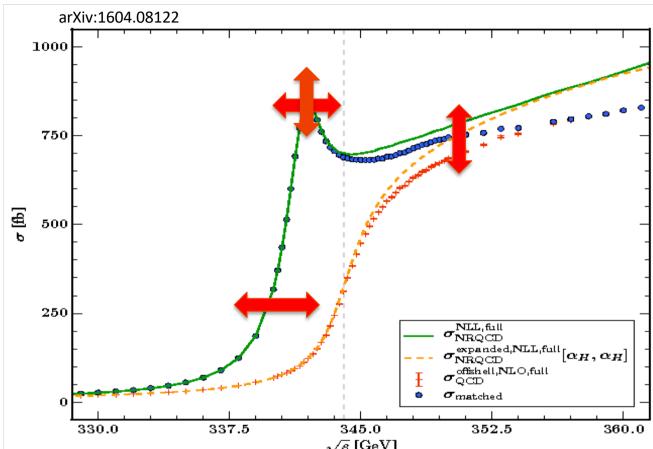

BSM Higgs

Significant improvement in most rare decay modes sensitive to exotic Higgs decay



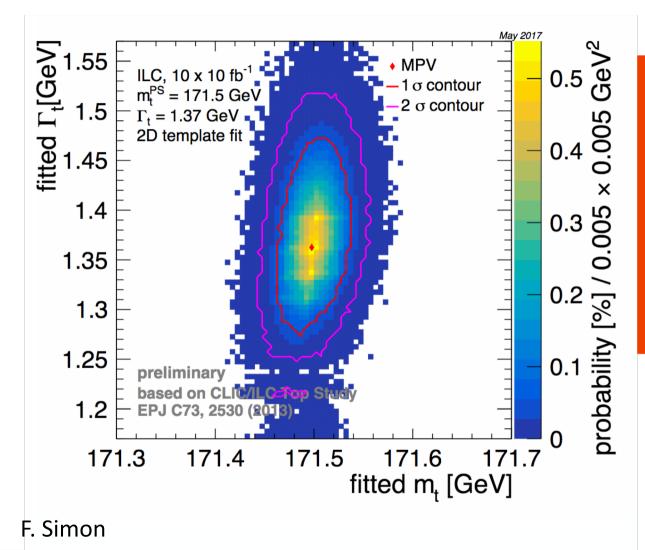
Top physics at lepton colliders

- @350 GeV and just above threshold @370 GeV:
 - cross section ttbar: ~0.5 pb
 - dedicated run at/around 2m_{top} 'Mega-Top'
 - 2 ab-1 = 1M top pairs
 - Just above threshold is optimal for top electroweak couplings and other properties measurements
- Top production in the continuum (including searches) at higher energies
 Single top quark sample: byproduct of 240 GeV runs at H+Z mass


merit of m_{top} threshold scan

- Most ee colliders aim to measure α_s with unprecedented precision at Z pole and WW threshold
- Cross section shape depends strongly on top quark mass and width, α_s and Y_t
- Top mass and width can be measured directly with an accurate top cross section threshold scan
 - Improved α_s drastically improves correlations m_t, Γ_t and Y_t

m_{top} threshold scan

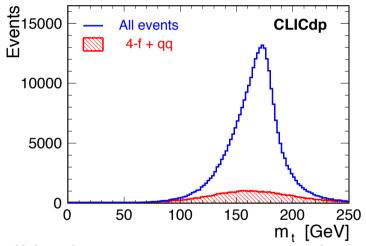


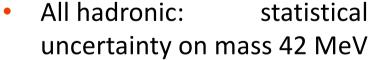
- Threshold shape depends strongly on m_{top} and Γ_{top} so indirectly V_{tb}
- Size of resonance behavior at and above threshold can be used to indirectly constrain \mathbf{Y}_{top}

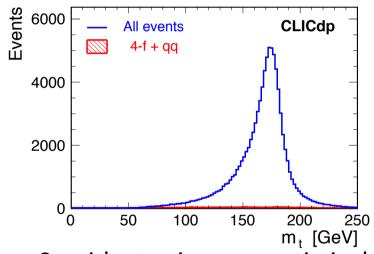
Mass and width for some ee collider scenarios

With 0.2 ab⁻¹ FCC-ee can achieve following uncertainties:

Top mass: 45 MeV Top width: 17 MeV



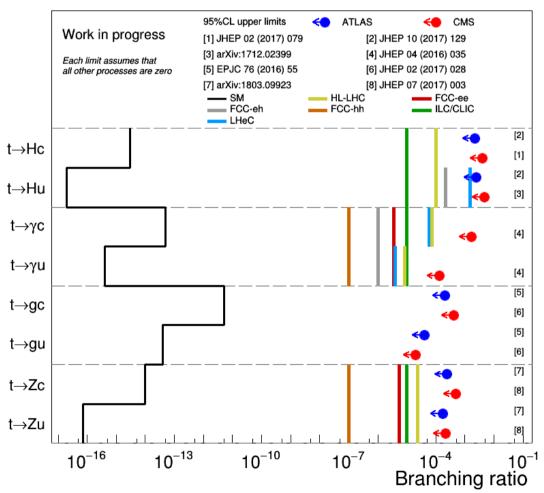



CLIC mass measurement: direct and

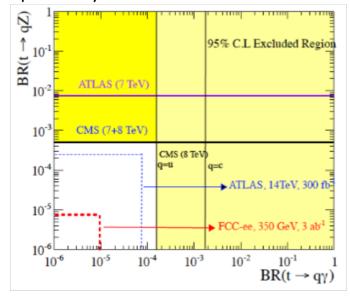
threshold scan

- Measurement using top mass peak possible at all CLIC scenarios
 - Highest statistics at first stage CLIC: 500 fb⁻¹ at 380 GeV

- Semi-leptonic: statistical uncertainty on mass 56 MeV
- Combination all hadronic + semi-leptonic:: 40 MeV!



CLIC has excellent top physics overview paper: 1807.02441


Flavour Changing Neutral Currents

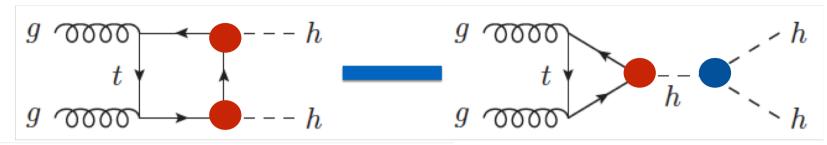
- FCNC are one of the best handles on constraining SM/indirectly discovering BSM in the top sector
- Almost all popular BSM extensions predict increased rare decays of the top quark

Sensitivity FCNC: 95% CL exclusion limits

Example:FCC-ee expects to substantially improve beyond HL-LHC

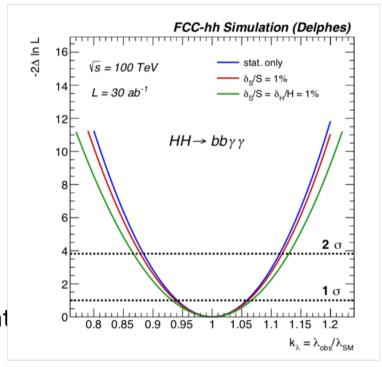
CDRs in preparation, many new/updated Numbers available soon!

Outlook


- Lepton Colliders= Precision physics with BSM sensitivity
 - Lepton colliders offer unexplored physics and unprecedented precision
 - Four potential ee machines physics input/studies ongoing
 - CLIC and FCC-ee have ttbar in their 'standard' programme, for CPEC and ILC it is part of the upgrade planning
 - Knowledge most SM parameters accessible can be improved by factors > 10 if sample is large enough
 - Example: Top quark mass and width can be measured down to 16
 MeV and 37 MeV respectively, depending strongly on size of sample
 and accelerator scenario
- Not all work is done CDRs have appeared but your help is needed to make these machines happen
 - And your opinion is even more important!
 - Many opportunities for new ideas for interesting short (and not-so-short) studies in collider physics

Backup

Higgs self-coupling at FCC-hh



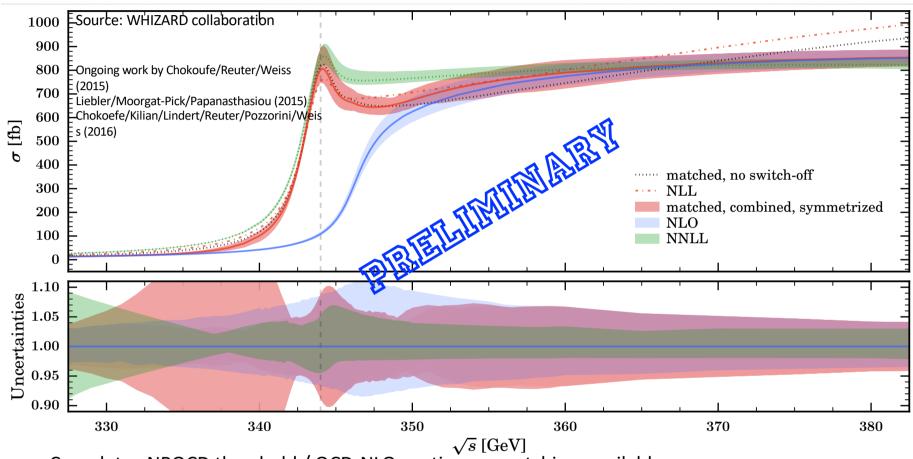
$$\mathcal{L} = -\frac{1}{2}m_h^2 h^2 - \lambda_3 \frac{m_h^2}{2v} h^3 - \lambda_4 \frac{m_h^2}{8v^2} h^4$$

EFT Lagrangian

Enormous di-Higgs samples produced at FCC-hh

- $\sigma(100 \text{ TeV}) / \sigma(14 \text{ TeV}) \cong 40$
- L (FCC-hh) / L (HL-LHC) \cong 10
- Naively, factor 20 smaller statistical uncertaint

Studied a number of final states


bbγγ most sensitive channel

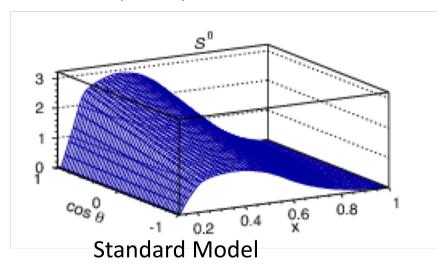
VRIJE UNIVERSITEIT BRUSSEL

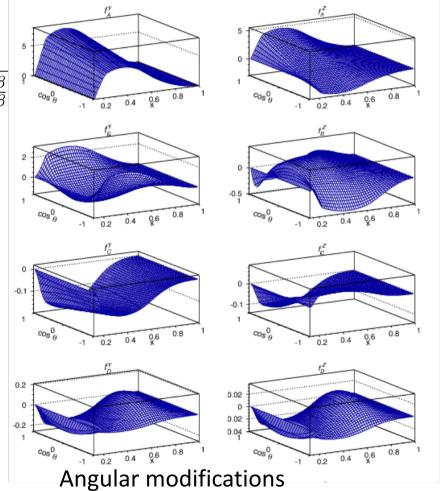

Details in arXiv:1606.09408 and arXiv1802.01607

 $\delta\mu \cong 2-4\%$ $\delta\varkappa \cong 5\%$

Simulation of ee-> bWbW

- Complete vNRQCD threshold / QCD-NLO continuum matching available
- Can in principle be reweighted to NNNLO QCD accuracy at threshold
- To do still: EW corrections, semi-leptonic/hadronic top decays, ttH threshold matching, top threshold matched with EWcorrections



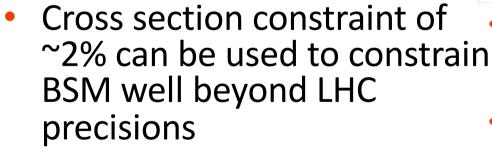


Electroweak couplings to top

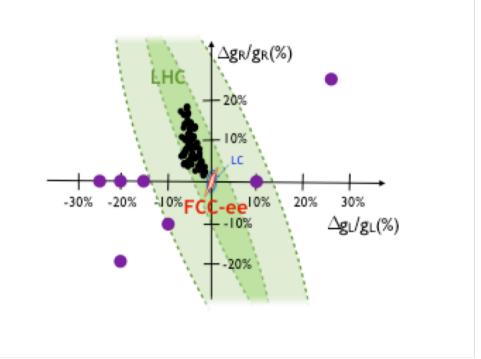
$$\Gamma_{ttv}^{\mu} = \frac{g}{2} \left[\gamma^{\mu} \left\{ (A_v + \delta A_v) - \gamma_5 (B_v + \delta B_v) \right\} + \frac{(p_t - p_{\bar{t}})^{\mu}}{2m_t} \left(\delta C_v - \delta D_v \gamma_5 \right) \right]$$

- Each contributes differently to doubledifferential cross section
 - Lepton angle (cos θ)
- x (reduced lepton energy) $x = \frac{2E_\ell}{m_t} \sqrt{\frac{1-\beta}{1+\beta}}$
- Sum contributions fitted to data $SM+\delta A_{Z/v}+\delta B_{Z/v}$

Reference: arXiv: 1503.01325



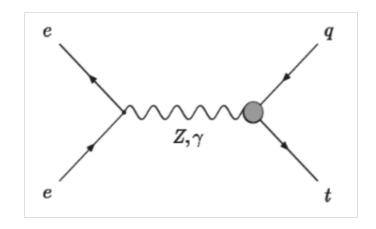
Constraining BSM with Z/y to ttbar

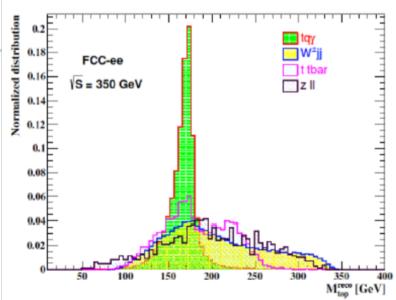

- Precision measurement has great potential to constrain BSM
 - $A_{Z/\gamma}$ and $B_{Z/\gamma}$ parameters can be interpreted as g_R and g_L

$$g_L = \frac{g}{2}(A_z + B_z)$$

$$g_R = \frac{g}{2}(A_z - B_z)$$

 in this case Composite Higgs models

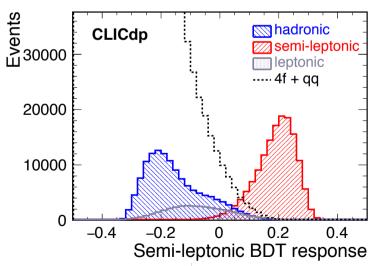

- Note: 2% uncertainty cross section depends on controlling large QCD uncertainties near threshold!
- Currently theory uncertainty at 370 GeV is about 3-4%
 - Larger at 350 GeV
 - We are not far from 2% needed

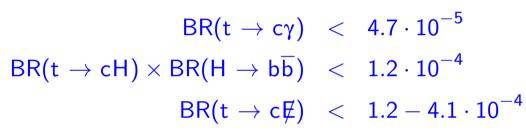

Large and pure 'MegaTop' sample good for FCNC

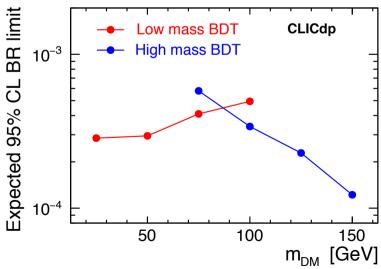
 In this case taking an effective Lagrangean approach

$$egin{aligned} \mathcal{L}_{eff} &= \sum_{q=u,c} \left[e \lambda_{tq} ar{t} (\lambda^v - \lambda^a \gamma^5) rac{i \sigma_{\mu
u} q^
u}{m_t} q A^\mu
ight. \ &+ rac{g W}{2 c_W} \kappa_{tq} ar{t} (\kappa^v - \kappa^a \gamma^5) rac{i \sigma_{\mu
u} q^
u}{m_t} q \; Z^{\mu
u} \ &+ rac{g W}{2 c_W} X_{tq} \; ar{t} \gamma_\mu (x^L P_L + x^R P_R) q \; Z^\mu
ight] + ext{h.c.} \end{aligned}$$

- FCNC tqZ and tqγ: top quark+light quark jet final states
 - Due to lower total mass, already sensitivity at 240 GeV FCC-ee run (ee --> HZ)
 - Can be analysed in full hadronic and semileptonic top decays

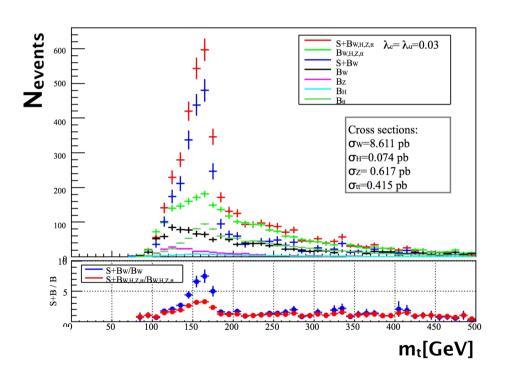

FCC-ee Clear distinction between tqy and ttbar in semileptonic final state

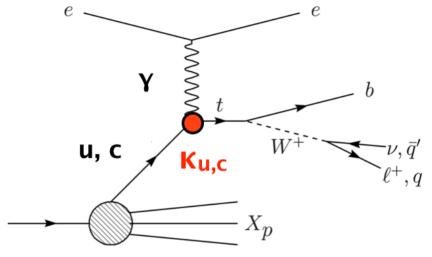



FCNC at CLIC

 Advanced analyses (including machine learning, full simulation) with 380 GeV, 500 fb⁻¹ dataset

Event classification for $t \rightarrow cH$

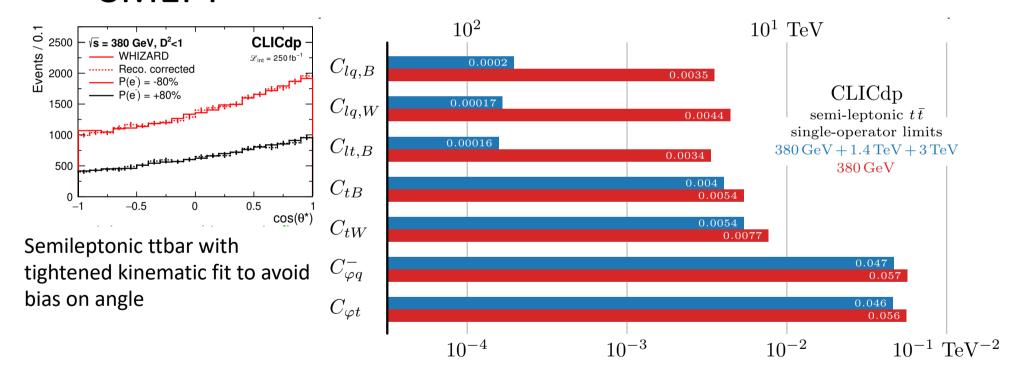




Top Quarks in p-e collisions?

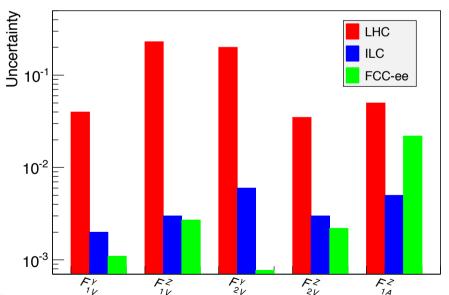
Note that proton-electron collider scenarios also have top physics sensitivity

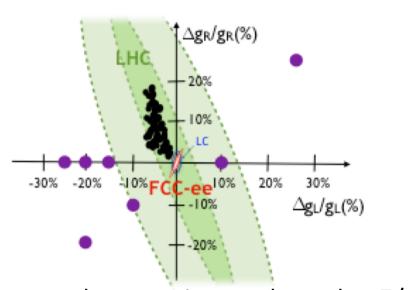
Particularly FCNC and V_{tb}


LHeC, 1 ab ⁻¹	2σ	3σ	5σ
BR(t->uγ)	4.0x10 ⁻⁶	7.5x10 ⁻⁶	1.5x10⁻⁵
BR(t->cγ)	4.0x10 ⁻⁵	9.0x10 ⁻⁵	2.0x10 ⁻⁴

CLIC forward-background asymmetry

 FB-asymmetry directly derived from top quark angular distributions and used to constrain SMEFT

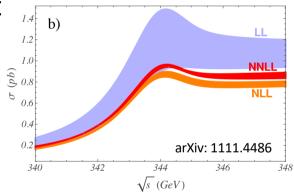




Electroweak couplings to top

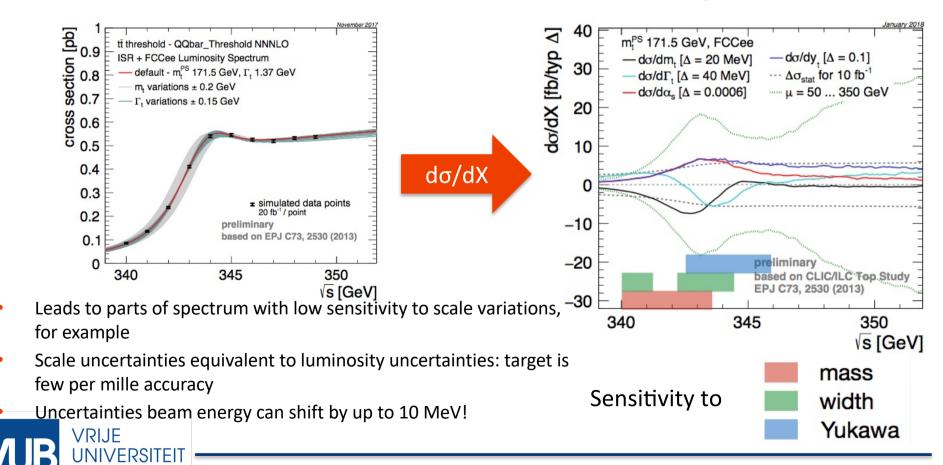
 Fit includes conservative assumptions detector performance such as b-tagging, lepton identification and angular/momentum resolution

Expected precision of order 10⁻² to 10⁻³


- Expected uncertainty on bounds ttZ/tty couplings dominated by theory uncertainty on prediction mechanism
- Optimal centre-of-mass energy is 365-370 GeV: going for 365!
- Also confirmed by full analysis using Whizard and assumed FCC-ee detector performance

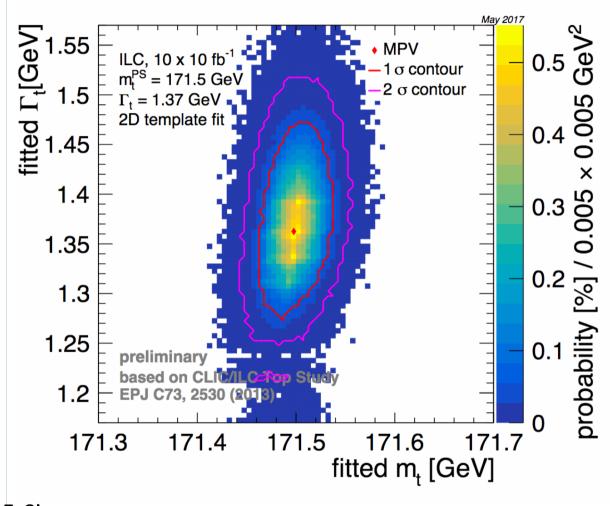
Reference: arXiv: 1503.01325

Uncertainties on m_{top}


- Uncertainty due to α_s :
 - $\Delta m_{top} = 2.7 \text{ MeV} \times (\Delta \alpha_s/0.0001) \rightarrow 5.4 \text{ MeV}$
 - Input measured (at FCC-ee) with precision of $\Delta\alpha_s$ < 0.0002 using W/Z boson hadronic branching fraction
- Theory uncertainty:
 - Description shape e⁺e⁻ to bWbW calculated at NNLL
 - Most important NNLL dependence
 - 1S-MSbar scheme top mass
 - Recent developmenst:
 - Uncertainty m_{top} 23 MeV (parton shower level)
- Experimental (statistics) uncertainty 8-14
 MeV depending on 1D or 2D fit
 - 10 MeV stat uncertainty m_{top} within reach if theory improvement continues VRIJE

JNIVERSITEIT

Threshold scan: what part of the spectrum is sensitive to what


- Spectrum very sensitive to theoretical uncertainties
- One approach: look at derivative of cross section
- Has sensitivity to changes in mass, width, top Yukawa, α_s

BRUSSEL

Mass and width for some ee collider scenarios

- 1D mass resolution (assuming def. Γ_t)
 18 MeV (ILC)
 21 MeV (CLIC)
 16 MeV (FCCee)
- 1D width resolution (assuming def. m_t)
 43 MeV (ILC)
 51 MeV (CLIC)
 37 MeV (FCCee)
- Extension of 1 σ contour:

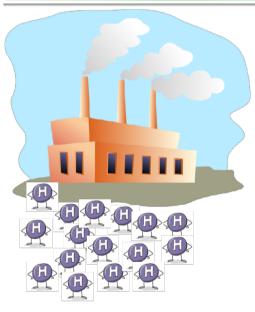
 $m_t + 39 - 35 \text{ MeV}$ (ILC)

m_t +40 -45 MeV (CLIC)

Γ_t +130 -95 MeV

m_t +35 -30 MeV

Γ_t +95 -65 MeV


(FCCee)

Higgs production at FCC-ee (or CPEC)

FCC-ee 5 ab-1@240 GeV ~1.5 ab⁻¹@365 GeV

Higgs Factory!

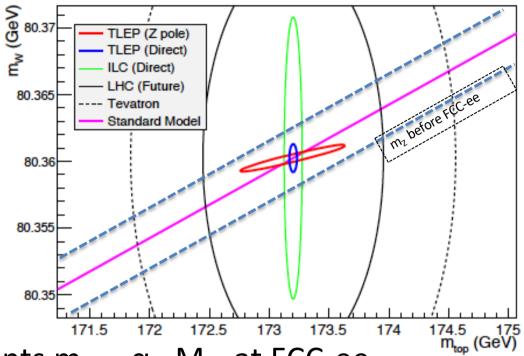
Cross section (fb) 250 150 100 100 50	$\begin{array}{c} \textbf{e}^+\textbf{e}^- \rightarrow \textbf{HZ} \\ \textbf{WW} \rightarrow \textbf{H} \\ \textbf{Total} \end{array}$	
200	220 240 260 280 300 320 340 360 380 √s (Ge	400 V)

	FCC-ee	FCC-ee
	240 GeV	365 GeV
Total Integrated Luminosity (ab ⁻¹)	5	1.5
# Higgs bosons from e ⁺ e ⁻ →HZ	1,000,000	180,000
# Higgs bosons from fusion process	25,000	45,000

Higgs boson couplings

Precision Higgs coupling measurements

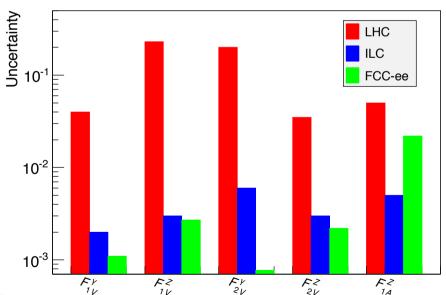
- Absolute coupling measurements enabled by HZ cross section and total width measurement
- Data at 365 GeV constrain total width
 - only used H→bb in fusion production so far
- Tagging individual Higgs final states to extract various Higgs couplings
- Couplings extracted from modelindependent fit
- Statistical uncertainties are shown for 5 ab⁻¹@240 GeV and 1.5 ab⁻¹@365 GeV (from arXiv:1308.6176)
 - all measurements are under review / are being redone

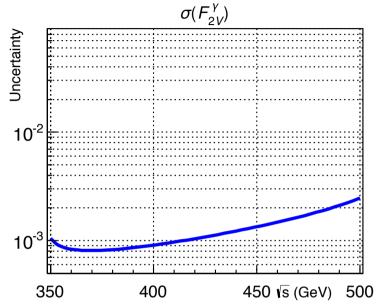

•	possible improvements of 10-35% on
	cross section measurements

in %	FCC-ee 240 GeV	+FCC-ee 365 GeV	+HL-LHC
δg_{HZZ}	0.25	0.22	0.21
δ g нww	1.3	0.47	0.44
δg_{Hbb}	1.4	0.68	0.58
δg_{Hcc}	1.8	1.23	1.20
$\delta g_{ ext{Hgg}}$	1.7	1.03	0.83
δ g Ηττ	1.4	0.8	0.71
$\delta g_{H\mu\mu}$	9.6	8.6	3.4
$\delta g_{H\gamma\gamma}$	4.7	3.8	1.3
δg _{Htt}			3.3
δΓη	2.8	1.56	1.3

Several couplings improve further by doing a combined fit with HL-LHC

Prospectives EWK t-W fits


- Improvements m_{top} , α_{S_r} M_W at FCC-ee
 - Would improve understanding consistency SM in top-W-H radiative corrections
- Standard Model line uncertainty dominated by Z boson mass error
 - Without FCC-ee it's 2.2 MeV!



Electroweak couplings to top

- Fit includes conservative assumptions detector performance such as b-tagging, lepton identification and angular/momentum resolution
- Expected precision of order 10⁻² to 10⁻³

- Expected uncertainty on bounds ttZ/tty couplings dominated by theory uncertainty on prediction mechanism
- Optimal centre-of-mass energy is 365-370 GeV: going for 365!
- Also confirmed by full analysis using Whizard and assumed FCC-ee detector performance

Reference: arXiv: 1503.01325