Future Neutrino Experiments

Outline

1. Neutrino basics

- **2. Accelerator-based long-baseline neutrino experiments**
- 3. Accelerator-based short-baseline neutrino experiments
- 4. Reactor-based neutrino experiments
- 5. Neutrino-less double beta decay experiments
- 6. Astrophysical neutrino measurements
- 7. Conclusion

History of neutrino oscillation physics, see my YETI2014 talk. https://conference.ippp.dur.ac.uk/event/346/sessions/385/#20140114 Please check Neutrino 2018 talks for more details of each project. https://www.mpi-hd.mpg.de/nu2018/

> Please like "NuSTEC-News" https://www.facebook.com/nuxsec "Institute of Physics Astroparticle Physics" https://www.facebook.com/IOPAPP

Teppei Katori Queen Mary University of London YETI2019, IPPP, Durham, UK, Jan. 7, 2018

1. Neutrino basics

- 2. Accelerator-based long-baseline neutrino experiments
- **3. Accelerator-based short-baseline neutrino experiments**
- 4. Reactor-based neutrino experiments
- 5. Neutrino-less double beta decay
- 6. Astrophysical neutrino measurements
- 7. Conclusion

Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307

1. Neutrinos – from eV to EeV

```
Ν=σχΦχΤ
```


Queen Mary

University of London

1. Neutrinos – Limited sources

Туре	Source	Production	Energy	Note
Cosmic neutrino background	Bing Bang	$v_e, v_\mu, v_\tau, \bar{v}_e, \bar{v}_\mu, \bar{v}_\tau$	~0.1 meV	not detected
Neutrinos from radioactive sources	e-cap/βdec	$ u_e, ar{ u}_e$	~0.7 - 0.8 MeV	
Geo-neutrinos	β-decay	$ar{ u}_e$	~ 2 MeV	
Reactor neutrinos	β-decay	$\bar{\nu_e}$	~4 MeV	manmade
Solar neutrinos	fusion	v_e	~0.4-10 MeV	
Galactic supernova neutrinos	e-cap/thermal	$v_e, v_\mu, v_\tau, \bar{v}_e, \bar{v}_\mu, \bar{v}_\tau$	~10-30 MeV	
Diffused supernova background	e-cap/thermal	$ u_e, v_\mu, v_\tau, \bar{v}_e, \bar{v}_\mu, \bar{v}_\tau$	~10 MeV	not detected
Typical accelerator neutrinos	π ,K-decay	$ u_e, v_\mu, v_\tau, \bar{v}_e, \bar{v}_\mu, \bar{v}_\tau$	~0.1 - 10 GeV	manmade
Typical atmospheric neutrinos	π ,K-decay	$ u_e, u_\mu, ar{ u}_e, ar{ u}_\mu$	~0.1 GeV - 10TeV	
Solar atmospheric neutrinos	π ,K-decay	$ u_e, u_\mu, ar{ u}_e, ar{ u}_\mu$	~0.1 - 10 TeV	not detected
High-energy astrophysical neutrinos	π-decay?	$ u_e, v_\mu, v_\tau?$, $ar{ u}_e, ar{ u}_\mu, ar{ u}$	~50 TeV - 10 PeV	
GZK neutrinos	π-decay?	$ u_e, v_\mu, v_\tau?$, $ar{ u}_e, ar{ u}_\mu, ar{ u}$	~EeV	not detected

(Neutrino mixings allow to produce all flavours from all sources)

Teppei Katori

Neutrino 2018, https://www.mpi-hd.mpg.de/nu2018/programme

1. Future neutrino experiments

Accelerator-based long-baseline experiments - Hyper-Kamiokande, DUNE

Accelerator-based short-baseline experiments

- MINERvA, MicroBooNE, SHiP
- COHERENT

Reactor neutrino experiments

- JUNO
- PROSPECT, SoLid, Watchman
- SOX

Neutrino-less double beta decay experiments

Astrophysical neutrino measurements

- PINGU, ORCA
- Hyper-Kamiokande, Jinping
- Super-Kamiokande-Gd
- IceCube-Gen2, KM3NeT, ARA
- PTOLEMY

Not covered in my talk

T2K, NOvA, P2O, Pacific, CHIPS, IsoDAR, DAEdALUS, nuSTORM, EMuS, ESSnuSB, ENUBET, NuPRISM, etc

HyperK ND, DUNE ND, SBND, ICARUS, ANNIE, NINJA, WAGASCI-BabyMIND

DayaBay, RENO, Double Chooz, STEREO, DANSS, NEOS, Neutrino-4, LENS, Chandler, CONNIE, MIVER, BASKET, RICOCHET, RED-100, vGen, CONUS, LENS-sterile, CeLAND, DB Source, LXe-Source, Baksan-source, etc

EXO-200, nEXO, PANDA-X, Super-NEMO, NEXT, KamLAND-Zen, AXEL, GERDA, MAJORANA, LEGEND, CUORE, CUPID, AMORE, etc

BOREXINO, GVD, DUNE, THEIA, INO, GRAND, ANITA, ARIANNA, RADAR, KATRIN, Project 8 HOLMES, etc

1. Neutrino basics

2. Accelerator-based long-baseline neutrino experiments

- **3. Accelerator-based short-baseline neutrino experiments**
- 4. Reactor-based neutrino experiments
- 5. Neutrino-less double beta decay
- 6. Astrophysical neutrino measurements
- 7. Conclusion

2. Next goal of neutrino physics

Establish Neutrino Standard Model (vSM)

- SM + 3 active massive neutrinos
- 9 new parameters

Unknown parameters of vSM

- 1. Dirac CP phase
- 2. θ_{23} <45° "first octant" or θ_{23} >45° "second octant"
- 3. normal ordering (NO) $m_1 < m_2 < m_3$ or inverted ordering (IO) $m_3 < m_1 < m_2$
- 4. Dirac or Majorana
- 5. Majorana phase (x2)
- not relevant to neutrino oscillation experiment(?)
- 6. absolute neutrino mass

We need higher precision experiments around 1-10 GeV.

2. Standard neutrino oscillation experiments

2-neutrino oscillation approximation,

$$P_{\mu \to \tau}(L, E) = \sin^2 2\theta \sin^2 \left(1.27 \Delta m_{32}^2 (eV^2) \frac{L(km)}{E(GeV)} \right)$$

Use $|\Delta m_{32}^2| \sim 2.5 \cdot 10^{-3} eV^2$, then 1st and 2nd oscillation maximums are L(km)/E(GeV)~500 and 1000

 \rightarrow 1300km baseline experiment with accelerator neutrino energy 1-4 GeV (=DUNE)

Accelerator-based neutrino oscillation experiments need to tune L/E

Very long baseline (~1000km)

- Large L \rightarrow high flux reduction
- Large E → higher ν-production, high σ, calorimetric E recon

 \rightarrow DUNE design

Long baseline (~200km)

- Small L \rightarrow lower flux reduction
- Small E → low n-production, small σ, kinematic E recon
- \rightarrow HyperK design

2. Accelerator-based neutrino – v_e , v_{μ} , v_{τ} , \bar{v}_e , \bar{v}_{μ} , \bar{v}_{τ}

π /K Decay-In-Flight (DIF) neutrinos, "superbeam"

- Known spectrum, ~4% precision at best
- Our future
- π/K Decay-At-Rest (DAR) neutrinos
- Precisely known spectrum (SM, 2-body decays)
- Known production points
- Neutron sources (SNS, JSNS, ESS)

Muon decay neutrinos, "neutrino factory"

- Precisely known spectrum (SM)
- Muon cooling & storage ring for "muon collider"

Isotope decay neutrinos "beta beam"

- Precisely known spectrum
- High-flux low energy beam (=short baseline)

All beams have precise timing

BNB: Mini/Sci/µBooNE, SBND, ICARUS NuMI: MINOS, NOvA, MINERvA J-PARC beam: T2K, Hyper-Kamiokande DUNE beam

LSND, SNS, JSNS, ESSnuSB

NuSTORM, EMuS

IsoDAR

ENUBET: Precise monitoring type projects NuPRISM: Movable neutrino near detector MiniBooNE, PRD79(2009)072002

MiniBooNE, PRD79(2009)072002

2. Booster Neutrino Beamline (BNB)

Magnetic focusing horn

8GeV protons are delivered to beryllium target

within a magnetic horn (2.5 kV, 174 kA) that increases the flux by \times 6

By switching the current direction, the horn can focus either positive (neutrino mode) or negative (antineutrino mode) mesons.

MiniBooNE, PRD79(2009)072002 HARP, Eur.Phys.J.C52(2007)29 **2. Booster Neutrino Beamline (BNB)**

Jena (MINERvA), NuInt18, MINOS+ proposal (2011)

Decay Pipe

675 m

Hadron Monitor

Target

120 GeV protons

From

Main Injecto

Target Hall

2. On-axis vs. Off-axis beam

On-axis beam: narrow band, tuned to oscillation maximum Off-axis beam: broadband, general purpose, measure 1st and 2nd max

12 m 18 m 240 m

Muon Monitors

NOvA

 $\pi^{\pm} \to \mu \nu_{\mu}$

 $K^{\pm} \rightarrow \mu \nu_{\mu}$

MINERvA

2. Typical neutrino detectors

Wide beam spectrum

- Incoming neutrino energy is not known

Coarse detectors

- Volume is maximized with poor instrumentation

Nuclear target

- Neutrino interacts on nuclei

Incomplete kinematics

- Particle kinematics is under-constraint
- Neutrino energy Ev is reconstructed with assumed interaction (model-dependent)
- All kinematics (Ev, Q2, W, x, y,...) in 1-10 GeV depends on interaction models

Nuclear physics

- Fermi motion (motion of nucleons in muclei)
- Pauli blocking (phase space suppression)
- Final state interaction (re-scattering of outgoing particles in nuclei)
- Nucleon short range correlation, medium range correlation, long range correlation
- Nuclear shadowing, EMC effect, quark-hadron duality

2. Typical neutrino detectors

Liquid Scintillator

- JUNO, etc
- 4π coverage
- calorimetric
- low E threshold
- no direction information (in general)

Tracker neutrino detector

- MINERvA, NOvA, etc
- multi-track measurements
- vertex activity measurement
- efficiency depends on topology

Cherenkov neutrino detectors

- Hyper-Kamiokande, etc
- 4π coverage
- Doping (scintillation, neutron capture)
- not good to measure multi-tracks

University of London

Liquid argon TPC (LArTPC)

- DUNE, etc
- 4π coverage
- multi-track, vertex activity
- calorimetric (scintillation)
- no timing info (~ms)

Teppei Katori

2. Hyper-Kamiokande and DUNE far detectors

HyperK

- 200 kton Water Cherenkov
- Narrow band 0.6 GeV
- Low spatial resolution
- High timing resolution
- Kinetic E reconstruction

DUNE

- 40 kton LArTPC
- wide band 1-4 GeV
- High spatial resolution
- Low timing resolution
- Kinematic and Calorimetric E reconstruction

All current and future accelerator-based neutrino experiments are 0.1-10 GeV

Ankowski et al, PRD92(2015)073014

2. Kinematic E reconstruction vs calorimetric E reconstruction

 Kinematics energy reconstruction

 It can reconstruct Enu from outgoing lepton kinematics only, but you have to assume neutrino interact type

 $E_{\nu}^{QE} = \frac{ME_{\nu} - 0.5m_{\mu}^2}{M - E_{\mu} + p_{\mu}cos\theta}$ $E_{\nu}^{Cal} = E_{\mu} + \sum_{\nu}^{Cal} E_{\nu} + \sum_$ v-beam v-beam cosθ E_{had} n Kinematic Rec., vu Calorimetric Rec., v_{μ} DIS DIS --- 0.15 E^{0.5} --- 0.15 E_v^{0.5} 1.0··· 0.25 E^{0.5} ····· 0.25 E_v^{0.5} 0.8 $-0.2E_{y} + 0.1$ $-0.15E_v + 0.15$ 0.8 σ [GeV] o [GeV] QE 0.4 0.4 0.20.05 2 3 Δ 5 2 3 4 Etrue[GeV] Etrue[GeV] Neutrino energy (and v, Q², etc) reconstruction is interaction model-dependent process **University of L**

2. Calorimetric energy reconstruction
No assumption on interaction type, but you have to measure energy deposit from all outgoing particles (or correctly simulate them)

T2K, PRD96(2017)092006 NuFit, arXiv:1811.05487

2. Oscillation parameter measurements, status and future

- 1. T2K and NOvA favor 2nd octant.
- 2. T2K, NOvA, and SuperK favor NO.

3. T2K prefers $-\pi/2$ (large v_e app.), but NOvA prefers $\pi/2$ (large anti- v_e app.), and combined result reduce significance

→ Oscillation parameters to maximize v_e app. because T2K see large v_e excess. Statistics? Systematics? New Physics?

Both HyperK and DUNE promise 5σ rejection of zero δ CP with ~few% systematic errors.

1. Neutrino basics

- **2. Accelerator-based long-baseline neutrino experiments**
- **3. Accelerator-based short-baseline neutrino experiments**
- 4. Reactor-based neutrino experiments
- 5. Neutrino-less double beta decay
- 6. Astrophysical neutrino measurements
- 7. Conclusion

3. Accelerator-based short baseline neutrino experiments

- 1. Sterile neutrino search
- 2. Neutrino cross-section measurement
- 3. New physics search

MiniBooNE, PRL121(2018)221801, Dentler et al, JHEP08(2018)010

3. 1eV sterile neutrino search

1. Sterile neutrino search

- 2. Neutrino cross-section measurement
- 3. New physics search

Has US physics lab found a new particle?

By Paul Rincon Science editor, BBC News website

() 6 June 2018

- MiniBooNE reaches 4.7σ excess (Sterile-v interpretation is rejected by disappearance data)

Katori

MiniBooNE, PRL121(2018)221801 Fermilab SBN program, arXiv:1503.01520 **3. Fermilab short baseline neutrino (SBN) program**

1. Sterile neutrino search

- 2. Neutrino cross-section measurement
- 3. New physics search

MiniBooNE reaches 4.7σ excess
 (Sterile-v interpretation is rejected by disappearance data)
 → 3 LArTPCs to investigate MiniBooNE signal
 (LArTPC= high photon bkgd rejection)

VENu, Virtual Environment of Neutrinos (iOS/Android app) http://venu.physics.ox.ac.uk/

3. LArTPC

- High spatial resolution (order few mm)
- Low timing resolution (no "sequence" of events)

MicroBooNE Run 5975, Event 4262

Teppei Katori

MiniBooNE: PRD81(2010)092005 Martini et al,PRC80(2009)065501

3. Neutrino cross section measurements around 1-10 GeV

- 1. Sterile neutrino search
- 2. Neutrino cross-section measurement
- 3. New physics search

Flux-integrated differential cross section: Neutrino cross section data is reported in terms of measured kinematics (muon energy, etc) not interaction kinematics (Ev, Q2, x, y, etc)

PHYSICAL REVIEW D 81, 092005 (2010)

An explanation of this puzzle

Slide from Marco Martini

Discovery of nucleon correlation in neutrino scattering:

- Significant enhancement of cross section (10-30%)
- modify lepton kinematics and final state hadrons
- the hottest topic for T2K, MINERvA, MicroBooNE, etc

Particle Data Group

- Section 42, "Monte Carlo Neutrino Generators"
- (Hugh Gallagher, Yoshinari Hayato)

- Section 50, "Neutrino Cross-Section Measurements" (Sam Zeller)

MINERvA, PRL111(2013)022501:022502

3. MINERvA and MicroBooNE

- 1. Sterile neutrino search
- Neutrino cross-section measurement
- 3. New physics search

MINERvA Scintillation tracker

- <E>~3.5-7 GeV NuMI on-axis beam
- variety of targets (CH, Pb, Fe)
- Small acceptance due to MINOS ND
- charge separation by MINOS ND
- internal flux constraint (DIS, n-e)

MicroBooNE LArTPC

- <E>~800 MeV BNB on-axis beam
- Single phase LArTPC, 3-wire-plane reading
- Photon system for timing (scintillator)

15 tons

30 tons

8.3 tons total

Side ECAL

0.6 tons

Scintillator Veto Wall

0.25t

Liquid Helium

Steel Shield

MINERvA, PRL111(2013)022501:022502

3. MINERvA and MicroBooNE

- 1. Sterile neutrino search
- 2. Neutrino cross-section measurement
- 3. New physics search

MINERvA Scintillation tracker

- <E>~3.5-7 GeV NuMI on-axis beam
- variety of targets (CH, Pb, Fe)
- Small acceptance due to MINOS ND
- charge separation by MINOS ND
- internal flux constraint (DIS, n-e)

MicroBooNE LArTPC

- <E>~800 MeV BNB on-axis beam
- Single phase LArTPC, 3-wire-plane reading
- Photon system for timing (scintillator)

Concerns

- Many cross section measurements are planned by MicroBooNE, SBND, ICARUS, however, BNB don't cover important energy region of DUNE.

- NOvA+MINERvA could cover DUNE energy region, however, they are not argon target experiments.

- No direct test of DUNE interaction physics before DUNE.

- Main DUNE events are "shallow-inelastic scattering", where higher resonances switch to DIS (quark-hadron duality) in a nuclear environment. Very poorly understood.

MINERvA, PRL111(2013)022501:022502

3. MINERvA and MicroBooNE

- 1. Sterile neutrino search
- 2. Neutrino cross-section measurement
- 3. New physics search

MINERvA Scintillation tracker

- <E>~3.5-7 GeV NuMI on-axis beam
- variety of targets (CH, Pb, Fe)
- Small acceptance due to MINOS ND
- charge separation by MINOS ND
- internal flux constraint (DIS, n-e)

MicroBooNE LArTPC

Gran Sasso Science Institute, Italy S

2018 October 11-13

- <E>~800 MeV BNB on-axis beam
- Single phase LArTPC, 3-wire-plane reading
- Photon system for timing (scintillator)

vS&DIS workshop

Neutrino-Nucleus Scattering in the Shallowand Deep-Inelastic Kinematic Regimes

Concerns

- Many cross section measurements are planned by MicroBooNE, SBND, ICARUS, however, BNB don't cover important energy region of DUNE.

- NOvA+MINERvA could cover DUNE energy region, however, they are not argon target experiments.

- No direct test of DUNE interaction physics before DUNE.

- Main DUNE events are "shallow-inelastic scattering", where higher resonances switch to DIS (quark-hadron duality) in a nuclear environment. Very poorly understood.

> We are very worried about this situation. DUNE requires significant improvements from theory and experiment communities about physics around few GeV, the shallow inelastic scattering.

http://nustec.fnal.gov/nuSDIS18/

nustec.fnal.gov/nuSDIS18

E-mail to <u>listserv@fnal.gov</u>, Leave the subject line blank, Type "subscribe nustec-news firstname lastname"

like "@nuxsec" on Facebook page, use hashtag #nuxsec

3. SHiP

- 1. Sterile neutrino search
- 2. Neutrino cross-section measurement
- 3. New physics search

Neutrino experiment ~ beam dump

- High flux protons hit targets
- Rare particle search:
- boosted DM
- dark photon
- heavy neutrinos
- millicharged particle

- <F>~400 GeV
- Decay volume with PID spectrometer
- v_{τ} physics

Rich, Neutrino 2018

3. Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

Beam ON

45 PE

CEvNS

- A fundamental process for supernova physics
- Neutrino floor for WIMP search
- A channel to look for many new physics (NC is the home of new physics)

COHERENT

- Neutrinos from neutron spallation source
- Array of small detectors at "neutrino alley'

25

35

- First observation by CEvNS (2017)
- More data from other detectors

15

University of London

Jeen Mary

1. Neutrino basics

- 2. Accelerator-based long-baseline neutrino experiments
- **3. Accelerator-based short-baseline neutrino experiments**

4. Reactor-based neutrino experiments

- 5. Neutrino-less double beta decay
- 6. Astrophysical neutrino measurements

7. Conclusion

Littlejohn, Yaping, NuPhys 2018

4. Reactor neutrinos - $\bar{\nu}_e$

Spectrum is well-known, except 2 open questions

- shape mismatch around 5 MeV

- overall normalization is lower \rightarrow motivate sterile neutrino oscillation

Detection, inverse beta decay (IBD)

- Liquid scintillator (prompt signal)+delayed neutron capture (delayed signal)

Littlejohn, Yaping, NuPhys 2018 Prospect:1808.00097,1812:10877

4. Reactor neutrinos - $\bar{\nu}_e$

Spectrum is well-known, except 2 open questions

- shape mismatch around 5 MeV
- overall normalization is lower \rightarrow motivate sterile neutrino oscillation
- Detection, inverse beta decay (IBD)
- Liquid scintillator (prompt signal)+delayed neutron capture (delayed signal)

PROSPECT

- segmented liq. scintillator (4 ton)
- ⁶Li loaded (neutron capture)
- Fission dominated by ²³⁵U, easy to predict the neutrino flux

It looks both anomalies are related to the neutrino flux prediction (=nuclear physics)

Littlejohn, Yaping, NuPhys 2018 JUNO, JPhysG43(2016)030401

4. Neutrino Mass Ordering (NMO)

JUNO

- SuperK (~20 kton) + KamLAND (~3 $\%\Delta E$)
- $> 3\sigma$ signal of NMO

JUNO detector

 $\times 10^{6}$

 $\sin^2 2\theta_{12}$

 \mathbf{v}_{o} spectrum at JUNO, L = 52.5 km⁻¹

6

Guano Zhou

Shen Zhen

7

-No osc.

--- 1-P21 osc.

-Pee for NO

Pee for IO

 $\sin^2 2\theta_{13}$

8

33

E_v [MeV]

MeV

Events / 1

0.14

0.12

0.10

0.08

0.06

0.04

0.02

Solid, JINST12 (2017) P04024, Watchman, arXiv:1502.01132 Langenegger et al., Science.362 (2018) 649

4. Neutrino reactor monitoring

Solid

- Motivated by reactor flux anomaly
- Plastic scintillator array
- ⁶Li doped layer for neutron capture
- WLS fiber + SiPM readout

Watchman

- Water Cherenkov
- Gd-doped for neutron capture
- Hosted in UK (Boulby mine)

Edited by Jennifer Sills

Denuclearizing North Korea requires trust

In their Policy Forum "Denuclearizing North Korea: A verified, phased approach" (7 September, p. 981) A. Glaser and Z. Mian describe a pathway for verified denuclearization of North Korea. I agree that such an approach is necessary and, equally importantly, technically feasible. However, Glaser and Mian only highlight the disarmament side of the denuclearization agreement, without a plan to develop the mutual trust and the assurances on which such a deal depends. Incentivizing North Korea to reduce nuclear weapons and fissile materials will require confidence-building measures, ease of sanctions, and security guarantees. These elements are strongly related to the disarmament questions and must be regu-Teppei Katorlated with similar precision.

Coordinating with the proposed phased approach, the involved parties could pair

Nations Security Council's sanctions. The structure of this contingency could be similar to the snapback mechanism in Article 37 of the Joint Comprehensive Plan of Action with Iran (1). Likewise, North Korea will insist on similar guarantees if it dismantles its nuclear weapons. It is always a challenge to create mechanisms that can dett credibly assure such guarantees for both parties, and this has become even more the difficult after the U.S. withdrawal from the issue the state of the state state of the state of the state of the state of the state state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state state of the state state of the state of

Tobias W. Langenegger Chair of Negotiation and Conflict Management, ETH Zurich, 8092 Zurich, Switzerland. Email: tlangenegger@ethz.ch

REFERENCE

Iran nuclear agreement.

 United Nations Security Council Resolution 2231 (2015); https://undocs.org/S/RES/2231(2015).

10.1126/science.aav4636

Neutrino physics for Korean diplomacy

levels and fuel evolution in nuclear reactors, as experiments in South Korea, China, Russia, the United States, and Europe have demonstrated (1-7). At Yongbyon, neutrino detectors could be deployed to verify reactor shutdown or civilian operations without the need for operational records or access inside reactor buildings. Shutdown of North Korea's main plutonium production reactor could be verified with a detector in a standard freight container parked outside the reactor building.

Existing neutrino technology may be attractive to all parties in the ongoing talks. North Korea may value a tool for demonstrating treaty compliance while maintaining custody of the reactor buildings. Other parties may value the tamper resistance of the neutrino signal and resilience of neutrino detectors, which require minimal on-site access and can reconstruct reactor operational history even after a data-taking pause. Neutrino projects are also

SOX, JHEP08(2013)038 Link, Neutrino 2018

4. Neutrino source experiment - v_e , \bar{v}_e

SOX

- Motivated by Ga-anomaly
- Borexino+144Ce($\bar{\nu}_e$) and 51Cr(ν_e) neutrino sources
- Suddenly terminated...

This moment, there is no active neutrino source experiments (but many ideas)

Proposed Source Experiments

Many source experiments have been proposed...

Experiment		Detector		
LENS-Sterile	⁵¹ Cr	LENS	$\nu{}^{115}\!\mathrm{In}\mathrm{CC}$	Phys. Rev. D75 (2007) 093006
Baksan	⁵¹ Cr	SAGE	ν $^{71}Ga\;CC$	arXiv:1006.2103 [nucl-ex]
RICOCHET	³⁷ Ar	Bolometers	CEvNS	Phys. Rev. D85 (2012) 013009
CeLAND	¹⁴⁴ Ce	KamLAND	IBD	Phys. Rev. Lett. 107 (2011) 201801
DB Source	¹⁴⁴ Ce	Daya Bay	IBD	Phys. Rev. D87 (2013) 093002
Cr-SOX	⁵¹ Cr	Borexino	ve elastic	JHEP 1308 (2013) 038
Ce-SOX	¹⁴⁴ Ce	Borexino	IBD	JHEP 1308 (2013) 038
LXe-Source	⁵¹ Cr	LZ	ve elastic	JHEP 1411 (2014) 042

Yet, no source experiments are actively being pursued.

It can be hard to accumulate statistics; each new run requires a major investment.

Jonathan Link

The Center for

Neutrino Physic

For now, let's focus on reactor experiments...

VIRGINIA TECH

1. Neutrino basics

- 2. Accelerator-based long-baseline neutrino experiments
- **3. Accelerator-based short-baseline neutrino experiments**
- 4. Reactor-based neutrino experiments
- **5. Neutrino-less double beta decay**
- 6. Astrophysical neutrino measurements
- 7. Conclusion

Winter, Neutrino 2014

Impact of direct mass ordering (MO) measurement

Giuliani, Neutrino 2018

5. Neutrino-less Double Beta Decay

5. Neutrino-less Double Beta Decay

How difficult is it?

5. Neutrino-less Double Beta Decay

Approaches and experiments

sour	ce = detector		NOW	MID-TERM	LONG-TERM
Scalability Bros Scalability Scalability Scalability	Fluid embedded source	Xe-based TPC	EXO-200		nEXO
			NEXT-10	NEXT-100 PandaX-III	NEXT-2.0 PandaX-III 1t
		Liquid scintillator as a matrix	KamLAND-Zen 800		KamLAND2-Zen
			SNO+ pha	ise I	SNO+ phase II
3 pue ∃∇ ugiH embedde source	Crystal embedded source	Germanium diodes	GERDA-II	LEGEND 200	LEGEND 1000
			MJD		
		Bolometers	AMoRE pilot, I	AMoRE II	
			CUORE CUPID-0, CUPID-	Мо	CUPID

40

Błaut and Sobków, arXiv:1812.09828

5. Majorana neutrino scattering experiment?

Dirac neutrino – polarized electron scattering amplitude

- V, A, S, P, T are possible for both left and right chirality

$$\begin{split} M^{D}_{\nu_{e}e^{-}} &= \frac{G_{F}}{\sqrt{2}} \{ (\overline{u}_{e'}\gamma^{\alpha}(c_{V}^{L} - c_{A}^{L}\gamma_{5})u_{e})(\overline{u}_{\nu_{e'}}\gamma_{\alpha}(1 - \gamma_{5})u_{\nu_{e}}) \\ &+ (\overline{u}_{e'}\gamma^{\alpha}(c_{V}^{R} + c_{A}^{R}\gamma_{5})u_{e})(\overline{u}_{\nu_{e'}}\gamma_{\alpha}(1 + \gamma_{5})u_{\nu_{e}}) \\ &+ c_{S}^{R}(\overline{u}_{e'}u_{e})(\overline{u}_{\nu_{e'}}(1 + \gamma_{5})u_{\nu_{e}}) \\ &+ c_{P}^{R}(\overline{u}_{e'}\gamma_{5}u_{e})(\overline{u}_{\nu_{e'}}\gamma_{5}(1 + \gamma_{5})u_{\nu_{e}}) \\ &+ \frac{1}{2}c_{T}^{R}(\overline{u}_{e'}\sigma^{\alpha\beta}u_{e})(\overline{u}_{\nu_{e'}}\sigma_{\alpha\beta}(1 + \gamma_{5})u_{\nu_{e}}) \\ &+ c_{S}^{L}(\overline{u}_{e'}u_{e})(\overline{u}_{\nu_{e'}}\gamma_{5}(1 - \gamma_{5})u_{\nu_{e}}) \\ &+ c_{P}^{L}(\overline{u}_{e'}\gamma_{5}u_{e})(\overline{u}_{\nu_{e'}}\gamma_{5}(1 - \gamma_{5})u_{\nu_{e}}) \\ &+ \frac{1}{2}c_{T}^{L}(\overline{u}_{e'}\sigma^{\alpha\beta}u_{e})(\overline{u}_{\nu_{e'}}\sigma_{\alpha\beta}(1 - \gamma_{5})u_{\nu_{e}}) \}, \end{split}$$

Majorana neutrino – polarized electron scattering amplitude

- No V and T coupling
- Contribution from A, S, P are doubled

$$M_{\nu_e e^-}^M = \frac{2G_F}{\sqrt{2}} \{ -(\overline{u}_{e'}\gamma^{\alpha}(c_V - c_A\gamma_5)u_e)(\overline{u}_{\nu_{e'}}\gamma_{\alpha}\gamma_5 u_{\nu_e})$$
(2)
+ $(\overline{u}_{e'}\gamma^{\alpha}(\tilde{c}_V + \tilde{c}_A\gamma_5)u_e)(\overline{u}_{\nu_{e'}}\gamma_{\alpha}\gamma_5 u_{\nu_e})$
+ $(\overline{u}_{e'}u_e) \left[c_S^L(\overline{u}_{\nu_{e'}}(1 - \gamma_5)u_{\nu_e}) + c_S^R(\overline{u}_{\nu_{e'}}(1 + \gamma_5)u_{\nu_e}) \right]$
+ $(\overline{u}_{e'}\gamma_5 u_e) \left[-c_P^L(\overline{u}_{\nu_{e'}}(1 - \gamma_5)u_{\nu_e}) + c_P^R(\overline{u}_{\nu_{e'}}(1 + \gamma_5)u_{\nu_e}) \right] \}.$

Did we explore all possible experiments to find Majorana neutrinos?

Teppei Katori

1. Neutrino basics

- 2. Accelerator-based long-baseline neutrino experiments
- **3. Accelerator-based short-baseline neutrino experiments**
- 4. Reactor-based neutrino experiments
- **5. Neutrino-less double beta decay**
- 6. Astrophysical neutrino measurements
- 7. Conclusion

6. Atmospheric neutrinos

PINGU and ORCA

- Dense arrays of PMTs in South Pole ice or Medetrrenian sea water (=lower threshold)
- NMO by MSW effect around 4-6 GeV.
- Large ν_τ appearance data (PMNS unitary test)

Chen, Neutrino 2018

6. Solar neutrinos

Solar neutrino open questions

- Detection of hep neutrino \rightarrow HyperK
- Day-night asymmetry measurement \rightarrow HyperK
- MSW upturn at 3 MeV \rightarrow Jinping
- Precise CNO neutrino measurement \rightarrow Jinping

Simpson, Sussex Supernova Nu workshop 2018

6. Supernova neutrinos

Galactic supernova (~3 per century) - Good luck for HyperK, DUNE, IceCube, etc

Diffused supernova background (DSNB)

- Guaranteed signal, ~few events/yr by SuperK-Gd
- lower ebergy than galactic SN (<20 MeV)

SuperK-Gd

- Gd-loaded (neutron capture)

Queen Mary

University of London

- Massive refurbishment work during summer 2018

Riding the SuperK boat! Dream of all neutrino physicists!

Teppei Katori

07/01/2019

6. Astrophysical Very-High-Energy Neutrinos

6. Astrophysical Very-High-Energy Neutrinos

First observation (2013)

Iniversity of London

- 30-2000 TeV neutrinos
- Unlikely from GZK neutrinos or Glashow resonance

$p + \gamma \to \Delta \to \pi \to \nu$

First Glashow resonance? (Taboada, Neutrino 2018)

A 5.9 PeV event in IceCube

 $\bar{\nu}_e(6.2PeV) + e \rightarrow W$

Teppei Katori

6. Astrophysical Very-High-Energy Neutrinos

First observation (2013)

- 30-2000 TeV neutrinos
- Unlikely from GZK neutrinos or Glashow resonance
- Sources are mostly unknown

Evidence of Blazar Neutrino - IC170922A

- TXS 0506+056

IceCube, Science361(2018)147 IceCube et al,(2018)eaat1378

48

IceCube,PRL115(2015)081102

6. Astrophysical Very-High-Energy Neutrinos

First observation (2013)

- 30-2000 TeV neutrinos
- Unlikely from GZK neutrinos or Glashow resonance
- Sources are mostly unknown
- Spectrum is poorly constrained

Palladino et al, PRL114(2015)171101

6. Astrophysical Very-High-Energy Neutrinos

First observation (2013)

- 30-2000 TeV neutrinos
- Unlikely from GZK neutrinos or Glashow resonance
- Sources are mostly unknown
- Spectrum is poorly constrained
- Production flavor structure unknown

First astrophysical tau neutrino? (Taboada, Neutrino 2018)

IceCube-Gen2, arXiv:1412.5106, JPhysG.44 (2017) 054006 ICRC2017 proceedings, arXiv:1710.01207

6. IceCube-Gen2

IceCube-Gen2 collaboration meeting (May 1, 2015)

PINGU

Teppei Katori

Bigger IceCube and denser DeepCore can push their physics

Gen2

Larger string separations to cover larger area

PINGU

Smaller string separation to achieve lower energy threshold for neutrino mass hierarchy measurement

https://charge.wisc.edu/icecube/wipac_store.aspx

IceCube ICI70922 t-shirt (Crew-Neck)

The front side features an image of "IC170922" and the IceCube logo on the back Heathered navy, crewneck, rinspun cotton/polyester, Available in unisex sizes S-2XL Runs

KM3NeT, JPhysG.43 (2016) 084001 Katz, Neutrino 2018

6. KM3NeT

mDOM design

- 31 3" PMT in one module
- Cover roughly IceCube volume
- Better angular resolution
- Candidate design for HyperK and IceCube-Gen2

KM3NeT

Connolly, Neutrino 2018 Anchordoqui et al, LHEP01(2018)03

Letters in High Energy Physics

LHEP 01, 13, 2018

Upgoing ANITA events as evidence of the CPT symmetric universe

Luis A. Anchordoqui¹, Vernon Barger², John G. Learned³, Danny Marfatia³, and Thomas J. Weiler⁴
¹Department of Physics & Astronomy, Lehman College, City University of New York, NY 10468, USA
¹Department of Physics, Graduate Center, City University of New York, NY 10016, US
¹Department of Astrophysics, American Museum of Natural History, NY 10024, USA
²Department of Physics, University of Wisconsin, Madison, WI 53706, USA
³Department of Physics & Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA
⁴Department of Physics & Astronomy, Vanderbilt University, Nashville TN 37235, USA
Received: 12 April 2018, Accepted: 10 May 2018, Published: 12 May 2018

PTOLEMY, arXiv:1808.01892 Project 8, PRD80(2009)051301 6. Cosmic Neutrino Background (CvB)

PTOLEMY and Project 8

- Motivated by KATRIN
- Tritium v_e capture (no threshold)
- Measure end point of tritium (18 keV) from cyclotron radiation of single electron RF

- Target: ~meV shift of end point due to neutrino mass.

Q-m_v → neutrino mass effect on β-decay Q+m_v → CvB capture

Project 8 concept

Conclusions

Neutrino physics spans from few meV to EeV, but 2 fields are very popular

- reactor neutrinos (~4 MeV)

- accelerator-based neutrinos (1-10 GeV)

NC is useful to look for new physics, but often ignored at the design stage of oscillation experiments.

Nuclear physics is important for many experiments; nuclear effects for oscillation experiments, reactor flux prediction for rector experiments, nuclear matrix element and g_A calculations for double beta experiments, etc

- If you can avoid nuclear physics, you should
- If you cannot avoid, you deal it and don't ignore

For students in large collaborations

- Don't be a part of the system. It's YOU to make your experiment more interesting! (new ideas never come from old people, change the future if you don't like)

Thank you for your attention!