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INTRODUCTION




AlphaGo 4, Homo Sapiens 1

2016 — Google’s AlphaGo program beats Go champion Lee
Sodol.
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ARTICLE

doi:10.1038/nature24270

Mastering the game of Go without
human knowledge

David Silver'*, Julian Schrittwieser'*, Karen Simonyan'*, Ioannis Antonoglou!, Aja Huang!, Arthur Guez!,
Thomas Hubert!, Lucas Baker!, Matthew Lai', Adrian Bolton!, Yutian Chen!, Timothy Lillicrap', Fan Hui!, Laurent Sifre',
George van den Driessche!, Thore Graepel' & Demis Hassabis!

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in
challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The
tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were
trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce
an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also
the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality
move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved
superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.
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Follow the Yellow Brick Road!

Giusti et al. treat the problem of trail navigation as a

classification problem!

Data: & hours of \7:?
1920 x 1080 301ps \?’
video using 3 GoPro

cameras.
Z/
O{ /t_’ trail direction

viewpoint

view direction _,

IEEE Robotics and Automation Letters ( Volume: 1, Issue: 2, July 2016 )



http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7083369
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7419970

What is Machine Learning?

The use of computer-based algorithms for constructing useful
models of data.

Machine learning algorithms fall into five broad categories:
1. Supervised Learning

Semi-supervised Learning

Unsupervised Learning

Reinforcement Learning

A

Generative Learning




Machine Learning

Choose
Function space F={f(x,w)}
Constraint C F
Loss function L C(w)
J(x, w¥)
The Goal

Choose a suitable function from the function space. The
suitability of the function 1s assessed with a loss function,
(e.g., the quadratic loss L(y, f) = (y — f)?), which quantifies
the cost of making a bad choice.




Machine Learning

Method
Find f(x, w*) by minimizing a function called
the (constrained) empirical risk
C(w)
1
Rw) = =i, Ly, fi) + C(w),

S (x, w¥)
fi = f(x;,w)

The constraint C(w) guides the choice of f (x, w).

Warning: in the machine learning world, R(w) is often
referred to as the loss function.

F

10



Machine Learning

A great deal of the machine learning research 1s devoted to
finding highly flexible functions f (x, w) that render the
minimization of

N
1
RW) == L fi) + Cw)
=1

computationally feasible.

There 1s also quite a bit of effort devoted to exploring different
loss functions and constraints.
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A BIT OF THEORY




Minimizing the Average Loss

A loss function defines a “landscape™ in the space of
parameters, or equivalently in the space of functions.

The goal 1s to find the lowest point in that landscape, by
moving 1n the direction of the local negative gradient:

dR(w)
an'
Most minimization algorithms are variations on this them
Stochastic Gradient Descent (SGD) uses
random subsets (batches) of the trainin
data to provide noisy estimates of
the gradient.

Wi Wy —p
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Minimizing the Average Loss

Consider the average quadratic loss 1n the limit N — oo

N
1
RW) == 0 = f (i w)? + Cw)
=1

> [dx [dy (y — £, w) (v, x)

= [dxp)[[dy v = /)* (%]
where p(v|x) = p(v, x)/p(x) and where the influence of the
constraint (in this limit) 1s assumed to be negligible.

Note, R 1s a functional of f (x, w), that 1s, R depends on
infinitely many values of f (x, w).
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Minimizing the Average Loss

If we change the function f by a small arbitrary function 6 f
a small change

6R =2 [ dx p(x)Sf[[ dy(y — FHr(v|x)]
will be induced in R. In general, 6R + 0.

But, 1f the function f1s flexible enough then we shall be able
to reach the minimum of R, where 6R = 0.

But, the only way to guarantee that SR = O for all 6f and for
all x 1s 1f the quantity in brackets 1s zero, that 1s, 1f

Fo) = [ ypl1xdy
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Classification

Recall that Bayes’ theorem 1s
p(r,x) _ plxly)p()
p(x)  [plxly) p(dy

Now assign the target value y = 1 to objects of class s and
target value y = 0 to objects of class b.

p(ylx) =

Then
)= j yp( | %) dx = p(1]x)

= p(slx)
That is, the function f (x) equals the class probability.
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Classification

In 1990%*, the result
FO0) = p(slx) = p(x,5) _ p(x|s)p(s)
p(x) px|s)p(s) + p(x|[b)p(b)

was derived in the context of neural networks.

But notice our discussion so far made no mention of neural
networks!

* Ruck et al., IEEE Trans. Neural Networks 4, 296-298 (1990); Wan, IEEE Trans.
Neural Networks 4, 303-305 (1990);

Richard and Lippmann, Neural Computation. 3, 461-483 (1991)
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Classification

The point 1s that the result
p(x,5)
(x) = p(slx) =
/ P

depends only on the form of the loss function provided that:

1. the traming data are sufficiently numerous,
2. the function f (x, w) 1s sufficiently flexible, and

3. the minimum of R can be found.

In particular,

the result does not depend on the nature of the function f (x, w).
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Classification

Note, if p(s) = p(b), we arrive at the discriminant

__ plxls) sl
p(xls) +p(x|b) — s(x) + b(x)

D(x)

which is an extremely useful result because 1t suggests many
potential machine learning applications.

Example: given that s(x) = % b(x), the density s(x) can be

approximated as a correction to a known function b(x).

19



BOOSTED DECISION TREES




Decision Trees

Decision tree:
a sequence of if then else
statements.

Bad
0.36

Basic idea: recursively

Good
0.81

partition the space into

regions of diminishing impurity.

This 1s a simple example of an
automated wine taster...more

later...!

>

alcohol
11.8

<

SO2tota

79.0
<

alcohol
10.7

Good
0.59

Bad
0.27




Decision Trees

For each variable, find the
partition (“cut”) that gives

the greatest decrease in

Bad
0.36

impurity:

Good
0.81

Impurity (parent)
— Impurity (“left”)
— Impurity (“right”)

Then, choose the best
partition among all

partitions, and repeat w
each child.

ith

>

alcohol
11.8

<

SO2tota

79.0
<

alcohol
10.7

Good
0.59

Bad
0.27




Decision Trees

The most common impurity
measure 1s the Gini index

(Corrado Gini, 1884-1965):

Good
Gini index=p (1 —p) | 0.81

where p 1s the purity
p=S/(S+8B)

p =0 or 1 = maximal purity

p=0.5 =maximal impurity

Bad Good
0.36 0.59
SO2tota
79.0
> <
alcohol
11.8 g
Bad
0.27
alcohol
10.7

<




alcohol (% vol.)

Decision Trees

Geometrically, a decision tree
is a d-dimensional histogram

Bad
0.36

in which the bins are

created recursively. Good
0.81
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10

0 100 200 300
SO, (mg/dm®)

>

alcohol
11.8

SO2tota

79.0
<

<

alcohol
10.7

Good
0.59

<

Bad
0.27
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Decision Trees

Unfortunately, decision trees are unstable!

25



A Silk Purse from a Sow’s Ear!

In 1997, AT&T researchers Freund and Schapire [Journal of
Computer and Sys. Sc1. 55 (1), 119 (1997)] showed that 1t
was possible to build highly effective classifiers by
combining a large number of mediocre ones!

The Freund-Schapire algorithm, which they called AdaBoost,
was the first successful method to boost (1.€., enhance)

the p erformanc e O f ic:#g&LNoci gg:d;u:rﬁn AND SYSTEM SCIENCES 55, 119-139 (1997)

971504

poorly performing

! A Decision-Theoretic Generalization of On-Line Learning
ClaSSlﬁerS by and an Application to Boosting *
averaging their Outputs . Yoav Freund and Robert E. Schapire’

AT&T Labs, 180 Park Avenue, Florham Park, New Jersey 07932

Received December 19, 1996
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A Silk Purse from a Sow’s Ear!

The most popular methods (used mostly with decision trees) are:

® Bagging: each tree 1s trained on a bootstrap™
sample drawn from the training set

®* Random Forest: bagging with randomized trees

® Boosting: cach tree trained on a different
reweighting of the training set

* A bootstrap sample is a sample of size N drawn, with replacement, from
another of the same size. Duplicates can occur and are allowed.
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EXAMPLE: WINE TASTING!




Wine Tasting

Wine tasting 1s big business. But, can a machine do 1t?
In principle, yes, 1f we can establish the ,
physical attributes that define “good” wine, |
such as this one for $117,000 a bottle! ’

@Uﬁun-(‘fh“rlvntﬂﬂl’"
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Wine Tasting

We’ll use AdaBoost to build a classifier to distinguish good
wines from bad wines

- Vinho Verde

.Dmlo

from

Vinho Verde
in Portugal.

PORTUGAL

30



Wine Tasting

Let’s define a good wine as one with expert rating > 0.6 on a
scale from O to 1, where 1 is a wine from Heaven and 0 1s a
wine from Hell!

We’ll use data from
Cortez et al. *

*p. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
Modeling wine preferences by data mining from physicochemical properties.
In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236
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Wine Tasting: Data

Data: [Cortez et al., 2009].

variables
acetic
citric
sugar

salt
SO2free
SO2tota
pH
sulfate
alcohol

quality

description

acetic acid

citric acid
residual sugar
Nac(Cl

free sulfur dioxide
total sulfur dioxide
pH

potassium sulfate
alcohol content
(between 0 and 1)

32



citric

sulfate

sulfate

suger

alcohol

sulfate

sulfate

alcohol

sulfate

suger

alcohol

SO2free

sulfate

sulfate

alcohol

SO2tota

SO2tota

alcohol

alcohol

"sulfate '
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Wine Tasting: Variables

Variables:
SO2tota:
alcohol:

Input variable: SO2tota

iyovlow(s.a): (0.0, 0.0)% /(0.0, 0.0)%

50 100 150 200 250
SO2tota

alcohol content (% volume)

Input variable: alcohol

(1/N) dN /0.142

LA
;
’
/
/
¢
¢
¢
¢
¢
’
’
’
’
’
’
¢
¢

\\\\\\‘

N

\\\\\\\‘\\\\\\\‘

n

12

the total sulfur dioxide content (mg/dm?)

13 14
alcohol

W/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%
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alcohol

Wine Tasting: First 6 Decision Trees

14

alcohol

14

alcohol
alcohol

12 12

10 10 10

4 1
0 100 200 300 0 100 200 300 0 100 200 300
SO2tota SO2twota SO2tota

aicohol
alcohol

0 100 200 300

0 100 200 300
SO2tota

SQ2wota SO2tota




Wine Tasting: Results

X = SO2tota
y = alcohol

Background rejection versus Signal efficiency TMVA
TMVA response for classifier: BDT 1
: § :
ils"ﬁér"'I""I""I""I""I""I""I"_ © 0oL
g 7ng d ERC:
g /] ackgroun ; 5 osF \‘
g 6 = 5 - \\
= - 3 o -
~ 5 0.7F ™
- =
9 =
£ @ 06f
S -
s 0.5 F \ 1
S 0.4 F .
e C ]
e - MVA Methad: \ .
) 0.3 BDT \-
e C 3
F 02l A
o
3

0 01 02 03 04 05 06 07 08 09 1

04 03 02 01 0 01 02 03 04 Signal efficiency
BDT response

BDT D1sgr;but10n Fraction of bad wine rejected

for a given fraction of good
BDT(x,y) = z U (XY, W) wine iccepted. °
k=0




DEEP NEURAL NETWORKS




Deep Neural Networks

layer 2

W

\

».
G
M

A

X7

\

B
G

9

G
4

4

N

Q

X
N

h,= h(b, + wyx)

h(by +wh))

h2:

0 = g(b, + w,h,)
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Deep Neural Networks

input layer layer 0 layer 1 layer 2

A 3-layer DNN
0 = g(by + wyh(by + wih(by + wyx)))

h(z) = ReLU(z) [=max(0, z)], tanh(z)
g(z) = ldentity(z), logistic(z) = 1/[1 + exp(-z)]




Deep Neural Networks

® In 2006, University of Toronto researchers Hinton, Osindero,
and Teh (HOT*) succeeded 1n training a deep neural network
for the first time. Each layer was trained to produce a
representation of its inputs that served as the training data for
the next layer. Then the entire network was adjusted using
gradient descent.

® This breakthrough seemed to provide compelling evidence
that the training of deep neural networks requires careful
initialization of parameters and sophisticated machine
learning algorithms.

* Hinton, G. E., Osindero, S. and Teh, Y. (HOT), A fast learning algorithm
for deep belief nets, Neural Computation 18, 1527-1554.
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Deep Neural Networks

® But, in 2010, Cirgsan et al.* showed that such cleverness was
not needed! The authors succeeded in training a DNN with
architecture (784, 2500, 2000, 1500, 1000, 500, 10) that
classified the hand-written digits in the MNIST database.

® The database comprises 60,000 28 X 28 = 784 pixel images
for training and validation, and 10,000 for testing.

® The error rate of their ~12-million parameter DNN was 35
images out of 10,000. The misclassified images are shown on
the next slide.

* Cirgsan DC, Meier U, Gambardella LM, Schmidhuber J. , Deep, big,

simple neural nets for handwritten digit recognition. Neural Comput. 2010 Dec;
22 (12): 3207-20. http://yann.lecun.com/exdb/mnist/

41



(784, 2500, 2000, 1500, 1000, 500, 10)

(rq-;
5.
L,
Z,

1,

58

8" 9

4

E:’D 65
6 0 06
g 5

55 25

q'El Q:;S
%5

9 4
£ °
g6

O
IJ"
1?"

A

&
f:.
)1
I1
ﬁ,n
6 0

Upper right: correct answer; lower left answer of highest DNN output;
lower right answer of next highest DNN output.
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Convolutional Neural Networks

Many of the remarkable breakthroughs 1n tasks such as face

recognition use a type of DNN called a convolutional neural
network (CNN).

CNNss are functions that compress data and classify objects
using their compressed representations via a standard fully
connected NN. The compression dramatically reduces the
dimensionality of the space to be searched.

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

1
|

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

Source: https://www.clarifai.com/technology
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THE FUTURE OF MACHINE
LEARNING




Machine Learning and Al

® The most far-reaching application of machine learning 1s of
course artificial intelligence (Al).

® There 1s a huge amount of hype associated with AI. And
we are far from being able to create systems that possess
the innate heuristic algorithms that make us human.

®* However, it important that we not become complacent
because, for better of worse, we do seem to be at the dawn
of a revolution based on machine learning-based Al.




McKinsey&Company

A FUTURE THAT WORKS:

JANUARY 2017

EXECUTIVE SUMMARY
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“Almost half the activities people are paid almost $16 trillion
in wages to do 1n the global economy have the potential to be
automated by adapting currently demonstrated technology,
according to our analysis of more than 2,000 work activities
across 800 occupations.”

McKinsey & Company,

A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND
PRODUCTIVITY

Executive Summary January 2017
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The Future of Machine Learning

By 2050, the following might be in routine use:
autonomous personal predictive medical systems
autonomous personal tutors

autonomous physician’s assistant

autonomous house servant

autonomous pet sitter

AN AE I o A

autonomous vehicles that can drive safely on the M1!
The potential of machine learning and Al 1s vast and exciting.

But it has been argued (e.g, Bill Gates, Elon Musk, the late
Stephen Hawking) that the dangers are also vast and
fearsome: autonomous, self-aware, drone soldiers, Al drone
swarms, Al-enabled computer viruses...
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Hands-On Exercises

Dependencies
python 2.7.x, x > 9
numpy array manipulation
pandas DataFrame manipulation

matplotlib plotting
scikit-learn  simple machine learning toolkit

Also useful:

SCIpy mathematical stuff for scientists
sympy amazing symbolic algebra package
Installation

git clone https://github.com/hbprosper/YETI




Hands-On Exercises

Exercises

01 wine classification (BDT)
02 wine quality regression (fully connected DNN)

03 Higgs boson VBF vs ggF (fully connected DNN)
04 MNIST hand written digit classification (DNN)




BACKUP




4

Wine Tasting: Results

alkcoho
alkcoho

The upper figures 7
are density plots of : i

10F

the training data. ol

8 L L L L 8

The l()WQr pl()ts arc 0 50 100 150 200 250 0 slo 1cl>o 1;0 zcli 250

SO, SO,

approximations of

14

alcohol
alcohol

the discriminant

D(x, y) ‘I
The left, uses 2-D |
histograms, the right

USCECS the BDT 8o slo 1:30 1;0 2c1>o 250 8o slo 11130 1;0 2E1>0 250
SO, SO,

125

10 10
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Ensemble Methods

Suppose you have an ensemble of classifiers 1 (x, w,), which,
individually, perform only marginally better than random
guessing. Such classifiers are called weak learners.

It 1s possible to build highly effective classifiers by averaging
their outputs:

N
FO) =ag+ ) an fCn W)
n=1

Jerome Friedman & Bogdan Popescu (2008)
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DEEP NEURAL NETWORKS




Adaptive Boosting

The AdaBoost algorithm of Freund and Schapire uses
decision trees f (x, w) with weights w assigned to each
object to be classified, and each assigned a target value of
either y = +1, or -1, e.g., +1 for signal, —1 for background.

The value assigned to each leaf of 1 (x, w) 1s also £ 1.

Consequently, for object n, associated with values (y,, x,,

f(x,w)y,>0 for a correct classification
f(x,w)y, <0 for an incorrect classification

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. 55 (1), 119 (1997)
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Adaptive Boosting

Initialize weights w 1n training set (e.g., setting each to 1/NV)
fork=1to K:

1. Create a decision tree f (x, w) using the current weights.
2. Compute 1ts error rate € on the weighted training set.

3. Compute @ =In(1-¢€)/€ and storeas a ,=«a
4

Update each weight w, 1n the training set as follows:
w,=w,exp[—a, f(x,w)y,] /A, where A is a
normalization constant such that > w, = 1. Since

f(x,, w) vy, <0 for an incorrect classification, the weight of
misclassified objects 1s increased.

At the end, compute the average f (x) =) a; f(x, wy)

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. 55 (1), 119 (1997)
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Adaptive Boosting

AdaBoost 1s a highly non-intuitive algorithm. However, soon
after 1ts invention, Friedman, Hastie and Tibshirani
showed that the algorithm 1s mathematically equivalent to
minimizing the following average loss function

R(F) = f exp(=y F(x)) p(x, y) dx dy

where F(x) = YN _. a, f(x, Wy),
Minimizing this loss function yields
D(x) = logistic(2F) = 1/(1 + exp(—2 F(x))
which can be interpreted as a probability, even though F’

cannot!

J. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: a statistical
view of boosting,” The Annals of Statistics, 28(2), 377-386, (2000)
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A Bit of History: Hilbert’s 13" Problem

(One version of Problem 13): Prove
that 1t 1s impossible to do the following:
Sps X)) = FCZ1(Xayse - Xm))se - -5 kX (1) - -5 X(m)))
for m < n for all n.
In 1957, Kolmogorov proved that 1t was possible with m = 3.

Today, we know that functions of the form

filx,w) = ap + Z Wi (b + z w]lxl>

can provide arbltrarlly accurate approximations of ”. |

real functions of / real variables.
(Hornik, Stinchcombe, and White, Neural Networks 2, 359-366 (1989))
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Convolutional Neural Networks

A CNN comprises three types of processing layers: 1.
convolution, 2. pooling, and 3. classification.
1. Convolution layers
The input layer 1s “convolved” with one or more matrices
using element-wise products that

1/1]1]o]o0
are then summed. In this example, [oJ1]1[1]0] [2
. . . . ch OXO ]3<1 1 1
since the sliding matrix fits 9 StoTeTo
times, we compress the mput from [ef2]1]o]o
Convolved

adSx5toatoa 3 X 3 matriX. Image Feature

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

1
|

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

’I




Convolutional Neural Networks

2. Pooling Layers
After convolution, and a pixel by pixel non-linear map
(using, e.g., the function y = max(0, x) = ReLU(x)), a
coarse-graining of the layer 1s performed
called max pooling in which the maximum
values within a series of small windows
are selected and become the output of
a pooling layer.

Max(1,1,5,6)=6

max pool with 2x2 filters
and stride 2 6 |8

N
&/
2
2

W= NN

A O| 0
w
H

X
Convolution Pooling Convolution Pooling Fully
Connect:

ll y

Rectified Feature Map

. -~ Uup \v.uag
cat (0.04)
boat (0.94)
bird (0.02)
O ol

r
1

-

o T I
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Convolutional Neural Networks

3. Classification Layers
After an alternating sequence of convolution and pooling
layers, the outputs go to a standard neural network, either
shallow or deep. The final outputs correspond to the
different classes and like all flexible classifiers, a CNN
approximates,

M
p(Celx) = P(xICOP(C)/ ) PEHICIP(Cr)
m=1

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

bl ~—w._ dog(0.01)
%ﬁt (0.04)
boat (0.94)
L - bird (0.02)
o | e -

62



