
An Introduction to Machine Learning

Harrison B. Prosper
Florida State University

YETI 19, Durham University, UK
7 January, 2019

Topics

h Introduction
hA Bit of Theory
hBoosted Decision Trees
hDeep Neural Networks
hThe Future of Machine Learning

2

INTRODUCTION

AlphaGo 4, Homo Sapiens 1

2016 – Google’s AlphaGo program beats Go champion Lee
Sodol.

Photograph: Yonhap/Reuters 4

356 | NATURE | VOL 550 | 19 OCTOBER 2017
5

6

Follow the Yellow Brick Road!

Giusti et al. treat the problem of trail navigation as a
classification problem!

Data: 8 hours of
1920 x 1080 30fps
video using 3 GoPro
cameras.

IEEE Robotics and Automation Letters (Volume: 1, Issue: 2, July 2016)

7

2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2015.2509024, IEEE Robotics
and Automation Letters

GIUSTI et al.: A MACHINE LEARNING APPROACH TO VISUAL PERCEPTION OF FOREST TRAILS FOR MOBILE ROBOTS 3

Fig. 3: Left: given a point, ~t is the direction a hiker would walk in
order to follow the trail. Right: illustration of ~v, ↵, � (see text).

Let ↵ be the signed angle between ~v and ~t: we consider
three classes, which correspond to three different actions that
the (human or robotic) carrier of the camera should implement
in order to remain on the trail, assuming that the camera is
looking at the direction of motion.
Turn Left (TL) if �90� < ↵ < ��; i.e., the trail is heading

towards the left part of the image.
Go Straight (GS) if ��  ↵ < +�; i.e., the trail is heading

straight ahead, at least in the close range.
Turn Right (TR) if +�  ↵ < +90�; i.e., the trail is heading

towards the right part of the image.
Given the input image, our goal is to classify it in one of these
three classes. In the following, we consider � = 15�.

Note that, in case the absolute value of ↵ is large, the trail
may entirely lie outside of the camera field of view; e.g., this
happens if the robot is looking in a perpendicular direction
with respect to the trail. In that case, the image only allows
us to infer that the true class is not Go Straight (GS).

III. VISUAL PERCEPTION OF FOREST TRAILS

We solve the problem as a supervised machine learning
task, which is extremely challenging because of the wide
appearance variability of the trail and its surroundings: per-
ceptions are heavily affected by lighting conditions, vegetation
types, altitude, local topography, and many other factors. We
deal with such challenges by gathering a large and represen-
tative labeled dataset, covering a large variety of trails and a
long distance on each.

A. Dataset
To acquire such a dataset, we equip a hiker with three head-

mounted cameras: one pointing 30� to the left, one pointing
straight ahead, and one pointing 30� to the right; the fields
of view of the three cameras partially overlap and cover
approximately 180 degrees (see Figure 3). The hiker then
swiftly walks a long trail, by taking care of always looking
straight along its direction of motion. The dataset is composed
by the images acquired by the three cameras.

Each image is labeled, i.e. it is associated to its ground
truth class. Because of the definition of our classes, all images
acquired by the central camera are of class GS: in fact, they

were acquired while the hiker was walking along the trail, and
looking straight ahead (i.e., ↵ ⇡ 0�) in the direction of motion.
Conversely, the right looking camera acquires instances for the
TL class, with ↵ ⇡ 30�; and the left-looking camera acquires
instances of the TR class (↵ ⇡ �30�).

The dataset1 is currently composed by 8 hours of 1920 ⇥
1080 30fps video acquired using three GoPro Hero3 Sil-
ver cameras in the configuration outlined above, and cov-
ers approximately 7 kilometres of hiking trails acquired at
altitudes ranging from 300m to 1,200m, different times of
the day and weather. Exposure, dynamic range and white
balance are automatically controlled by the cameras. To avoid
long exposure times, which would yield to motion-blur, all
sequences are acquired during daytime, excluding twilight.
Many different trail types and surroundings are represented,
ranging from sloped narrow alpine paths to wider forest roads.
Acquisitions are normally uninterrupted unless for technical
reasons or to avoid long sections on paved roads; this ensures
that the dataset is representative not only of ideal, “clean”
trails but also of frequent challenging or ambiguous spots often
observed in the real world. Synchronized GPS and compass
information has been recorded for most sequences, but is
unused at the moment.

The dataset has been split in disjoint training (17,119
frames) and testing (7,355 frames) sets. The split was defined
by carefully avoiding that the same trail section appears in
both the training and testing set. The three classes are evenly
represented within each set.

B. Deep Neural Networks for Trail perception

We use a DNN [17] as an image classifier, and adopt the
network architecture detailed in Figure 5, that has been shown
to perform well when applied to a large amount of image
classification problems [17]; in particular, we consider a matrix
of 3 ⇥ 101 ⇥ 101 neurons as the input layer, followed by a
number of hidden layers and three output neurons.

The input image is first anisotropically resized to a size of
101 ⇥ 101 pixels; the resulting 3 ⇥ 101 ⇥ 101 RGB values
are directly mapped to the neurons in the input layer. For a
given input, the DNN outputs three values, representing the
probability that the input is of class TL, GS, TR, respectively.

Training a net: The 17,119 training frames are used as
training data. The training set is augmented by synthesizing
left/right mirrored versions of each training image. In partic-
ular, a mirrored training image of class TR (TL) yields a new
training sample for class TL (TR); a mirrored GS training
sample yields another GS training sample. Additionally, mild
affine distortions (±10% translation, ±15� rotation, ±10%
scaling) are applied to training images to further increase the
number of samples. The DNN is trained using backpropagation
for 90 epochs, which requires about 3 days on a workstation
equipped with an Nvidia GTX 580 GPU. The learning rate
is initially set to 0.005, then scaled by a factor of 0.95 per
epoch.

1The whole dataset is available as supplementary material [28]

2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2015.2509024, IEEE Robotics
and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2015

Fig. 4: Left: stylized top view of the acquisition setup; Right: our hiker during an acquisition, equipped with the three head-mounted cameras.

Fig. 5: Architecture for the DNN [17] used in our system, and
representation of the maps in each layer

DNN architecture: A DNN is a feed-forward connectionist
model built out of successive pairs of convolutional and max-
pooling layers, followed by several fully connected layers (the
architecture adopted in our system is illustrated in Figure 5).
Input pixel intensities, rescaled to the range [�1, 1], are
passed through this complex, hierarchical feature extractor.
The fully connected layers at the end of the network act as
a general classifier. The free parameters (weights), initialized
with random numbers from an uniform distribution in the
range [�0.05, 0.05], are jointly optimized using stochastic
gradient descent to minimize the misclassification error over
the training set.

Convolutional layers [29] perform 2D convolutions of their
input maps with a rectangular filter. When the previous layer
contains more than one map, the results of the correspond-
ing convolutions are summed and transformed by a scaled
hyperbolic tangent activation function. Higher activations will
occur where the filter better matches the content of the map,
which can be interpreted as a search for a particular feature.

The output of the max-pooling (MP) layers [30] is formed by
the maximum activations over non-overlapping square regions.
MP layers decrease the map size, thus reducing the network
complexity. MP layers are fixed, non-trainable layers selecting
the winning neurons. Typical DNNs are much wider than
previous CNN, with many more connections, weights and
non-linearities. A GPU implementation [31] is used to speed
up training. The output layer is a fully connected layer with
one neuron per class (i.e. TL, GS and TR), activated by a
softmax [32] function. Each output neuron’s activation can be
interpreted as the probability of the input image belonging to
that class.

IV. EXPERIMENTAL RESULTS

Performance metrics: We use the testing set defined in
Section III-A (7355 images) in order to compute performance
metrics for different classification techniques.

For the three-class classification problem defined in Sec-
tion II, we compute the absolute accuracy (i.e. fraction of
correctly classified images) and the confusion matrix.

We additionally consider a derived two-class classification
problem, on which additional, more robust performance mea-
sures can be defined. In the two-class problem, one has to
decide whether an input image is of class GS or not (i.e.,
whether a trail is visible straight ahead, or not). The image
is classified as GS if and only if P (GS) > T . We report
the accuracy of the binary classifier for T = 0.5, and the
corresponding precision, recall, and the area under the ROC
curve (the last is a robust metric and does not depend on the
choice of T).

Comparisons: In the following, we compute the perfor-
mance of our technique (DNN), where P (TL), P (GS) and
P (TR) are directly computed by applying the DNN model
to the input frame. We compare its performance to three
alternatives.
1. Simple Saliency-based Model. We compute saliency

maps of the input frame using Itti’s model [33], as in
Santana et al. [12]. This map is computed on the image
hue only, which preliminary experiments shown to be
the configuration where saliency is most correlated to
trail location. The saliency map is discretized to 16 ⇥ 9
blocks, and the average saliency for each block yields a
144-dimensional feature vector. A SVM model with an

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7083369
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7419970

What is Machine Learning?

The use of computer-based algorithms for constructing useful
models of data.

Machine learning algorithms fall into five broad categories:
1. Supervised Learning
2. Semi-supervised Learning
3. Unsupervised Learning
4. Reinforcement Learning
5. Generative Learning

8

Machine Learning

Choose
Function space F = { f (x, w) }
Constraint C
Loss function L

The Goal
Choose a suitable function from the function space. The

suitability of the function is assessed with a loss function,
(e.g., the quadratic loss ! ", $ = (" − $))), which quantifies
the cost of making a bad choice.

9

F

f (x, w*)

C(w)

Machine Learning

Method
Find f (x, w*) by minimizing a function called
the (constrained) empirical risk

! " = $
%∑'($

%) *', ,' + .("),

,' ≡ ,(2', ")

The constraint C(w) guides the choice of f (x, w).

Warning: in the machine learning world, ! " is often
referred to as the loss function.

F

f (x, w*)

C(w)

10

Machine Learning

A great deal of the machine learning research is devoted to
finding highly flexible functions f (x, w) that render the
minimization of

! " = 1
%&'()

*
+(-', /') + 2(")

computationally feasible.

There is also quite a bit of effort devoted to exploring different
loss functions and constraints.

11

A BIT OF THEORY

A loss function defines a “landscape” in the space of
parameters, or equivalently in the space of functions.

The goal is to find the lowest point in that landscape, by
moving in the direction of the local negative gradient:

!" ← !" − %
&'(!)
&!"

Most minimization algorithms are variations on this theme.
Stochastic Gradient Descent (SGD) uses

random subsets (batches) of the training
data to provide noisy estimates of
the gradient.

Minimizing the Average Loss

13

Minimizing the Average Loss

Consider the average quadratic loss in the limit ! → ∞

$ % = 1
!()*+

,
(.) − 0 1), %)4 + 6(%)

→ ∫81 ∫8. . − 0 1,% 49(., 1)
= ∫81 9(1) ∫ 8. . − 0 4 9(.|1)

where 9 .|1 = 9(., 1)/9(1) and where the influence of the
constraint (in this limit) is assumed to be negligible.

Note, R is a functional of f (x, w), that is, R depends on
infinitely many values of f (x, w).

14

Minimizing the Average Loss

If we change the function f by a small arbitrary function !"
a small change
!# = 2∫'()(()!" ∫',(, − .))(,|()

will be induced in R. In general, !# ≠ 0.
But, if the function f is flexible enough then we shall be able

to reach the minimum of R, where !# = 0.

But, the only way to guarantee that !# = 0 for all !" and for
all x is if the quantity in brackets is zero, that is, if

.(() = 2,) , () ',

15

Classification

Recall that Bayes’ theorem is

! " # = !(", #)
!(#) = ! # " !(")

∫ ! # " ! ")"
Now assign the target value y = 1 to objects of class s and

target value y = 0 to objects of class b.

Then

That is, the function * # equals the class probability.

* # = +" ! " #))# = ! 1 #

≡ !(.|#)

16

Classification

In 1990*, the result

! " = $ % " = $(", %)
$(") = $ " % $ %

$ " % $ % + $ " * $(*)
was derived in the context of neural networks.

But notice our discussion so far made no mention of neural
networks!

* Ruck et al., IEEE Trans. Neural Networks 4, 296-298 (1990); Wan, IEEE Trans.
Neural Networks 4, 303-305 (1990);
Richard and Lippmann, Neural Computation. 3, 461-483 (1991)

17

Classification

The point is that the result

! " = $ % " = $(", %)
$(")

depends only on the form of the loss function provided that:
1. the training data are sufficiently numerous,
2. the function f (x, w) is sufficiently flexible, and
3. the minimum of R can be found.

In particular,
the result does not depend on the nature of the function f (x, w).

18

Classification

Note, if ! " = !(%),		we	arrive	at	the	discriminant

6 7 = ! 7 "
! 7 " + ! 7 % ≡ " 7

" 7 + % 7

which is an extremely useful result because it suggests many
potential machine learning applications.

Example: given that " 7 = :
;<: %(7), the density " 7 can be

approximated as a correction to a known function % 7 .

19

BOOSTED DECISION TREES

>
root

Bad
0.27

>

Good
0.81

Good
0.59

Bad
0.36

alcohol	
11.8

SO2tota	
79.0

>

alcohol
10.7

<

<

<

Decision tree:
a sequence of if then else
statements.

Basic idea: recursively
partition the space into
regions of diminishing impurity.

This is a simple example of an
automated wine taster…more
later…!

Decision Trees

21

>
root

Bad
0.27

>

Good
0.81

Good
0.59

Bad
0.36

alcohol	
11.8

SO2tota	
79.0

>

alcohol
10.7

<

<

<

Decision Trees

For each variable, find the
partition (“cut”) that gives
the greatest decrease in
impurity:

Impurity (parent)
– Impurity (“left”)
– Impurity (“right”)

Then, choose the best
partition among all
partitions, and repeat with
each child.

22

>
root

Bad
0.27

>

Good
0.81

Good
0.59

Bad
0.36

alcohol	
11.8

SO2tota	
79.0

>

alcohol
10.7

<

<

<

Decision Trees
The most common impurity

measure is the Gini index
(Corrado Gini, 1884-1965):

Gini index = p (1 – p)
where p is the purity

p = S / (S + B)

p = 0 or 1 = maximal purity
p = 0.5 = maximal impurity

23

>
root

Bad
0.27

>

Good
0.81

Good
0.59

Bad
0.36

alcohol	
11.8

SO2tota	
79.0

>

alcohol
10.7

<

<

<

Geometrically, a decision tree
is a d-dimensional histogram
in which the bins are
created recursively.

Decision Trees

24

Decision Trees

Unfortunately, decision trees are unstable!

25

A Silk Purse from a Sow’s Ear!

In 1997, AT&T researchers Freund and Schapire [Journal of
Computer and Sys. Sci. 55 (1), 119 (1997)] showed that it
was possible to build highly effective classifiers by
combining a large number of mediocre ones!

The Freund-Schapire algorithm, which they called AdaBoost,
was the first successful method to boost (i.e., enhance)
the performance of
poorly performing
classifiers by
averaging their outputs.

26

27

The most popular methods (used mostly with decision trees) are:

hBagging: each tree is trained on a bootstrap*
sample drawn from the training set

hRandom Forest: bagging with randomized trees

hBoosting: each tree trained on a different
reweighting of the training set

*A bootstrap sample is a sample of size N drawn, with replacement, from
another of the same size. Duplicates can occur and are allowed.

A Silk Purse from a Sow’s Ear!

EXAMPLE: WINE TASTING!

Wine Tasting

Wine tasting is big business. But, can a machine do it?
In principle, yes, if we can establish the
physical attributes that define “good” wine,
such as this one for $117,000 a bottle!

29

Wine Tasting

We’ll use AdaBoost to build a classifier to distinguish good
wines from bad wines

from
Vinho Verde
in Portugal.
.

30

Let’s define a good wine as one with expert rating ≥ 0.6 on a
scale from 0 to 1, where 1 is a wine from Heaven and 0 is a
wine from Hell!

We’ll use data from
Cortez et al.*

* P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
Modeling wine preferences by data mining from physicochemical properties.
In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236

Wine Tasting

31

Wine Tasting: Data

Data: [Cortez et al., 2009].
variables description
acetic acetic acid
citric citric acid
sugar residual sugar
salt NaCl
SO2free free sulfur dioxide
SO2tota total sulfur dioxide
pH pH
sulfate potassium sulfate
alcohol alcohol content
quality (between 0 and 1)

32

33

Wine Tasting: Variables

Variables:
SO2tota: the total sulfur dioxide content (mg/dm3)
alcohol: alcohol content (% volume)

34

Wine Tasting: First 6 Decision Trees

35

Wine Tasting: Results

Fraction of bad wine rejected
for a given fraction of good
wine accepted.

BDT Distribution

!"# $, & = (
)*+

,,
-).($, &, 0))

x = SO2tota
y = alcohol

36

DEEP NEURAL NETWORKS

Deep Neural Networks

x h1= h(b0 + w0x)
h2 = h(b1 + w1h1)

o = g(b2 + w2h2)

input layer layer 0 layer 1 layer 2

38

Deep Neural Networks

A	3-layer	DNN
, = .(01 + 31ℎ(05 + 35ℎ(06 + 378)))

h(z) = ReLU(z) [= max(0, z)], tanh(z)
g(z) = Identity(z), logistic(z) = 1/[1 + exp(-z)]

input layer layer 0 layer 1 layer 2

h In 2006, University of Toronto researchers Hinton, Osindero,
and Teh (HOT*) succeeded in training a deep neural network
for the first time. Each layer was trained to produce a
representation of its inputs that served as the training data for
the next layer. Then the entire network was adjusted using
gradient descent.

hThis breakthrough seemed to provide compelling evidence
that the training of deep neural networks requires careful
initialization of parameters and sophisticated machine
learning algorithms.

Deep Neural Networks

* Hinton, G. E., Osindero, S. and Teh, Y. (HOT), A fast learning algorithm
for deep belief nets, Neural Computation 18, 1527-1554.

40

hBut, in 2010, Cirȩsan et al.* showed that such cleverness was
not needed! The authors succeeded in training a DNN with
architecture (784, 2500, 2000, 1500, 1000, 500, 10) that
classified the hand-written digits in the MNIST database.

hThe database comprises 60,000 28�28 = 784 pixel images
for training and validation, and 10,000 for testing.

hThe error rate of their ~12-million parameter DNN was 35
images out of 10,000. The misclassified images are shown on
the next slide.

Deep Neural Networks

* Cirȩsan DC, Meier U, Gambardella LM, Schmidhuber J. , Deep, big,
simple neural nets for handwritten digit recognition. Neural Comput. 2010 Dec;
22 (12): 3207-20. http://yann.lecun.com/exdb/mnist/

41

(784, 2500, 2000, 1500, 1000, 500, 10)

42Figure 1: The 35 miss-classified digits of the best network from Table 1, together with

the two most likely predictions (bottom, from left to right) and the correct label accord-

ing to MNIST (top, right).

the very competitive MNIST handwriting benchmark, single precision floating-point

GPU-based neural nets surpass all previously reported results, including those obtained

by much more complex methods involving specialized architectures, unsupervised pre-

training, combinations of machine learning classifiers etc. Training sets of sufficient

size are obtained by appropriately deforming images. Of course, the approach is not

limited to handwriting, and obviously holds great promise for many visual and other

pattern recognition problems.

Acknowledgments

Part of this work got started when Dan Cireşan was a PhD student at University ”Po-

litehnica” of Timişoara. He would like to thank his former PhD advisor, Ştefan Holban,

for his guidance, and Răzvan Moşincat for providing a CPU framework for MNIST.

This work was supported by Swiss CTI, Commission for Technology and Innovation,

Project n. 9688.1 IFF: Intelligent Fill in Form, and by Lifeware S.A. L.M.G. and J.S.

wrote a grant proposal for this work, acquired competitive funding for it, and supervised

6

Upper right: correct answer; lower left answer of highest DNN output;
lower right answer of next highest DNN output.

Convolutional Neural Networks

Many of the remarkable breakthroughs in tasks such as face
recognition use a type of DNN called a convolutional neural
network (CNN).

CNNs are functions that compress data and classify objects
using their compressed representations via a standard fully
connected NN. The compression dramatically reduces the
dimensionality of the space to be searched.

Source: https://www.clarifai.com/technology
43

https://www.clarifai.com/technology

THE FUTURE OF MACHINE
LEARNING

Machine Learning and AI

hThe most far-reaching application of machine learning is of
course artificial intelligence (AI).

hThere is a huge amount of hype associated with AI. And
we are far from being able to create systems that possess
the innate heuristic algorithms that make us human.

hHowever, it important that we not become complacent
because, for better of worse, we do seem to be at the dawn
of a revolution based on machine learning-based AI.

46

“Almost half the activities people are paid almost $16 trillion
in wages to do in the global economy have the potential to be
automated by adapting currently demonstrated technology,
according to our analysis of more than 2,000 work activities
across 800 occupations.”

McKinsey & Company,
A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND
PRODUCTIVITY
Executive Summary January 2017

47

The Future of Machine Learning

By 2050, the following might be in routine use:
1. autonomous personal predictive medical systems
2. autonomous personal tutors
3. autonomous physician’s assistant
4. autonomous house servant
5. autonomous pet sitter
6. autonomous vehicles that can drive safely on the M1!
The potential of machine learning and AI is vast and exciting.
But it has been argued (e.g, Bill Gates, Elon Musk, the late
Stephen Hawking) that the dangers are also vast and
fearsome: autonomous, self-aware, drone soldiers, AI drone
swarms, AI-enabled computer viruses…

48

THANK YOU!

“Doubt is not a pleasant condition, but certainty
is an absurd one”

Voltaire

Hands-On Exercises

Dependencies
python 2.7.x, x > 9
numpy array manipulation
pandas DataFrame manipulation
matplotlib plotting
scikit-learn simple machine learning toolkit

Also useful:
scipy mathematical stuff for scientists
sympy amazing symbolic algebra package

Installation
git clone https://github.com/hbprosper/YETI

Hands-On Exercises

Exercises
01 wine classification (BDT)
02 wine quality regression (fully connected DNN)
03 Higgs boson VBF vs ggF (fully connected DNN)
04 MNIST hand written digit classification (DNN)

BACKUP

Wine Tasting: Results

The upper figures
are density plots of
the training data.

The lower plots are
approximations of
the discriminant
D(x, y)

The left, uses 2-D
histograms, the right
uses the BDT.

53

54

Ensemble Methods

Suppose you have an ensemble of classifiers f (x, wk), which,
individually, perform only marginally better than random
guessing. Such classifiers are called weak learners.

It is possible to build highly effective classifiers by averaging
their outputs:

Jerome Friedman & Bogdan Popescu (2008)

! " = $% + '
()*

+
$(!("(, .()

DEEP NEURAL NETWORKS

56

The AdaBoost algorithm of Freund and Schapire uses
decision trees f (x, w) with weights w assigned to each
object to be classified, and each assigned a target value of
either y = +1, or –1, e.g., +1 for signal, –1 for background.

The value assigned to each leaf of f (x, w) is also �1.

Consequently, for object n, associated with values (yn, xn)
f (xn, w) yn > 0 for a correct classification
f (xn, w) yn < 0 for an incorrect classification

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. 55 (1), 119 (1997)

Adaptive Boosting

57

Initialize weights w in training set (e.g., setting each to 1/N)
for k = 1 to K:
1. Create a decision tree f (x, w) using the current weights.
2. Compute its error rate ε on the weighted training set.
3. Compute α = ln (1– ε) / ε and store as α k = α
4. Update each weight wn in the training set as follows:
wn = wn exp[–α k f (xn, w) yn] /A, where A is a
normalization constant such that ∑wn = 1. Since
f (xn, w) yn < 0 for an incorrect classification, the weight of
misclassified objects is increased.

At the end, compute the average f (x) = ∑ αk f (x, wk)

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. 55 (1), 119 (1997)

Adaptive Boosting

58

AdaBoost is a highly non-intuitive algorithm. However, soon
after its invention, Friedman, Hastie and Tibshirani
showed that the algorithm is mathematically equivalent to
minimizing the following average loss function

Minimizing this loss function yields
! " = logistic 2, = 1/(1 + exp(−2 ,("))

which can be interpreted as a probability, even though F
cannot!

J. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: a statistical
view of boosting,” The Annals of Statistics, 28(2), 377-386, (2000)

Adaptive Boosting

6 , = 7exp(−8 , ") 9 :, < =" =8

where , " = ∑BCD
E FB G("B, HB),

59

(One version of Problem 13): Prove
that it is impossible to do the following:

f(x1,…,xn) = F(g1(x(1),…, x(m)),…, gk(x(1),…, x(m)))
for m < n for all n.

In 1957, Kolmogorov proved that it was possible with m = 3.
Today, we know that functions of the form

!" #,% = '(+*
+,-

.
/(0h 20 +*

3,-

4
/05#3

can provide arbitrarily accurate approximations of
real functions of I real variables.
(Hornik, Stinchcombe, and White, Neural Networks 2, 359-366 (1989))

A Bit of History: Hilbert’s 13th Problem

Convolutional Neural Networks

A CNN comprises three types of processing layers: 1.
convolution, 2. pooling, and 3. classification.
1. Convolution layers

The input layer is “convolved” with one or more matrices
using element-wise products that
are then summed. In this example,
since the sliding matrix fits 9
times, we compress the input from
a 5 x 5 to a to a 3 x 3 matrix.

60

2. Pooling Layers
After convolution, and a pixel by pixel non-linear map
(using, e.g., the function y = max(0, x) = ReLU(x)), a
coarse-graining of the layer is performed
called max pooling in which the maximum
values within a series of small windows
are selected and become the output of
a pooling layer.

Convolutional Neural Networks

61

3. Classification Layers
After an alternating sequence of convolution and pooling
layers, the outputs go to a standard neural network, either
shallow or deep. The final outputs correspond to the
different classes and like all flexible classifiers, a CNN
approximates,

! "# $ = ! $ "# !("#)/)
*+,

-
! $ "* !("*)

Convolutional Neural Networks

62

