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What is a Jet?
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What happens in proton-proton collisions?

Hard Scattering

: The
interactions of two partons.

Initial state radiation :
Emissions from incoming
partons before hard scattering.

Showering : Showering of
radiation from QCD decay.

Hadronization : Formation of
hadrons from partons.

Multi-parton
interactions(MPI) :
Interactions of what is left of
the protons after hard
scattering.
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Jets - Definition

Jets are collimated stream of
particles produced by particle
collisions.

Jets are used to interpret
complex hadronic activities.
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Measuring Jets

Jet has a four-momentum. E =
∑

iEi
−→p =

∑
i
−→p i

Transverse momentum of a jet:

pJETT =
√
p2x + p2y

The radius of the jet (R) is given by,

R2 = (ηi − ηJET )2 + (φi − φJET )2
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Position in the collider in two coordinates:
Pseudorapidity of the jet (η):

ηJET = −ln(tan
θ

2
)

where θ is the polar angle and cosθ =

√
p2x + p2y

pz
Azimuthal angle of the jet (φ):

φJET = tan−1(
py
px

)

Figure 1: Coordinates
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Jet Clustering

The final state particles from the collisions are clustered using jet
algorithms.

Jet algorithms have different types:

Cone Algorithms
Clustering Algorithms
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Sequential clustering algorithms

Sequential clustering algorithms are the most commonly used
algorithms today.

Combines particles according to the distance between them.
Infrared and collinear (IRC) safe.

Infrared safety: The outcome is not affected by the emission of a
low energy (soft) gluon.
Collinear safety: The outcome is not affected when the gluons are
emitted in a very close angle to the parton in the event.

R. Ellis, W. Stirling, and B. Webber,QCD and Collider Physics, ser. Cambridge Monographson Particle

Physics, Nuclear Physics and Cosmology. Cambridge University Press, 2003.
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Sequential clustering algorithms

Cluster particles which have smallest distance between them in the
momentum space.

dij = min(pati, p
a
tj)×

R2
ij

R

where R is the radius of the cone and Rij is the distance between
particles in (η, φ) space.

R2
ij = (ηi − ηj)2 + (φi − φj)2

diB = pati

R. Atkin, Review of jet reconstruction algorithms, Journal of Physics: Conference Series, vol.645, no. 1,

p. 012008, 2015. [Online]. Available:http://stacks.iop.org/1742-6596/645/i=1/a=012008
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Kt

Kt:

a =2.

dij = min(p2ti, p
2
tj)×

R2
ij

R

and diB = p2ti
Clusters soft particles first.

Good at resolving subjets.

R. Atkin, Review of jet reconstruction algorithms, Journal of Physics: Conference Series, vol.645, no. 1,

p. 012008, 2015. [Online]. Available:http://stacks.iop.org/1742-6596/645/i=1/a=012008
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Anti-Kt

Anti-Kt:

a =-2.

dij = min(1/p2ti, 1/p
2
tj)×

R2
ij

R

and diB = 1/p2ti
Clusters hard particles first.

Good resolving power.

R. Atkin, Review of jet reconstruction algorithms, Journal of Physics: Conference Series, vol.645, no. 1,

p. 012008, 2015. [Online]. Available:http://stacks.iop.org/1742-6596/645/i=1/a=012008
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Cambridge/Aachen

Cambridge/Aachen:

a =0.

dij =
R2
ij

R

and diB = 1

Both variables are independent of momentum.

Best suited for studying the substructure.

R. Atkin, Review of jet reconstruction algorithms, Journal of Physics: Conference Series, vol.645, no. 1,

p. 012008, 2015. [Online]. Available:http://stacks.iop.org/1742-6596/645/i=1/a=012008
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Matteo Cacciari, Gavin P. Salam, Gregory Soyez, The anti-kt jet clustering algorithm, arXiv:

arXiv:0802.1189 [hep-ph]
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Ok, now we know what a jet is!
Why do we need it?
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We get information of regions of the detector by clustering the
particles into jets.

Jets show properties of the initial hard-process and are used to
classify quark-initiated jets from gluon initiated jets.

Jets are an efficient tool in the classification of the hadronic decay
of heavy particles and hadronic activity of a QCD processes in the
final state.
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How do we classify these jets?

By studying the jet-substructure!
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Jet-Substructure

Jet substructure techniques exploit the internal structure of a jet.

Two classes of jet- substructure techniques are:

Jet grooming

: Eliminate extra energy deposits in the jet coming
from pile-up, ISR and the uderlying event.
Jet tagging : Defining observables and distributions to classify
signal and background jets.

Deepak Kar, Jet substructure: a discovery tool, Available:

http://events.saip.org.za/getFile.py/access?resId=30materialId=6confId=53
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N- Subjettiness

N-subjettiness is a jet shape used for tagging boosted objects.

Variables quantifying the amount of radiation contained within a
jet (event) is aligned along different (sub)jet axes.

τ
(β)
N =

1

pT,J

∑
i∈J

pT,i min
{
Rβ1i, R

β
2i, . . . , R

β
Ni

}
where,

RNi is the distance in the η − φ plane of the jet constituent i to
the axis N .

pT is the transverse momentum.

β is an angular exponent.

Kaustuv Datta, Andrew Larkoski, How Much Information is in a Jet?, arXiv:1704.08249 [hep-ph]
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τ21=τ2/τ1 is a n-subjettiness variable for 2-pronged jets.

Jesse Thaler, Ken Van Tilburg , Identifying Boosted Objects with N-subjettiness, arXiv:

arXiv:1011.2268 [hep-ph]
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τ
(β)
N

=
1

pT,J

∑
i∈J

pT,imin
{
R
β
1i, R

β
2i, . . . , R

β
Ni

}
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Jet images are 2D representation of energy deposits in the calorimeter.



Jet-Images
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Preproccessing

1 Centering: The jet is rotated and boosted so that the central pixel
is at (0, 0).

2 Crop: Crop the image with (η, φ)ε(−R,R).

3 Normalize: Total pixel intensity of the image is
∑
Iij = 1.

4 Zero-center: Iij → Iij − µij , where µij is the average of the
training set.

5 Standardize: Iij → Iij/(σij + r) where σij is the standard
deviation of the training set and r = 10−5.

P. T. Komiske, E. M. Metodiev, M. D. Schwartz, Deep learning in color: towards automated

quark/gluon jet discrimination, arXiv:1612.01551 [hep-ph]
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Average ZZ (signal: pp→ Z1Z2, Z1 → jj, Z2 → νν̄) image after

normalization on the left and after pixel standardization on the right.
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Average Zj (background: pp→ Zj, Z → νν̄) image after normalization on

the left and after pixel standardization on the right.
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Machine Learning
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Machine Learning

Figure 2: My PhD!

[]
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Why Machine Learning?

Powerful tool to extract information from the input dataset.

Widely used in HEP (Well, in every field!).

ML is mainly used for jet tagging and classification (like
quark/gluon) purposes.

Sreedevi Narayana Varma (KCL) YETI 2019 January 8, 2019 28 / 46



The most important part of machine learning is to build a model
that can predict the results correctly.

A hypothesis function is defined over the input variables to predict
the output variable (h : x→ y).

Cost function measures the accuracy of this hypothesis.

With large number of variables, a linear hypothesis function fails
to predict the results.

That’s why we use Neural Networks!

Sreedevi Narayana Varma (KCL) YETI 2019 January 8, 2019 29 / 46



The most important part of machine learning is to build a model
that can predict the results correctly.

A hypothesis function is defined over the input variables to predict
the output variable (h : x→ y).

Cost function measures the accuracy of this hypothesis.

With large number of variables, a linear hypothesis function fails
to predict the results.

That’s why we use Neural Networks!

Sreedevi Narayana Varma (KCL) YETI 2019 January 8, 2019 29 / 46



Neural Networks

Neural Networks(NN) have a non-linear hypothesis function.

NN consists of an input layer, multiple hidden layers and an
output layer.

NN with many hidden layers is called a Deep Neural Network
(DNN).
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The hypothesis function of a neural network can be written as,

hθ(x) = a(j+1) = g(Θ(j)a(j))

Figure 3: Neural Network architecture
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Convolutional Neural Network

Convolutional Neural Network (CNN) are neural networks for
image recognition and image classification.

CNN scans over the two dimensional pixel intensities of an RGB
image.

Figure 4: Convolutional Neural Network

P. T. Komiske, E. M. Metodiev, M. D. Schwartz, Deep learning in color: towards automated

quark/gluon jet discrimination, arXiv:1612.01551 [hep-ph]
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Figure 5: Components of a CNN
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Convolutional Neural Networks for Visual Recognition, Available:

http://cs231n.github.io/neural-networks-3/anneal
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Our Work: 1807.04769

We compare the results of two machine learning techniques used to
classify Z/top jets with QCD jets:

Convolutional Neural
Network on Jet Images

Image recognition
techniques to classify signal
and background.

Deep Neural Network on
N-subjettiness variables

Physics motivated variable
learned using DNN.
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Processes

Z boson tagging

Signal: pp→ Z1Z2, Z1 → jj, Z2 → νν̄

Background: pp→ Zj, Z → νν̄

pT ranges:pT (Z/j) ≥ 500GeV

Top quark tagging

Signal : pp→W−1 t, t→W+
2 b, W

+
2 → jj, W−1 → e−ν̄e

Background : pp→W−j,W → e−ν̄e

pT ranges: [350, 400] GeV, [500, 550] GeV and [1300, 1400] GeV
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Parameters

Z boson tagging

Radius = 0.8

Pseudorapidity |η| < 5.0

Top quark tagging

Radius = 0.8 ([1300, 1400] GeV), 1.5

Pseudorapidity |η| < 2.5 ([1300, 1400] GeV) and |η| < 1.0
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Machine Learning on N-subjettiness variables

The input variables for the Deep Neural Network are,{
τ
(0.5)
1 , τ

(1)
1 , τ

(2)
1 , τ

(0.5)
2 , τ

(1)
2 , τ

(2)
2 , . . . , τ

(0.5)
M−2, τ

(1)
M−2, τ

(2)
M−2, τ

(1)
M−1, τ

(2)
M−1

}
This covers M-body phase space with 3M−4 observables.

Jet mass is also included as an input to the neural network.

Kaustuv Datta, Andrew Larkoski, How Much Information is in a Jet?, arXiv:1704.08249 [hep-ph]
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The network consists of,

Four fully connected hidden layers

First two with 300 nodes and a dropout regularisation of 0.2

Last two with 100 nodes and a dropout regularisation of 0.1

Activation: ReLU

Figure 6: ReLU and Sigmoid activations

Optimizer: Adam

Learning rate α = 0.001
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Machine Learning on Jet-Images

Jet images of size 33× 33.

3 convolutional layer and 2 fully connected layer.

ReLU activation.

Filters of size 8× 8, 4× 4and 4× 4 are used.

Maxpooling layers 2× 2 is also applied to the CNN with a stride
length of 2.

The fully connected layer consists of 128 units.
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Convolutional Neural Network is trained on Tensorflow using
NVIDIA GeForce 1080Ti GPU on Cuda 9.0 platform.

The network is trained over 50 epochs with a learning rate α of
0.001.

Additional network with mass is trained for 500 epochs with same
parameters as n-subjettiness network.

2M jet images are used for training, 100k images for validation
and 200k images are used for testing.
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ROC-Curves

Receiver operating characteristic (ROC) is used to visulaize the
performance of a binary classifier.

Figure 7: Confusion Matix
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ROC-Curves

Plot the true positive rates (TPR) and false positive rates (FPR)
for every possible classification threshold to obtain a ROC curve.

Figure 8: ROC-curve
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Conclusions

Mass as an additional information improves the performance of
the network.

As the ROC curves are matching, we can conclude that the
information learned from both methods are the same.

ROC curves for Z boson tagging without mass on the left and with mass on

the right for pT > 500 GeV.
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ROC curves for top quark tagging without mass on the left and with mass on

the right, for pT ∈ [500, 550] GeV.
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Future Works

What happens when this method is applied to real data?

Is there any bias between various event generators? Will we get
the same results if we use different event generators?

What exactly is a convolutional neural network learning from
these images?
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Thank you!



Domain Adversarial Neural Netwrok (DANN)

Domain adversarial neural network is a new learning approach for
data trained and tested on similar but different distributions.

Figure 9: DANN architecture

Y. Ganin et al. , Domain-Adversarial Training of Neural Networks, arXiv:1505.07818 [stat]
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Figure 10: Sample top images
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