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WHY DARK MATTER?   (WHY NEW PARTICLE PHYSICS?)

▸ The dark matter paradigm is the only successful 
framework for understanding the entire range of 
observations from the time the Universe is 1 sec old. 
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EVERYTHING WE KNOW ABOUT DM COMES FROM GRAVITY

Standard Model Dark Matter

Gravitational Interactions

?
Mp � 1 GeV

Mpl � 1019 GeV
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SUPER-WEAKLY INTERACTING

▸ Gravitational Coherence .... 

▸ Helps us learn about aggregate properties of 
dark matter 

▸ Particle properties much harder 

▸ Fundamental premise: DM has interactions other 
than gravitational

... on cosmological scales!



PARTICLE PHYSICS PROVIDES SOME IDEAS

▸Dark Matter is part of solution to “deeper” problems 

▸
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Sub-weak Interactions

Dark Matter Resides 
Here!

Dark Matter itself is 
simple

Mp � 1 GeV



THEORY AND EXPERIMENT INTERPLAY

▸ When Searching for Dark Matter it helps to know what 
you’re looking for

WIMPs
axions

Both scenarios are fairly predictive in both mass and interaction probability with SM

ADMX

XENON

APS Physics Today



THEORY AND EXPERIMENT INTERPLAY

▸ Except when that means that we stop looking …. 
elsewhere10 Direct Detection Program Roadmap 39
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  NEUTRINO C OHER ENT SCATTERING 
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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CLOSURE OF SUSY TARGET SPACE DECEPTIVE

▸ “Pure” neutralino does not 
couple to Higgs at tree level 

▸ e.g. pure Wino or Higgsino 
or Bino 

▸ But, Wino has detectable 
indirect detection signature 
through coupling to gauge 
bosons

g̃ q

q̃

(a)

W̃ qL, ℓL, H̃u, H̃d

q̃L, ℓ̃L, Hu, Hd

(b)

B̃ q, ℓ, H̃u, H̃d

q̃, ℓ̃, Hu, Hd

(c)

Figure 6.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.

interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,

52

h ,H
χ

χ

W

W

W
Z

χ

χ W
χ

χ

χ

W

W

+
n

χ

χ

χ

n
h ,H

χ

χ

Z

Z
Z

Z

Figure 38: Tree level diagrams for neutralino annihilation into gauge boson pairs.
From Ref. [319].

U =

(
cosφ− − sinφ−
sinφ− cosφ+

)
(181)

and

V =

(
cosφ+ − sinφ+

sinφ+ cosφ−

)
, (182)

where

tan 2φ− = 2
√

2mW
(µ sinβ + M2 cosβ)

(M2
2 − µ2 + 2m2

W cos 2β)
(183)

and

tan 2φ+ = 2
√

2mW
(µ cosβ + M2 sinβ)

(M2
2 − µ2 − 2m2

W cosβ)
. (184)

The amplitude for annihilations to Z0-pairs is similar:

A(χχ→ Z0Z0)v→0 = 4
√

2 βZ
g2

cos2 θW

4∑

n=1

(
O′′L

1,n

)2 1

Pn
. (185)

Here, βZ =
√

1 − m2
Z/m2

χ, and Pn = 1 + (mχn/mχ)2 − (mZ/mχ)2. The sum is

over neutralino states. The coupling O′′L
1,n is given by 1

2 (−N3,1N∗
3,n +N4,1N∗

4,n).
The low velocity annihilation cross section for this mode is then given by

σv(χχ → GG)v→0 =
1

SG

βG

128πm2
χ

|A(χχ → GG)|2, (186)

where G indicates which gauge boson is being considered. SG is a statistical
factor equal to one for W+W− and two for Z0Z0.

It is useful to note that pure-gaugino neutralinos have a no S-wave annihi-
lation amplitude to gauge bosons. Pure-higgsinos or mixed higgsino-gauginos,
however, can annihilate efficiently via these channels, even at low velocities.
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D
SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,

T a =

0

B@
0 · ·
· ⌧a

4
�i⌧a

4

· i⌧a

4
⌧a

4

1

CA� c.c. , Y =

0

B@
0 · ·
· 02

�i12
2

· i12
2 02

1

CA . (6)

The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21p

2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
iH ! H

1 ! 2

#
+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading

Wino and Higgsino

Hill and Solon

+ + + +

+ + +

2

66664
+ . . .

3

77775
+ . . .

= c(0)g
1BE

+ c(0)q
1BE

Figure 3: Matching condition for one-boson exchange contributions to gluon operators. The notation
for the di↵erent lines and vertices is as in Fig. 2. All active quark flavors, such as the top quark in
the full theory, are included in the loops.

+ + + + . . .

= c(0)q
2BE

+ c(2)q
2BE

Figure 4: Matching condition for two-boson exchange contributions to quark operators. The notation
for the di↵erent lines and vertices is as in Fig. 2. The full theory diagrams illustrate the possible
types of two-boson exchange. Crossed diagrams and time-reversed diagrams are not shown.

diagrams with exchange of two gauge bosons (W± or Z0), two Goldstone bosons (�0

Z or �±
W ), one

gauge and one Goldstone boson (Z0 and �0

Z , or W
± and �±

W ), or two Higgs bosons. In terms of these
contributions the total amplitude is

Mq = MZZ
q +MWW

q +MW�W
q +MZ�Z

q +M�W�W
q +M�Z�Z

q +Mhh
q , (56)

where the superscripts denote which bosons are exchanged, and the contributions from crossed dia-
grams and time-reversed diagrams are included in each amplitude. Upon expressing the amplitudes
in terms of the integrals J(mV ,M, �), Jµ(p,mV ,M, �), J�(p,mV ,M, �) and Jµ

�(mV ,M, �) defined in
Appendix C, we may write each amplitude in the form

MBB0
q = ūq(p)


mq c

(0)BB0
q +

✓
v/v · p� p/

d

◆
c(2)BB0
q

�
uq(p) , (57)
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Paradigm Shift

Standard Model
Mp � 1 GeV

Our thinking has shifted

From a single, stable very weakly 
interacting particle .....

(WIMP, axion)

...to a hidden world or 
“hidden valley” with 
multiple states, new 

interactions

Models: Light DM sectors,
Secluded WIMPs, Dark Forces, Asymmetric DM .....

Production: freeze-in, freeze-out and decay, 
asymmetric abundance, non-thermal mechanisms .....

Inaccessibility
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THEORY AND EXPERIMENT INTERPLAY

▸ Push towards light dark matter
10 Direct Detection Program Roadmap 39
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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PANDORA’S BOX?

▸ You might worry that without a theoretical lock (WIMP/
axion tyranny) we have no guidance 

▸ Universe + terrestrial experiments provide substantial 
guidance

BBN
(baryons)

CMB
(curvature)

LSS
(matter)

Supernovae
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Galaxy curves
(matter)

BBN                CMB           
Not Free Baryons
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Not Modified Gravity

Halo Shapes
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Direct Probes
Weakly Interacting with Us



WHY THE (SUB-)WEAK SCALE IS COMPELLING

▸ Abundance of new stable states set by interaction rates

Γ = nσv = H

Measured by CMB + LSS

Freeze-out

=) � ⇠ 1

(20 TeV)2



DM ABUNDANCE AS A GUIDE

▸ If DM abundance is related to its coupling to the SM in 
any way, that provides a guide where to look 

X �

e e

q Q

k k0

X �

e e

q Q

k k0

FIG. 5: Sample processes considered in this section to detect DM, �. Top left: DM-nucleus
scattering. Top middle: DM-electron scattering. Top right: DM-nucleus scattering with emission
of a photon. Bottom left: Absorption by an electron of a bosonic DM particle (a vector A0, scalar
�, or pseudoscalar a). Bottom middle: Absorption by an electron of a bosonic DM particle, made
possible by emission of a phonon �. Bottom right: Emission of multiple phonons in DM scattering
o↵ helium.

2. Ideas to Probe Low-Mass Dark Matter

Over the past decade, several strategies have been proposed that maximize the energy
transfer to the target. In some cases this is at the expense of a modest rate suppression,
but this is at least partially o↵set by the larger DM particle flux expected as m� is lowered.
These interactions include:

• DM-Electron Scattering (1 keV – 1 GeV): For low-mass DM elastic scattering
(Fig. 5, top middle), the DM energy is transferred far more e�ciently to an electron
than to a nucleus [48]. If the DM is heavier than the electron, the maximum energy
transfer is equal to the DM kinetic energy,

Ee  1

2
m�v2

� . 3 eV
⇣ m�

MeV

⌘
. (10)

Bound electrons with binding energy �EB can thus in principle produce a measurable
signal for

m� & 0.3 MeV ⇥ �EB

1 eV
. (11)

This allows low-mass DM to produce ionized excitations in drift chambers (�EB ⇠
10 eV) for m� & 3 MeV [48, 90, 91], to promote electrons from the valence band to the
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FIG. 3. Sensitivity to DM scattering via an ultralight dark
photon, for kg-yr exposure on GaAs. On the orange line the
relic abundance can be explained by freeze-in [19–21]. The
reach for mX < MeV is from scattering into LO phonons.
For mX > MeV, the reach comes from considering GaAs as a
scintillator for DM-electron scattering [10]. The blue region
indicates stellar and BBN constraints [22, 57], while the green
region is a Xenon10 limit [7]. Projections for various exper-
imental proposals are from Refs. [24, 28, 58] (dotted lines).

Scalar-mediated nucleon scattering. Finally we
consider the case of sub-MeV DM with coupling to nu-
cleons only, similar to what was explored in Ref. [26, 27]
for multiphonon production in superfluid helium. GaAs
improves over helium for several reasons: first, DM can
scatter by exciting a single ⇠ 36 meV optical phonon,
rather than going through higher-order multiphonon in-
teractions. Second, the speed of sound is ⇠ 20 times
higher in GaAs, such that the energy of acoustic phonons
is higher and better matched to DM kinematics.

The di↵erential DM scattering rate is

d2�

dqd!
=

4⇡

Vcell

q

mXpi
S(q, !), (9)

where pi is the initial DM momentum, Vcell is the primi-
tive cell volume, and S(q, !) is the dynamical structure
factor, defined in the same way as for neutron scattering
(see e.g. [59]). In the long-wavelength limit, S(q, !) is
given by

S(q, !) =
1

2

X

⌫

|F⌫(q)|2
!⌫,q

�(!⌫,q�!) (10)

where ⌫ sums over the various phonon branches. The
phonon form factor is

|F⌫(q)|2 =

�����
X

d

b̄dp
md

e�Wd(q)q · e⌫,d,qe�iq·rd

�����

2

(11)

where d sums over atoms in the primitive cell with mass
md and position rd. b̄d is the scattering length, e⌫,d,q is

FIG. 4. Sensitivity of GaAs to scattering o↵ nucleons via a
scalar mediator, with kg-yr exposure. We consider the pro-
jected reach due to production of LO phonons (! = !LO ⇡ 36
meV) and that due to production into LA phonons as well,
with an even lower threshold ! > meV. Also shown is the
reach from multiphonon production in superfluid helium [26].

the phonon eigenvector of branch ⌫ and atom d at mo-
mentum q, and Wd the Debye-Waller factor of atom d.
Summing over the phonon eigenmodes requires a dedi-
cated software tool; we reserve this and a derivation of
Eq. (10) for future work [29].

Here we estimate the rate in the isotropic and long-
wavelength limit where Wd ⇡ 0:

|F⌫(q)|2 ⇡ b̄2
n

2mn
q2

���
p

AGae
irGa·q ±

p
AAse

irAs·q
���
2

(12)

with mn the nucleon mass, b̄n the DM-nucleon scatter-
ing length and AGa (AAs) the mass number of Ga (As).
The + (�) sign applies to the LA (LO) branch, where
both atoms are in phase (anti-phase). For a rough esti-
mate when mX ⌧ MeV, the phase factors in (12) can be
neglected.

For scattering via a massless mediator, we also in-
clude a (mXv0/q)4 form factor and express the reach
in terms of the cross section per nucleon at a reference
qref = mXv0, �n ⌘ 4⇡[b̄n(qref)]2. The result is shown in
Fig. 4, where we find a competitive reach with superfluid
helium. The astrophysical and cosmological constraints
on this scenario are rather tight but model dependent
and hence not shown; see Refs. [22, 23] for details. The
large di↵erence in sensitivity for the optical and acoustic
modes is due to the near cancellation in (12) for the op-
tical modes, since AGa ⇡ AAs. The phase factor in (12)
also induces a directional dependence for producing op-
tical phonons, which we will explore in future work [29].
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LIGHTER TARGETS FOR LIGHTER DARK MATTER

▸ Nuclear recoil experiments; basis of enormous progress in 
direct detection
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ED =
q2

2mN
q
max

= 2mXv

v ⇠ 10�3cq, ED



LIGHTER TARGETS FOR LIGHTER DARK MATTER

3

of outgoing electrons are found by numerically solving
the radial Schrödinger equation with a central potential
Z
e↵

(r)/r. Z
e↵

(r) is determined from the initial electron
wavefunction, assuming it to be a bound state of the same
central potential. We evaluate the form-factors numeri-
cally, cutting o↵ the sum at large l0, L once it converges.
Only the ionization rates of the 3 outermost shells (5p,
5s, and 4d, with binding energies of 12.4, 25.7, and 75.6
eV, respectively) are found to be relevant.

The energy transferred to the primary ionized electron
by the initial scattering process is ultimately distributed
into a number of (observable) electrons, n

e

, (unobserved)
scintillation photons, n

�

, and heat. To calculate n
e

, we
use a probabilistic model based on a combined theoreti-
cal and empirical understanding of the electron yield of
higher-energy electronic recoils. Absorption of the pri-
mary electron energy creates a number of ions, N

i

, and
a number of excited atoms, N

ex

, whose initial ratio is
determined to be N

ex

/N
i

⇡ 0.2 over a wide range of ener-
gies above a keV [18, 19]. Electron–ion recombination ap-
pears well-described by a modified Thomas-Imel recombi-
nation model [20, 21], which suggests that the fraction of
ions that recombine, f

R

, is essentially zero at low energy,
resulting in n

e

= N
i

and n
�

= N
ex

. The fraction, f
e

,
of initial quanta observed as electrons is therefore given
by f

e

= (1 � f
R

)(1 + N
ex

/N
i

)�1 ⇡ 0.83 [21]. The total
number of quanta, n, is observed to behave, at higher
energy, as n = E

er

/W , where E
er

is the outgoing energy
of the initial scattered electron and W = 13.8 eV is the
average energy required to create a single quanta [23].
As with f

R

and N
ex

/N
i

, W is only well measured at en-
ergies higher than those of interest to us, and thus adds
to the theoretical uncertainty in the predicted rates. We
use N

ex

/N
i

= 0.2, f
R

= 0 and W = 13.8 eV to give
central limits, and to illustrate the uncertainty we scan
over the ranges 0 < f

R

< 0.2, 0.1 < N
ex

/N
i

< 0.3,
and 12.4 < W < 16 eV. The chosen ranges for W and
N

ex

/N
i

are reasonable considering the available data
[9, 18, 19, 22]. The chosen range for f

R

is conserva-
tive considering the fit of the Thomas-Imel model to low-
energy electron-recoil data [20].

We extend this model to DM-induced ionization as fol-
lows. We calculate the di↵erential single-electron ion-
ization rate following Eqs. (1–3). We assume the scat-
tering of this primary electron creates a further n(1) =
Floor(E

er

/W ) quanta. In addition, for ionization of the
next-to-outer 5s and 4d shells, we assume that the pho-
ton associated with the de-excitation of the 5p-shell elec-
tron, with energy 13.3 or 63.1 eV, can photoionize, cre-
ating another n(2) = 0 (1) or 4 quanta, respectively, for
W > 13.3 eV (< 13.3 eV). The total number of detected
electrons is thus n

e

= n0

e

+ n00

e

, where n0

e

represents the
primary electron and is thus 0 or 1 with probability f

R

or (1 � f
R

), respectively, and n00

e

follows a binomial dis-
tribution with n(1) + n(2) trials and success probability
f
e

. This procedure is intended to reasonably approxi-
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FIG. 2: Top: Expected signal rates for 1-, 2-, and 3-electron
events for a DM candidate with �e = 10�36 cm2 and FDM = 1.
Widths indicate theoretical uncertainty (see text). Bottom:
90% CL limit on the DM–electron scattering cross section
�e (black line). Here the interaction is assumed to be in-
dependent of momentum transfer (FDM = 1). The dashed
lines show the individual limits set by the number of events
in which 1, 2, or 3 electrons were observed in the XENON10
data set, with gray bands indicating the theoretical uncer-
tainty. The light green region indicates the previously allowed
parameter space for DM coupled through a massive hidden
photon (taken from [2]).

mate the detailed microscopic scattering processes, but
presents another O(1) source of theoretical uncertainty.
The 1-, 2-, and 3-electron rates as a function of DM mass
for a fixed cross section and F

DM

= 1 are shown in Fig. 2
(top). The width of the bands arises from scanning over
f
R

, N
ex

/N
i

and W , as described above, and illustrates
the theoretical uncertainty.

RESULTS. Fig. 2 (bottom) shows the exclusion limit in
the m

DM

-�
e

plane based on the upper limits for 1-, 2-,
and 3-electrons rates in the XENON10 data set (dashed
lines), and the central limit (black line), corresponding
to the best limit at each mass. The gray bands show the
theoretical uncertainty, as described above. This bound
applies to DM candidates whose non-relativistic inter-
action with electrons is momentum-transfer independent
(F

DM

= 1). For DM masses larger than ⇠15MeV, the
bound is dominated by events with 2 or 3 electrons, due
to the small number of such events observed in the data
set. For smaller masses, the energy available is insu�-
cient to ionize multiple electrons, and the bound is set
by the number of single-electron events. The light green
shaded region shows the parameter space spanned by

Prospects for Upcoming DM–Electron Scattering Searches
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Figure 1. Selected near-term projections for the
DAMIC (green curves) and SuperCDMS-silicon (dark
red curves) experiments, for different ionization thresh-
olds and (background-free) exposures, as indicated. Solid
curves show the 95% C.L. exclusion reach from sim-
ple counting searches, while dashed curves show the
5�-discovery reach from annual modulation searches.
The gray shaded region shows the current XENON10
bound [31], while the shaded green region shows the es-
timated (much weaker) bound from 2012 DAMIC data
with a ⇠11-electron-hole pair threshold. The projections
for SuperCDMS-germanium (not shown) are comparable
to silicon. See §6.5 for more details. The three plots show
results for the different indicated DM form factors, corre-
sponding to different DM models.

expands on the previous calculation in [9]. Higher recoil energies for the scattered electron allow
a larger number of additional electron-hole pairs to be promoted via secondary scattering. Using
a semi-empirical understanding of these secondary scattering processes, we convert our calculated
differential event rate to an estimated event rate as a function of the number of observed electron-hole
pairs. These results will allow several experimental collaborations, such as DAMIC and SuperCDMS,
to calculate their projected sensitivity to the DM-electron scattering cross-section, given their specific
experimental setups and thresholds. It will also allow them to derive limits on this cross section in the
absence of a signal, or the preferred cross section value should there be a signal, in forthcoming data.
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▸ In semi-conductors, like Ge, Si
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▸ Experimental Panorama
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COUPLING TO COHERENT MODES

▸ Once DM drops below an MeV, its deBroglie wavelength 
is longer than the inter particle spacing in typical materials 

▸ Therefore, coupling to coherent excitations in materials 
makes sense! 

▸ Coherent excitations = phonon modes 

▸ Applied to superfluid helium, semiconductors, 
superconductors, polar materials 

▸ Details depend on nature of coherent modes in target 
material



▸ Superfluid helium is an optically weak material already 
considered for nuclear recoils.  (e.g. McKinsey group, UC 
Berkeley.) 

▸ To detect lighter DM, couple to phonon modes. 

▸ Viable?  At first glance — no 

▸ Next glance -- yes!

SUPERFLUID HELIUM

ED ⇠ csq

cs ⌧ vX
vs

Schutz, KZ 1604.08206, Knapen, Lin, KZ 1611.06228

ED ⇠ vXq

ED ⇠ csq

cs ⌧ vX
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▸ Viable?  At first glance — no 

▸ Next glance -- yes!
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within a recent Dynamic Many-Body theory [20]. The-
oretical and experimental results for S(Q,!) in a broad
sector of the spectrum can be compared directly, leading
to an unprecedentedly accurate description of the dynam-
ics of superfluid 4He.

The inelastic neutron scattering measurements were
performed on the neutron time-of-flight spectrometer IN5
at the Institut Laue-Langevin using an incoming energy
of 3.55meV (wavelength 4.8 Å) and an energy resolution
at elastic energy transfer of 0.07meV. The high-purity su-
perfluid 4He sample was contained in a thin-walled cylin-
drical aluminum container of inner diameter 15mm. The
e↵ective sample height in the beam was 50mm. Cad-
mium disks were placed inside the cell at intervals of
10mm to reduce multiple scattering, an important exper-
imental artifact discussed below. The cell was connected
to the mixing chamber of a dilution refrigerator via a
copper piece equipped with silver sinter to ensure good
thermal contact, thereby allowing measurements to be
done at very low temperatures, T < 100mK. The mea-
surements were performed at saturated vapor pressure.

The quantity measured by a neutron spectrometer –the
inelastic di↵erential scattering cross section per target
atom– is proportional to the dynamic structure factor:

@2�

@⌦ @~! =
b2c
~
k0

k
S(Q,!)

where bc is the bound atom coherent scattering length, k
and k0 the neutron wave vector before and after the scat-
tering process, Q the wave vector transfer and ~! the
energy transfer [9]. Standard data reduction routines
[21] were used to obtain the dynamic structure factor
from the neutron raw spectra. The magnitude of S(Q,!)
was normalized by requiring that the single quasiparticle
strength Z(Q) = 0.93 for Q = 2.0 Å�1, a value ob-
tained from previous works [9, 10, 20]. Fig. 1a displays
essentially the raw data, after the usual corrections. The
aluminum cell elastic background, measured before in-
troducing the helium in the cell, was subtracted from
the raw spectra. This led to the noisy region seen in Fig.
1a near zero energy. We also subtracted the inelastic sig-
nal originating from scattering events involving the alu-
minum cell and the helium sample. Rotons, due to their
high density of states, dominate these processes, and this
contribution is only significant at the roton energy. Since
it is essentially Q-independent, it can be easily identified
and removed. The subtraction of this contribution spoils
the accuracy of the data in a small range around the ro-
ton energy in regions of the spectrum where the signal
is small. The e↵ect can be seen if the intensity scale is
considerably expanded, for instance as in Fig. 2.

While earlier neutron scattering experiments [10–13]
revealed the presence of broad, rather featureless multi-
particle excitation regions above the single-particle dis-
persion curve, the improved precision (and possibly the
much lower temperature) in the present experiment al-

FIG. 1. (color online) (a) S(Q,!) of superfluid 4He measured
as a function of wave vector and energy transfer, at satu-
rated vapor pressure and temperature T  100mK. Con-
tributions involving scattering with the aluminium cell have
been subtracted, but not multiple scattering within the he-
lium. (b) Helium multiple scattering contribution (numer-
ical simulation); note that its magnitude is comparable to
the multi-particle intensity seen in panels (c) and (d), and in
Fig. 3. The dashed lines show the limits of the instrumen-
tal range, also valid for figures a and c. (c) Experimental
dynamic structure factor S(Q,!) after correction for multi-
ple scattering. (d) Dynamic many-body theory calculation of
S(Q,!). Note that all the detailed features of the experimen-
tal data are reproduced. The units of the contour plots scale
are meV�1. The intensity is cut o↵ at 0.07meV�1 in order to
emphasize the multi-excitations region. The apparent width
of the Landau excitations in the experimental plot is due to
the experimental resolution of 0.07meV, while the calculated
Landau dispersion curve has been highlighted by a thick line.

lowed us to observe a very rich structure in this region,
with increasing weight at large wave vectors, as seen in
the measured S(Q,!) shown in Fig. 1a.
It is particularly important to distinguish the multi-

particle excitations under investigation, which are an in-
trinsic property of helium, from multiple scattering. The
former arise when a neutron creates in a single process
a high energy perturbation which can decay into two or
more excitations, while the latter is a spurious e↵ect,
dependent on the sample size, where a single neutron
creates two or more excitations in successive scatter-
ing events. Since the two kinds of processes fulfill the
same kinematic conservation rules, and their contribu-
tions have similar intensity for typical sample sizes, sub-
tracting multiple scattering from the raw data is essential
when dealing with the multi-particle region of the spec-
trum.
It is di�cult in practice to determine this contribution

Beauvois et al 1605.02638
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within a recent Dynamic Many-Body theory [20]. The-
oretical and experimental results for S(Q,!) in a broad
sector of the spectrum can be compared directly, leading
to an unprecedentedly accurate description of the dynam-
ics of superfluid 4He.

The inelastic neutron scattering measurements were
performed on the neutron time-of-flight spectrometer IN5
at the Institut Laue-Langevin using an incoming energy
of 3.55meV (wavelength 4.8 Å) and an energy resolution
at elastic energy transfer of 0.07meV. The high-purity su-
perfluid 4He sample was contained in a thin-walled cylin-
drical aluminum container of inner diameter 15mm. The
e↵ective sample height in the beam was 50mm. Cad-
mium disks were placed inside the cell at intervals of
10mm to reduce multiple scattering, an important exper-
imental artifact discussed below. The cell was connected
to the mixing chamber of a dilution refrigerator via a
copper piece equipped with silver sinter to ensure good
thermal contact, thereby allowing measurements to be
done at very low temperatures, T < 100mK. The mea-
surements were performed at saturated vapor pressure.

The quantity measured by a neutron spectrometer –the
inelastic di↵erential scattering cross section per target
atom– is proportional to the dynamic structure factor:
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where bc is the bound atom coherent scattering length, k
and k0 the neutron wave vector before and after the scat-
tering process, Q the wave vector transfer and ~! the
energy transfer [9]. Standard data reduction routines
[21] were used to obtain the dynamic structure factor
from the neutron raw spectra. The magnitude of S(Q,!)
was normalized by requiring that the single quasiparticle
strength Z(Q) = 0.93 for Q = 2.0 Å�1, a value ob-
tained from previous works [9, 10, 20]. Fig. 1a displays
essentially the raw data, after the usual corrections. The
aluminum cell elastic background, measured before in-
troducing the helium in the cell, was subtracted from
the raw spectra. This led to the noisy region seen in Fig.
1a near zero energy. We also subtracted the inelastic sig-
nal originating from scattering events involving the alu-
minum cell and the helium sample. Rotons, due to their
high density of states, dominate these processes, and this
contribution is only significant at the roton energy. Since
it is essentially Q-independent, it can be easily identified
and removed. The subtraction of this contribution spoils
the accuracy of the data in a small range around the ro-
ton energy in regions of the spectrum where the signal
is small. The e↵ect can be seen if the intensity scale is
considerably expanded, for instance as in Fig. 2.

While earlier neutron scattering experiments [10–13]
revealed the presence of broad, rather featureless multi-
particle excitation regions above the single-particle dis-
persion curve, the improved precision (and possibly the
much lower temperature) in the present experiment al-

FIG. 1. (color online) (a) S(Q,!) of superfluid 4He measured
as a function of wave vector and energy transfer, at satu-
rated vapor pressure and temperature T  100mK. Con-
tributions involving scattering with the aluminium cell have
been subtracted, but not multiple scattering within the he-
lium. (b) Helium multiple scattering contribution (numer-
ical simulation); note that its magnitude is comparable to
the multi-particle intensity seen in panels (c) and (d), and in
Fig. 3. The dashed lines show the limits of the instrumen-
tal range, also valid for figures a and c. (c) Experimental
dynamic structure factor S(Q,!) after correction for multi-
ple scattering. (d) Dynamic many-body theory calculation of
S(Q,!). Note that all the detailed features of the experimen-
tal data are reproduced. The units of the contour plots scale
are meV�1. The intensity is cut o↵ at 0.07meV�1 in order to
emphasize the multi-excitations region. The apparent width
of the Landau excitations in the experimental plot is due to
the experimental resolution of 0.07meV, while the calculated
Landau dispersion curve has been highlighted by a thick line.

lowed us to observe a very rich structure in this region,
with increasing weight at large wave vectors, as seen in
the measured S(Q,!) shown in Fig. 1a.
It is particularly important to distinguish the multi-

particle excitations under investigation, which are an in-
trinsic property of helium, from multiple scattering. The
former arise when a neutron creates in a single process
a high energy perturbation which can decay into two or
more excitations, while the latter is a spurious e↵ect,
dependent on the sample size, where a single neutron
creates two or more excitations in successive scatter-
ing events. Since the two kinds of processes fulfill the
same kinematic conservation rules, and their contribu-
tions have similar intensity for typical sample sizes, sub-
tracting multiple scattering from the raw data is essential
when dealing with the multi-particle region of the spec-
trum.
It is di�cult in practice to determine this contribution
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▸ Calculated and observed for cold 
neutrons 

▸ However, this is in a very 
different kinematic regime 
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Calculation of the lifetime 

He use 2nd order perturbation theory to calculate the lifetime, 

i. e. we replace the "blob" in figure 2 by one phonon exchange : 

J2-
'[, 

We. will use "old-fashioned perturbation theory" which requires consideration 

of the following diagrams : 

o 
Interaction 

The interaction between neutrons and matter may be written as 

( II) 

where is the number density of nucleii with scattering length a in 

the matter. 

Follo.,ing Landau + Khalatnikov we write the number density of 

Helium as 
I 

t;r/J" + 
i'0;p. 

- 6 -

I 
where S1= equilibrium mass density of the liquid, and QD Oil-

..£'{ f .../;l 

We take the matrix element 

of V(?) between neutron plane \;ave states e 
-) -\ 

the usual creation-annihilation operators. 

--Vf /rf:-!.),r <[JVV'Jjl'): f J'r5{r) f- f 

. ->- -+ ->- ( 1 I' Q-:;' -;\3 \(1-)(-.') 
Putting Q = Pf - Pi and USlilg ) cf"r e ::: Pllj d Q 

we obtain from (12) and (13) 

(13) 

1/ 13 "- I {i!;' C; r1l ([ ..., T '«(1) "-\. "1), 1 
/1" [cri J (Q-]Jt-)+ c:t J (llf/: )(14) r ./l 1/ 3/J.- ).... c.. 0 

f vl,u L t;.., 
which is to be evaluated between phonon-occupation number eigenstates. 

Phonon-Phonon Interaction 

are 

We take the third order part of the hydrodynamic Hamiltonian as given 

by Landau + Khalatnikov. 

3 f 
r 

(15) 

.pi where) .- the fluctuating part.of the mass density is given by times 

the second term in (II). If ,;e define U",," -'?{ J 2, -] if (Maris) 

(16) 

( 17) 

Internal note, R. Golub, 1977
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Excitations in Superfluid Helium. We begin by
using quantum fluid dynamics to parameterize second-
quantized density and velocity excitations,

⇢ = ⇢0 + V � 1
2

P
k

ei(
~

k·~r�!kt)⇢
~

k

, (1)

~v = V � 1
2

P
k

ei(
~

k·~r�!kt)~v
~

k

(2)

where V is a reference volume and ⇢0 is the mean back-
ground density. Free perturbations satisfy the continuity
equation ~v

~

k

= �~k !
k

⇢
~

k

/⇢0k
2 and the corresponding har-

monic oscillator Hamiltonian in Fourier space,

H0 =
1

2

X

k

⇣
⇢0v

~

k

v�~

k

+ �
k

⇢
~

k

⇢�~

k

⌘
, (3)

where �
k

is the second functional derivative of the en-
ergy density with respect to the background density.
The force constant �

k

is related to the frequency by
!2
k

= ⇢0k
2�

k

and the frequency of perturbations is given
by !

k

= k2/2mHeS(k). Here S(k) is the static struc-
ture factor in units of the mean number density, related
to the two-point correlation function of perturbations in
the liquid, m2

HeS(k) = h⇢
k

⇢�k

i. This function scales lin-
early for k . 1 keV giving a linear dispersion relation,
and levels o↵ to 1 at high k & 5 keV, giving the typical
free-particle dispersion relation [26].

From the commutation relation between the density
and velocity [27], writing ⇢ and ~v in terms of the usual
creation and annihilation operators, we find

⇢
~

k

= mHe

p
S(k)(a

~

k

� a†
�~

k

) (4)

~v
~

k

= � ~

k

2mHe

p
S(k)

(a
~

k

+ a†
�~

k

). (5)

Then, expanding the Hamiltonian to the next (third) or-
der in perturbations, we find, similar to [28, 29],

H3 =

Z
d3r

✓
1

2
~v · ⇢~v +

1

3!

��
k

[⇢0]

�⇢0
⇢3
◆

. (6)

At small k, �
k

[⇢0] = c2
s

/⇢0, implying ��
k

[⇢0]/�⇢0 =
c2
s

(2u0 � 1)/⇢20, where u0 ⌘ (⇢0/c
s

)(�c
s

/�⇢0) = 2.84, as
measured by [30]. Beyond this regime, the inclusion of
the ⇢3 term varies between di↵erent treatments in the
literature and we therefore will drop it for the remainder
of this work. We note that this may cause the computed
rate to be di↵erent by O(1) factors and will address self-
consistent inclusion of the ⇢3 term in future work [31].

This simple picture of quantum fluid perturbations is
substantially complicated by the fact that superfluid he-
lium is an interacting Bose fluid. Excitations with a
wavelength much larger than the interatomic spacing
involves many atoms, implying that a correct descrip-
tion of scattering at low momentum transfer (q . 1 Å)
must include interatomic correlations. Feynman and Co-
hen [32] introduced a correction to the ground state
wavefunction, “backflow,” which accounts for the posi-
tions of the other atoms. The method of correlated ba-
sis functions (CBF) [33] is another natural extension of

�
�pi �pf

�q

�k1

�k2VXN

V3

FIG. 1. The two-excitation process we consider and the cor-
responding kinematics. The dashed lines denote excitations,
while solid lines denote dark matter.

the theory that systematically allows one to compute
the response of the fluid to one or more excitations.
Here we will denote one and two excitation states by
|~ki = ⇢†

~

k

|0i and |~k1~k2i = ⇢†
~

k1
⇢†
~

k2
|0i, respectively. Due to

interactions in the fluid, these states are not orthogonal,
h~k1~k2|~k1 + ~k2i 6= 0, and they must be orthonormalized.
The orthonormalized two-excitation state (denoted with
a rounded bracket) is (see for example the discussion in
[34, 35])

|~k1~k2) =
⇢
~

k1
⇢
~

k2
� h~k1+~

k2|~k1
~

k2i
h~q |~q i ⇢

~

k1+~

k2

h~k1~k2|~k1~k2i1/2
|0i. (7)

One can then compute the matrix element to create two
excitations:

(~k1~k2|H3|~q) = � 1

2mHe(S(q)S(k1)S(k2))1/2
⇥ (8)

⇣
~q · ~k1U(k1) + ~q · ~k2U(k2) + q2U(k1)U(k2)

⌘
,

where U(q) = S(q) � 1 and where we emphasize again
that we are only including the kinetic term in the Hamil-
tonian [34, 36]. Results with similar energy and momen-
tum scalings are obtained from the method of collective
coordinates [37], as well as in the dielectric formulation
[38]. We refer the reader to Ref. [35] for a review of these
results, and leave a more detailed discussion for future
work [31].
Multi-Excitation Scattering Rates. We now turn

to calculating the rate of the interaction shown in Fig. 1.
DM with initial momentum ~p

i

interacts with a helium
nucleus initially at rest, transferring momentum ~q and
energy ! to the nucleus. In an ordinary nuclear recoil,
the maximum momentum transfer is qmax = 2m

X

v
X

,
and a typical energy deposition on the target nucleus
! ' 10�9 eV(m

X

/keV)2.
As suggested above and depicted in Fig. 1, more energy

can be deposited via nuclear targets when energy and mo-
mentum (!, ~q) are deposited on a mediating o↵-shell ex-
citation. This excitation can come back on shell when the
interaction characterized by the Hamiltonian in Eq. (8)
leads to a splitting into two excitations carrying momen-
tum ~k1 and ~k2. When ! � c

s

qmax, these excitations
must be nearly back-to-back in order to conserve mo-
mentum. This configuration has suppressed phase space,
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FIG. 5. The numerical results from CKL15 are compared with our leading order calculation of S(q, !)

at two representative values of !. The dashed line shows the extrapolation with the q4 power law,

which is a good fit at low q and agrees with the scaling we find in the leading order calculations.

FIG. 6. We show typical values for the total momentum transfer q = |q| as a function of dark matter

mass mX , considering both a massive mediator (left) and massless mediator (right). We use S(q, !)

extrapolated as q4 to plot hqi as well as the variance for q (indicated by the shaded region). The energy

deposited is fixed at ! = 3 meV, and we consider two values of the initial DM velocity. The range of

q covered in the CKL15 results (Ref. [39]) is indicated by the light gray lines; as can be seen, these

numerical results start to be insufficient for DM masses below ⇠ 50 keV, and we must rely entirely on

the q4 extrapolation of the CKL results for masses below ⇠ 30 keV.
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resums the corrections due to the three-phonon vertex and gives good agreement with ex-
perimental data has been presented by Campbell, Krotscheck and Lichtenegger in Ref. [39]
(hereafter, CKL15). Rather than model the effect of the interactions with a heuristic ansatz
for the overlap term, they explicitly include the leading term from the potential in Eq. (16).
Operationally, they obtain S(q, !) by recursively solving for the self-energy ⌃(q, !), which
satisfies

⌃(q, !) = ✏0(q) +

1

2

Z
d3k

(2⇡)

3

V |hq � k,k|�H|qi|2
! � ⌃(q � k, ! � ✏0(k)) � ⌃(k, ! � ✏0(q � k))

. (31)

Using this self-energy, the renormalized energies ✏(q) then match the observed single-excitation
energies, and the dynamic structure factor is given by the optical theorem

S(q, !) = � 1

⇡

S(k)Im ⌃(q, !)

(! � ✏0(q))

2
+ (Im ⌃(q, !))

2
. (32)

The result for S(q, !) is shown in Fig. 4, which includes both the single and multi-excitation
response. We emphasize that the method of Ref. [39] includes multi-excitation production
beyond just the leading order two-excitation production, with the limitation that the multi-
excitation production still relies on the three-excitation vertex (in general, higher-point vertices
are present). A detailed comparison of this theoretical calculation with inelastic neutron scat-
tering data can be found in Ref. [47]. Accounting for neutrons that scatter multiple times
in the liquid, the data is in reasonably good agreement with theory for the multi-excitation
component.

As we will discuss in the following section, the results shown in Fig. 4 are in broad agreement
with the lowest order calculation of Sm(q, !) using Eq. (30), although there are significant
differences in detailed structure. Where available, we will therefore use the numerical results of
CKL15 to compute DM scattering, and use the lowest order results only as a guide to extending
CKL15 to low momentum transfer.

III. REACH FOR DARK MATTER SCATTERING

We now turn to DM detection with an idealized liquid helium detector, applying our knowl-
edge of the dynamic structure function derived in the previous section. A possible concept for
this detector has been shown in [30]: the basic idea is that a scattering event creates quasipar-
ticle excitations, which can propagate to the surface of the liquid. At the liquid-gas interface,
the quasiparticle has a high probability to eject a free helium atom via quantum evaporation,
followed by calorimetric detection of the helium atom. Furthermore, the evaporation process
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FIG. 4. Self-consistent calculation of the dynamic structure function S(q, !), obtained from Ref. [39]

(CKL15). For a given q, the onset of the response at a minimum ! clearly shows the one-excitation

component of S(q, !). The response at larger ! corresponds to the multi-excitation component, where

the structures at 2 meV and above arise from multi-excitations of rotons/maxons. In the experimental

data these structures are less prominent, which is expected once additional interactions are included

(see figures 21-22 and discussion in Ref. [39].)

may give a natural amplification technique (with amplification factors of ⇠10), and in principle
could be applied for single quasiparticle energies as low as ! = 0.6 meV.

In this section we use the various results for the dynamic structure function S(q, !) to
obtain the rate for DM scattering. We discuss the derivation of the rate given in [28] in greater
detail, considering the expanded calculation of S(q, !). As a benchmark, we will consider a
background-free kg-year exposure. For multi-excitation final states, we take a minimum energy
of ! = 1.2 meV and energies up to 8.6 meV. This upper value on ! coincides with the upper
cutoff of the numerical results we take from CKL15; furthermore, this energy range constitutes
the bulk of the response, and the rate falls off rapidly at higher !.

The results of this section are applicable to models of dark matter interacting coherently
with helium atoms via a new mediator, where we consider both the heavy mediator and light
mediator limits. In contrast, in the long wavelength limit the helium atom does not have a net
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previous section:

0hq � k,k|�H|qi =

1p
n3

0S(q � k)S(k)S(q)

Z
d3r1...d

3rNn⇤
q�kn

⇤
k 0(H � E0)nq 0. (21)

Again, (H � E0) acts on nq 0, and after integration by parts plus the fact that  0 satisfies
(H � E0) 0 = 0, we can show that

0hq � k,k|�H|qi =

X

j

1p
n3
0S(q�k)S(k)S(q)

R
d3r1...d

3rN
( 0)2

2mHe
rj

�
n⇤
q�kn

⇤
k

� rj (nq) (22)

=

X

j

1

N
p

n0S(q�k)S(k)S(q)

R
d3r1...d

3rN
( 0)2

2mHe

��i(q � k)e�i(q�k)·rjn⇤
k � i(k)e�ik·rjn⇤

q�k

�
(iqeiq·rj

) .

We rewrite the terms above in terms of the static structure function,

1p
N

X

i

h 0|e�iqrinq| 0i =

1p
n0

h 0|n⇤
qnq| 0i =

p
n0S(q). (23)

Using this result, we obtain

0hq � k,k|H � E0|qi =

q · (q � k)S(k) + q · kS(q � k)

2mHe
p

N
p

S(q � k)S(k)S(q)

(24)

Next, to directly compute the overlap matrix element 0hq � k,k|qi requires some working
assumption for the form of the ground state wavefunction. Alternatively, one may estimate for
this overlap term with a more indirect method. The simplest ansatz which yields the correct
long-wavelength behavior and satisfies a certain set of consistency conditions is known as the
“convolution approximation.” With this ansatz, one finds [36, 40]

0hq � k,k|qi =

p
S(q � k)S(k)S(q)p

N
, (25)

which we derive in detail in App. B. It has been shown that using this form gives good agree-
ment with experimental data on neutron scattering. Various improvements to the convolution
approximation have been considered (see e.g. [43]), though for our approximate, analytic treat-
ment we choose to keep the simplest possibility. This has the main advantage that the formulae
of the final answer are very manageable. In particular, utilizing Eq. (20), the full matrix element
is then given by

hq � k,k|�H|qi =

q · (q � k)S(k) + q · kS(q � k) � q2S(k)S(q � k)

2mHe
p

N
p

S(q � k)S(k)S(q)

(26)

13

resums the corrections due to the three-phonon vertex and gives good agreement with ex-
perimental data has been presented by Campbell, Krotscheck and Lichtenegger in Ref. [39]
(hereafter, CKL15). Rather than model the effect of the interactions with a heuristic ansatz
for the overlap term, they explicitly include the leading term from the potential in Eq. (16).
Operationally, they obtain S(q, !) by recursively solving for the self-energy ⌃(q, !), which
satisfies

⌃(q, !) = ✏0(q) +

1

2

Z
d3k

(2⇡)

3

V |hq � k,k|�H|qi|2
! � ⌃(q � k, ! � ✏0(k)) � ⌃(k, ! � ✏0(q � k))

. (31)

Using this self-energy, the renormalized energies ✏(q) then match the observed single-excitation
energies, and the dynamic structure factor is given by the optical theorem

S(q, !) = � 1

⇡

S(k)Im ⌃(q, !)

(! � ✏0(q))

2
+ (Im ⌃(q, !))

2
. (32)

The result for S(q, !) is shown in Fig. 4, which includes both the single and multi-excitation
response. We emphasize that the method of Ref. [39] includes multi-excitation production
beyond just the leading order two-excitation production, with the limitation that the multi-
excitation production still relies on the three-excitation vertex (in general, higher-point vertices
are present). A detailed comparison of this theoretical calculation with inelastic neutron scat-
tering data can be found in Ref. [47]. Accounting for neutrons that scatter multiple times
in the liquid, the data is in reasonably good agreement with theory for the multi-excitation
component.

As we will discuss in the following section, the results shown in Fig. 4 are in broad agreement
with the lowest order calculation of Sm(q, !) using Eq. (30), although there are significant
differences in detailed structure. Where available, we will therefore use the numerical results of
CKL15 to compute DM scattering, and use the lowest order results only as a guide to extending
CKL15 to low momentum transfer.

III. REACH FOR DARK MATTER SCATTERING

We now turn to DM detection with an idealized liquid helium detector, applying our knowl-
edge of the dynamic structure function derived in the previous section. A possible concept for
this detector has been shown in [30]: the basic idea is that a scattering event creates quasipar-
ticle excitations, which can propagate to the surface of the liquid. At the liquid-gas interface,
the quasiparticle has a high probability to eject a free helium atom via quantum evaporation,
followed by calorimetric detection of the helium atom. Furthermore, the evaporation process

15



SUPERFLUID HELIUM Schutz, KZ 1604.08206, Knapen, Lin, KZ 1611.06228

10�3 10�2 10�1 1 10 102

mX [MeV]

10�44

10�43

10�42

10�41

10�40

10�39

10�38

10�37

10�36

10�35

�
p

[c
m

2

]

N

u

c

l

e

a

r

r

e

c

o

i

l

↵X
=

1

0

�11
(mX/

M

e

V

)

3/2, gn =

1

0

�11

↵X
=

1

0

�11
(mX/

M

e

V

)

3/2, gn =

1

0

�10

Massless mediator

Leading order

CKL15

FIG. 9. Projected reach at 90% CL (2.4 events) for DM scattering through multi-excitation production

in superfluid helium for a 1 kg-year exposure, for the massive mediator (top) and massless mediator

(bottom) cases defined in Eq. (40). The dashed (solid) blue line shows the result using the leading

order (CKL15) result for S(q, !). We assume zero background and experimental sensitivity down to

! ⇠ meV. The reach is derived from the integrated rate with ! 2 [1.2 � 8.6] meV, where the multi-

excitation scattering rate is largest. The reach from ordinary nuclear recoils is also shown, assuming

sensitivity to the energy range ! 2 [3 � 100] meV (for smaller !, ordinary nuclear recoils are not

possible). The dotted lines show �p for sample mediator masses and couplings, chosen to roughly

satisfy self-interaction, neutron scattering, and stellar bounds (see text).
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OPTICAL PHONONS

▸ Gapped excitations (optical 
phonons) in materials with 
more than one type of  

▸ Quite generic in semiconductors 
with more than one type of ion 
in the Brioullin Zone 

▸ Al2O3 (sapphire), InSb, CsI, 
NaI 

▸ Even crystals with only one type 
of ion can have “optical” 
phonons 

▸ diamond
� L B

1 B Z � X Q F P
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FIG. 2. Phonon band structures for GaAs (left) and sapphire (right) as computed with phonopy [38]. The x-axis
traces out a path in the Brillouin zone. As is conventional in the condensed matter literature, the points in the
Brillouin zone with high symmetry are indicated with Roman and Greek characters (see Fig. 14 in Appendix A),
where � always refers to the origin of the Brillouin zone q = (0, 0, 0).

wave which stores a finite amount of energy.
A priori, the dark matter can excite both the optical and acoustic modes, but the energy deposited

in the acoustic modes is much smaller and is only detectable in the most optimistic circumstances.
Concretely, for mX . MeV, the DM momentum mXv . keV is sufficiently small that it is only possible
to excite a phonon mode within the first Brillouin zone. Consider a DM scattering with momentum
transfer q and energy deposition !, which excites a single acoustic phonon; the phonon must absorb
all of the energy and momentum transferred. This leads to the scaling

! = cs |q| . 2 cs v mX ⇠ 7 meV ⇥ mX

100 keV

. (1)

with v ⇠ 10

�3 the DM velocity and assuming the speed of sound for sapphire. The threshold for near
future devices will be at best in the 10 � 100 meV range, which means that single acoustic phonon
excitations from light DM will be difficult or impossible to detect, depending on mX . However, the
scaling in (1) does not apply for the optical modes since they have an energy of ! ⇠ 30 meV or more
as |q| ! 0, as is evident from Fig. 2.

The gapped dispersion of optical phonons is a particularly appealing feature, as it allows nearly the
maximum amount of DM kinetic energy to be extracted in the scattering, even when the momentum
transfer is much less than a keV. This is in contrast to recoils off free nuclei, where the energy deposited
from light DM is much less than the initial DM kinetic energy. The presence of optical phonons is also
advantageous compared to a material such as superfluid helium. Superfluid helium does have gapped
quasiparticle excitations (rotons), but they only occur at high q and are much lower energy that
the optical phonons in a solid. Since single phonon production in superfluid helium is undetectable
in the foreseeable future, one must resort to multi-phonon production to break the relation in (1),
as was demonstrated in Refs. [30, 31]. However, the rate is suppressed since this is a higher order
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DIRECTIONALITY IN ANISOTROPIC MATERIALS!

▸ Crystal Lattice is not Isotropic 

▸ Especially pronounced in 
sapphire

some point to have a number on hand]) The orientation is illustrated in Fig. 5, where ✓e is
the angle between the Earth’s axis and the direction of its velocity and ✓lab gives the latitude at
which the experiment is constructed. We choose the crystal orientation and coordinate system
such that the z-axis is aligned with the Earth’s velocity at t = 0. For GaAs the crystal axis is
along one for the faces of the cubic lattice, while for sapphire it is the axis along which the Al
atoms are positioned (Fig. 3) [TL: Instead, just show all xyz directions on the figure
of the crystals for GaAs and sapphire. Possible to make the statement that the
dipole coupling is largest along the primary crystal axis?].

Since we explicitly orient the crystal relative to the dark matter wind, there is no dependence
of the DM flux or scattering rate on the latitude at which the experiment is located. As a
function of time, the unit vector of ve in the crystal coordinate frame is

v̂e =

0

B@
sin ✓e sin �

sin ✓e cos ✓e(cos � � 1)

cos2 ✓e + sin2 ✓e cos �

1

CA (10)

with � = 2⇡ ⇥ t/24h the angle parametrizing the rotation of the Earth around its axis.

ve

Earth axis of  
rotation

t=0�e

Cygnus
�e ~ 42°	

DEC ~ 48°

Celestial  
equator

crystal axis

�lab

�lab

crystal axist=1/2 day

FIG. 5. The setup assumed in our calculation of DM scattering with the crystal. At t = 0, the z-axis of

the crystal coordinate system is aligned with the Earth’s velocity ve. With this choice, the modulation

is independent of the position of the lab, indicated by ✓
lab

. The Earth’s velocity is approximately in

the direction of Cygnus, which is at an angle of ✓e ⇡ 42� relative to the Earth’s axis of rotation. We

also illustrate the orientation of the crystal after a half-day rotation.

12

FIG. 7. Mode 30 (left), mode 16 (center) and mode 4 (right), which dominate the scattering for

(dark) photon mediator processes at long wavelengths. Modes 30 and 16 are characterized by a large

oscillation dipole of the Al (gray) and O (red) atoms respectively. Mode 4 exhibits two large dipoles

from the Al atoms, oscillating in anti-phase. Adobe Acrobat is required to view this animation.
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FIG. 8. Modulation of the scattering rate of the dominant optical phonon modes over a sidereal day,

for different DM masses. The percentage in the legend indicates the weight of the mode in the total

rate, after excluding the acoustic modes.
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OPTICAL PHONONS IN POLAR MATERIALS

Single Optical Phonon, Single Acoustic Phonon

Polar Materials: Lin, Knapen, Pyle, KZ 1612.06598
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TARGET DIVERSITY

▸ Why? Strength of dark matter portal is sensitive to 
material type 

▸ Fun theoretical playground: Dirac materials versus 
ordinary metals (e.g. aluminum superconductor) 

▸ Consider dark photon mediated dark matter:

basis can be identified by diagonalizing the kinetic terms in Eq. (2.1), and can serve as either the

DM itself or as a mediator of the interactions between the Standard Model and the DM which

comprises the dark current Jµ

DM

.

Due to the induced coupling of the dark photon to the electromagnetic field strength, dark

photon interactions are modified in an optically responsive medium. The e↵ects of the medium on

the dark photon coupling can be derived by considering the e↵ects of the medium on an ordinary

photon, where the propagator is modified via its interactions with the medium. One finds [53] that

the transverse and longitudinal dark photon fields Ã0T,L
µ

interact with the electromagnetic current

with reduced coupling:

L � "e
q2

q2 � ⇧
T,L

Ã0T,L
µ

Jµ

EM

. (2.2)

Here, ⇧
T,L

are the transverse and longitudinal components of the in-medium polarization tensor,

⇧µ⌫ = ⇧
T

P
i=1,2

✏Tµ

i

✏T⇤⌫
i

+ ⇧
L

✏Lµ✏L⌫ , with ✏L = 1p
q

2

(|q|, ! q

|q|) and ✏T
1,2

= 1p
2

(0, 1, ±i, 0) . As

a result of Eq. (2.2), dark photon interactions inside a medium depend on the electromagnetic

response of the medium, parameterized by ⇧
T,L

(see detailed discussion in Ref. [53]). In this

section, we describe the behavior of an ordinary photon in an optically responsive medium. We

review the optical properties of Dirac materials in Section 2.1 and compare the results to that of

metals in Section 2.2. We will use these results to model dark photon scattering and absorption

processes in later sections of the paper.

2.1 Optical Properties of Dirac Materials

In Lorentz gauge, the in-medium photon propagator is written as

Gµ⌫

med

(q) =
Pµ⌫

T

⇧
T

� q2
+

Pµ⌫

L

⇧
L

� q2
, (2.3)

where q = (!,q) is the 4-momentum transfer, q2 = !2�q2, and P
L,T

are longitudinal and transverse

projection operators, respectively (see e.g., Ref. [72] for a complete derivation). From Eq. (2.3), we

see that the photon can develop an e↵ective mass in-medium if the real part of ⇧
T,L

(q) contains

terms that do not vanish at q2 = 0. In general, ⇧
T,L

(q) may be a complicated function of q with no

simple interpretation as an e↵ective mass, but large ⇧
T,L

will generally suppress electromagnetic

interactions. The imaginary parts of ⇧
T,L

determine the probability of photon absorption.

The transverse and longitudinal components of the in-medium polarization tensor are linked to

the optical response of the medium through the complex permittivity ✏
r

by

⇧
L

= q2(1 � ✏
r

) and ⇧
T

= !2(1 � ✏
r

) . (2.4)
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TARGET DIVERSITY

▸ Metals have large Fermi surface                  large optical 
response  

▸ Large polarization tensor                Weak sensitivity to 
dark photon 
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Figure 9. Top: Upper bounds on the direct detection cross section, Eq. (5.18), for light DM scattering
o↵ electrons via a kinetically mixed hidden photon, which obtains its mass via the Stuckelberg mechanism,
for a variety of di↵erent mediator masses (solid colored curves). Constraints include stellar cooling [86],
CMB [90], CROWS [88, 89], measurements of Coulomb’s law [90], decoupling at recombination [66, 67]
and self-interactions [58]. Bottom: Direct detection cross section between light DM and electrons, for
several benchmarks of heavy mediators (same as in Fig. 5). These are A: m� = 1 MeV, ge = 10�5e,
↵X = 0.1; B: m� = 10 MeV, ge = 10�5e, ↵X = 0.1; and C: m� = 100 MeV, ge = 10�4e, ↵X = 0.1. These
depicted parameters obey all terrestrial and astrophysical constraints, though sub-MeV DM interacting
with SM through a massive mediator may be strongly constrained by BBN; see text for details. In both

panels, the Xenon10 electron-ionization data bounds [79] are shown in thin dashed gray. The black
solid (dashed)curve depicts the sensitivity reach of the proposed superconducting aluminum devices,
for a detector sensitivity to recoil energies between 1 meV�1 eV (10 meV�10 eV), with a kg·year of
exposure. We have included only the solar neutrino background in our estimate. For comparison, the
gray dot-dashed curve depicts the expected sensitivity utilizing electron ionization in a germanium target
as obtained in Ref. [22].

– 31 –

Figure 5. Top: Direct detection cross section, Eq. (3.11), for light DM scattering o↵ electrons via a
scalar or (non kinetically mixed) vector mediator, for several benchmarks. These are I: ↵X = 10�15,↵e =
10�12; II: ↵X = ↵e = 10�15; and III: ↵X = 10�15,↵e = 10�18. These depicted parameters obey bounds
from self-interactions and decoupling at recombination for m� ⇠< eV, though stellar emission (and BBN
considerations for vectors) may place strong constraints; see text for details. Bottom: Direct detection
cross section between light DM and electrons, for several benchmarks of heavy mediators. These are A:

m� = 1 MeV, ge = 10�5e, ↵X = 0.1; B: m� = 10 MeV, ge = 10�5e, ↵X = 0.1; and C: m� = 100 MeV,
ge = 10�4e, ↵X = 0.1. These depicted parameters obey all terrestrial and stellar-cooling constraints,
though sub-MeV DM interacting with SM through a massive mediator may be strongly constrained by
BBN; see text for details. The Xenon10 electron-ionization data bounds [79] are plotted in thin dashed
gray. In both panels, the black solid (dashed) curve depicts the sensitivity reach of the proposed
superconducting aluminum devices, for a detector sensitivity to recoil energies between 1 meV�1 eV
(10 meV�10 eV), with a kg·year of exposure. We have included only the solar neutrino background
in our estimate. For comparison, the gray dot-dashed curve depicts the expected sensitivity utilizing
electron ionization in a germanium target as obtained in Ref. [22].
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OPTICAL RESPONSE

▸ Superconductors have a large optical response because of 
their giant Fermi surface 

▸ But that also means large density of target electrons, 
implying large rate 

▸ Small density of target electrons, small optical response, 
but small rate 

▸ Are we in a bind? 

▸ Ward identity saves the day!



WEYL OR DIRAC SEMI-METALS ~ 3D GRAPHENE

▸ Materials can be “quantum 
engineered” 

▸ Correlation between 
electrons gives rise to a 
unique band structure 

▸ Hamiltonian looks like free 
QED near Dirac point 

▸ In QED, gauge invariance 
protects photon from 
obtaining a mass

Weyl semimetals = “3D Graphene”

• Smaller Fermi velocity = more phase space 
• Bulk material = more exposure 
• Topological confinement of current  

(“Fermi arcs” and Landau levels) 

Advantages over graphene:

8

FIG. 6. Fermi velocity of various classes of Dirac materials. Com-
puted Fermi velocity at the Dirac cone (averaged over the two in-
tersecting linear-dispersion) of the four Weyl orbital semimetals pre-
dicted here are compared with various other experimentally verified
Dirac materials. All SOC induced Dirac fermions in heavy-elements
have Fermi velocity almost an order of magnitude lower than that of
the Weyl orbital semimetals, and graphene. The horizontal coordi-
nate gives the average atomic number (Z̄) of the elements contribut-
ing to the Dirac cone. Gray and yellow shadings separate the two
families of Dirac materials without and with SOC, respectively. The
Fermi velocity data are taken for the surface states of the 2D topo-
logical insulator HgTe/CdTe from Ref. [38], for the 3D topological
insulator Bi

2

Se
3

from [39], and for the topological crystalline insu-
lators (Pb,Sn)Te from Ref. 40 and 41, �-Ag

2

Te from Ref. 42. The
Fermi velocity at the 3D Dirac cone of the Weyl semiletals Cd

3

As
2

is taken from Ref. 14 and 15, and for Na
3

Bi from Ref. 17 and 18.
The data for the non-SOC induced Dirac cone in graphene is taken
from Ref. 1. The inset figure schematically shows the possibility of
obtaining orbitally polarized electronic current with an anisotropic
phase difference, �

k

, protecting their quantized currents.

Appendix A: Parameter sets for Fig. 2

We use Dirac matrices of the form �

1,2,3

= �
1

⌦�
1,2,3

, and
�

4

= I ⌦ �
3

, where �
i

are the Pauli matrices and I is 2⇥2
unity matrix.

For the demonstration of the emergence of Dirac or Weyl
ferminons, we take a simple and minimal set of parameters for
tn, µn, and tnm: tn=1,2

j

= ±150 meV, and tn 6=m

jl

= 150 meV
is taken to be same for all orbitals n, m and along any di-
rections j, l. The chemical potential can be chosen in a way
that ⇠�k banishes at the � point (µn

= �6tn) or at any other
discrete momenta (µn

= �6tn± �, where � is a tunable num-
ber). In Fig. 1 of main text, we take µ1,2

= ⌥0.9 eV for
the Dirac point at the �, and µ1,2

= ⌥0.7 eV otherwise. All
tight-binding parameters are kept same for all plots in Fig. 1.

We explicitly write down the combinations of ⇠
a,b,c

chosen
in Fig. 1 of the main text. In the following cases, we assume
Dirac or Weyl cones are present in the k

j

and k
l

plane, and k
n

is the perpendicular axis. For Fig. 1E, the d-vectors are taken
to be d

j

= �i⇠
a

(k
j

), where j = 1, 2, 3 corresponding to k
j

,
k
l

and k
n

direction, or their various combinations. The choice
of d-vector components are

For Fig. 1(f) : d
1

+ id
2

=

1

2

⇠
b

(k
j

, k
l

), d
3

=

1

2

⇠
c

(k
j

, k
l

),

or d
3

= �i⇠
a

(k
n

), or d
3

= � i

2

[⇠
b

(k
j

, k
l

) + ⇠
b

(k
n

, k
l

)] .

For Fig. 1(g) : d
1

+ id
2

= ⇠
a

(k
l

), d
3

=

1

2

⇠
c

(k
j

, k
n

).

For Fig. 1(h) : d
1

+ id
2

= ⇠
a

(k
n

), d
3

=

1

2

⇠
c

(k
j

, k
l

),

or d
1

+ id
2

=

i

2

⇠
c

(k
j

, k
l

), d
3

= �i⇠
a

(k
n

). (A1)

The above three cases give Weyl cones along the zone axis.
We also provide two other cases, where Weyl cones appear
along other directions when a point-group symmetry is bro-
ken. In these cases, both inter-basis hoppings between 1 to 3
and 2, 3 are taken to have same sign, violating the symmetry
associated with the �

3

term. Such Weyl cones are probably
not as stable as others.

For Fig. 1(i) : d
1

+ id
2

= [⇠
a

(k
n

) + i⇠
a

(k
j

)] ,

d
3

= ±i⇠
a

(k
l

).

For Fig. 1(j) : d
1

+ id
2

= � i

2

⇠
c

(k
j

, k
l

),

d
3

= ±i [⇠
a

(k
j

)� ⇠
a

(k
l

)] . (A2)

Appendix B: Cohesive energy calculation

Cohesive energy of a composition, M=A
x

B
y

C
z

, is defined
as

E
coh

= E
M

� xE
A

� yE
B

� zE
C

. (B1)

E
M

is the total energy of the primitive cell of bulk M, while
E
A

and E
B

and E
C

are the total energy per atoms of A, B, and
C species, respectively, in their bulk form. x, y, and z are the
numbers of A, B and C atoms, respectively, assembled in the
primitive cell of M. In case of a binary material M=A

x

B
y

the
last term in Eq (B1) is omitted. Cohesive energy of considered
materials are listed in supplementary Table SII.

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
A. K. Geim, The electronic properties of graphene,, Rev. Mod.

Phys. 81, 109 (2009).
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FIG. 4. (a) The calculated band structure of Na3Bi is shown for the P 3̄c1 space group. Results are very similar for the
P63cm structure. (b) The Brillouin zone for the crystal structure in (a) is depicted with Dirac nodes marked by the two red
points along ��A. (c,d) The projected orbital-characters of the bands are shown for s, p

y

, p
z

, and p
x

orbitals along the ��A
momentum direction as well as through the Dirac node parallel to the ��M direction, denoted by �̄� M̄ . Bands are plotted
as blue lines, overlayed by dotted red lines with thickness proportional to the weight of the orbital character. The orbital
character of the bands along the �̄ � K̄ direction is very similar to that along �̄ � M̄ . Panel (c) shows the lack of s-orbital
character of the Dirac cone heavy Bi-like band as well as the lighter Na-like band in the vicinity �, which causes the optical
transition matrix elements associated with the Lifshitz gap region to be suppressed. (e-f) Fermi velocities of the two Dirac
bands are plotted along ��A and �̄� M̄ for the P 3̄c1 space group; velocities for the P63cm structure are identical. Velocity
plots along �̄� K̄ and �̄� M̄ are similar.

The reflectance over this entire spectral region continu-
ally decreases with temperature, but precipitously drops
in the temperature range between 125K and 150K.

As mentioned previously, three crystal structures con-
sidered in this study have nearly the same ground state
energy to within a few meV.38 This suggests that a phase
change may occur as a function of temperature. How-
ever, the IR active phonons shows no anomalous behav-
ior. Also, band structure calculations were performed for
the three candidate crystal symmetries in which the lat-
tice spacing was varied to simulate temperature changes.
No discernable changes in the electronic structure or or-
bital characters were identified that correlated to the ob-
served behavior.

Thermal occupation e↵ects of a band with a large den-
sity of states within ⇡150K/2 ⇠ 20 meV of the chemical
potential provides a plausible explanation of the observed
behavior. At these high temperatures, the chemical po-
tential is expected to be near the Dirac point. Based
on the band structure calculations in Figs. 4(a-d), the
only conduction band that is in the vicinity of 20 meV of

the Dirac node is the Dirac cone conduction band saddle
point, which has only p-orbital character.

A candidate valence band with s-orbital character ex-
ists at the �-point, but lies ⇠ 750 meV below the Dirac
node as shown in Fig. 4(c). Band structure calculations
show that the energy of this band is very sensitive to
the spin-orbit coupling strength. Decreasing the spin-
orbit coupling by a factor of two does not significantly
alter the Dirac cone bands, but pushes the s-band up
in energy by about a factor of two. The optical results
together with band structure calculations may therefore
provide a sensitive method to determine the spin-orbit
coupling strength.

In this picture, transitions at low temperature between
this s-character valence band and the p-character Dirac
cone conduction band give rise to allowable transitions
in the vicinity of the �-point with a large joint density
of states, provided that E

F

< ECB

LS

. As the tempera-
ture is raised and the chemical potential lowers toward
the Dirac point, these transitions remain active until the
thermal broadening is large enough that a copious num-

1708.08929

Detection of sub-MeV Dark Matter with Dirac Semimetals

Yonit Hochberg,1, 2, ⇤ Yonatan Kahn,3, † Mariangela Lisanti,3, ‡

Kathryn M. Zurek,4, 5, § Adolfo Grushin,6, 7, ¶ Roni Ilan,8, ⇤⇤

Zhenfei Liu,9 Sinead Gri�n,9 Sophie Weber,9 and Je↵rey Neaton9

1Department of Physics, LEPP, Cornell University, Ithaca NY 14853, USA

2Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

3Department of Physics, Princeton University, Princeton, NJ 08544

4Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

5BCTP, University of California, Berkeley, CA 94720, USA

6Department of Physics, University of California, Berkeley, CA 94720, USA
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Abstract

We propose the use of Dirac semimetals as targets for direct detection of sub-MeV

dark matter. Semimetals are bulk materials characterized by a small bandgap of

O(meV) and a linear dispersion for low-energy excitations. Dark matter at the

keV scale carrying kinetic energy as small as an meV can scatter and excite an

electron across the gap. Alternatively, bosonic dark matter as light as a meV can

be absorbed on the electrons in the semimetal. We develop the formalism for dark

matter scattering and absorption in Dirac semimetals and calculate the experimental

reach of these target materials. We find that Dirac semimetals can play a crucial role

in detecting dark matter in the keV to MeV mass range that scatters with electrons

via a kinetically mixed dark photon, as the dark photon does not develop an in-

medium e↵ective mass. The same target materials provide excellent sensitivity to

absorption of light bosonic relics in the meV to eV mass range, superior to all other

existing proposals.
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RELATIVISTIC FERMIONS, OBEY DIRAC EQUATION

▸ Optical response behaves exactly as electric charge 
renormalization in QED 

▸ Weaker Optical Response 

▸ Stronger Sensitivity to Dark Photon 

▸ Relativistic Fermions, Obey Dirac Equation

Inter-band scattering Absorption
|q| � ! |q| ⌧ !

Figure 1: Cartoon of the two dark matter-initiated processes in Dirac materials that we consider
in this paper: inter-band (valence to conduction) scattering (left) and absorption by valence-band
electrons (right).

mediator for DM-electron scattering processes or as the DM itself which is absorbed. In the case of

superconductors, the dark photon takes on a large e↵ective mass in the medium, suppressing the

DM interaction rate. For helium, the leading interaction is through the polarizability of the atom,

which is small.

In this paper, we propose Dirac materials as a new class of electron targets for DM scattering or

absorption. We define Dirac materials as three-dimensional (3D) bulk substances whose low-energy

electronic excitations are characterized by a Dirac Hamiltonian [60–62],

H` =

 
0 v

F

` ·� � i�

v
F

` ·� + i� 0

!
, E±

` = ±
q

v2
F

`2 +�2. (1.1)

Here, ` is a lattice momentum measured from the location of the point of the Dirac cone (e.g., the

Dirac point) in reciprocal space, � is analogous to the mass term in the Dirac equation giving rise

to a band gap 2�, the Fermi velocity v
F

plays the role of the speed of light c, and the positive and

negative dispersion relations correspond to the conduction and valence bands, respectively.2 The

desired signal is a DM-induced inter-band transition from the valence to the conduction band, where

for DM scattering the momentum transfer |q| is typically much larger than the energy deposit !,

with the opposite being true for absorption of non-relativistic DM. A cartoon of these two processes

is illustrated in Fig. 1. As we will show, the dynamics of the photon interacting with Dirac fermions

mimic those of ordinary relativistic QED: the Ward identity keeps the photon massless in a Dirac

material, leading to excellent detection reach in models of DM involving dark photons.

When � = 0, the low-energy degrees of freedom in a Dirac material correspond to two Weyl

fermions of opposite chiralities. Materials with this feature are classified as either Dirac or Weyl

2Real materials typically have anisotropic Fermi velocities, but this complication does not a↵ect the thrust of our
arguments; we treat this case in Appendices A and B.

4

the optical response of the medium through the complex permittivity ✏
r

by

⇧
L

= q2(1 � ✏
r

) and ⇧
T

= !2(1 � ✏
r

) . (2.4)

In the regime |q2| ⇠ q2 � !2, which is relevant for DM scattering, ⇧
L

dominates over ⇧
T

.

Conversely, in the case of DM absorption where q2 ⇠ !2 � q2, ⇧
L

' ⇧
T

.

For Dirac materials with a band gap, it is simplest to determine the complex permittivity ✏
r

by

borrowing the expression for the one-loop polarization function in massive QED in 3+1 dimensions

(see e.g., Ref. [74]). In doing so, we substitute c ! v
F

and ↵
EM

! e↵, where v
F

is the Fermi velocity

and e↵ is the e↵ective fine-structure constant in the medium:

e↵ = ↵
EM

⇥ g

v
F

, (2.5)

with  the background dielectric constant, ↵
EM

= e2/4⇡, and g = g
s

g
C

is the product of spin and

Dirac cone degeneracy [75]. In the MS scheme, to leading order in e↵, the complex permittivity (at

zero temperature and doping) is therefore given by:

(✏
r

)
Dirac

= 1+
e2g

4⇡2v
F

Z
1

0

dx

⇢
x(1 � x) ln

����
(2v

F

⇤)2

�2 � x(1 � x)(!2 � v2
F

q2)

����

�

+ i
e2g

24⇡v
F

s

1 � 4�2

!2 � v2
F

q2

✓
1 +

2�2

!2 � v2
F

q2

◆
⇥(!2 � v2

F

q2 � 4�2) , (2.6)

where ⇤ is a UV cuto↵, defined as the momentum distance from the Dirac point at which the

dispersion relation deviates from linear.5 The spin degeneracy in Dirac materials is g
s

= 2;

taking g
C

= 1 (hence g = 2) corresponds to a single massive Dirac fermion in QED. The complex

permittivity of isotropic semimetals can be recovered from Eq. (2.6) by taking � ! 0 and redefining

⇤ ! exp(�5/6)⇤ to absorb the finite q-independent piece. This yields the familiar formula [75–81]:

(✏
r

)
semimetal

= 1 � e2g

24⇡2v
F

1

q2

⇢
�q2ln

����
4⇤2

!2/v2
F

� q2

���� � i⇡q2⇥(! � v
F

|q|)
�

, (2.7)

which can also be derived directly from the Lindhard formula, as demonstrated in Appendix A.

5Here we are e↵ectively setting the renormalization scale µ̃ at the cuto↵, µ̃ = 2v
F

⇤, which is perhaps unusual from
a high-energy physics perspective. The unphysical parameter µ̃ can be removed from physical quantities by matching
to a measurement of the electric charge e. In QED, one typically thinks of the electric charge as being defined by
a t-channel scattering process, e.g. e� + e� ! e� + e�. However, the inter-band transition in a Dirac material is
analogous to pair production, which is an s-channel process. DM scattering in Dirac materials can be described by
� +N ! � +N + � followed by � ! e� + h+, where the lattice N provides the necessary recoil for the creation of
an electron-hole pair. Therefore, we use the vertical transition rate with (!,q) = (2v

F

⇤, 0) to measure the charge.
At the cuto↵ ⇤, deep inside the band structure and far from the Dirac point, we assume that the electrons behave as
in an ordinary insulator and that the e↵ective charge is e2

0

⌘ e2(eµ) = 4⇡↵
EM

/.
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Inter-band scattering Absorption
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Figure 1: Cartoon of the two dark matter-initiated processes in Dirac materials that we consider
in this paper: inter-band (valence to conduction) scattering (left) and absorption by valence-band
electrons (right).

mediator for DM-electron scattering processes or as the DM itself which is absorbed. In the case of

superconductors, the dark photon takes on a large e↵ective mass in the medium, suppressing the

DM interaction rate. For helium, the leading interaction is through the polarizability of the atom,

which is small.

In this paper, we propose Dirac materials as a new class of electron targets for DM scattering or

absorption. We define Dirac materials as three-dimensional (3D) bulk substances whose low-energy

electronic excitations are characterized by a Dirac Hamiltonian [60–62],

H` =

 
0 v

F

` ·� � i�

v
F

` ·� + i� 0

!
, E±

` = ±
q

v2
F

`2 +�2. (1.1)

Here, ` is a lattice momentum measured from the location of the point of the Dirac cone (e.g., the

Dirac point) in reciprocal space, � is analogous to the mass term in the Dirac equation giving rise

to a band gap 2�, the Fermi velocity v
F

plays the role of the speed of light c, and the positive and

negative dispersion relations correspond to the conduction and valence bands, respectively.2 The

desired signal is a DM-induced inter-band transition from the valence to the conduction band, where

for DM scattering the momentum transfer |q| is typically much larger than the energy deposit !,

with the opposite being true for absorption of non-relativistic DM. A cartoon of these two processes

is illustrated in Fig. 1. As we will show, the dynamics of the photon interacting with Dirac fermions

mimic those of ordinary relativistic QED: the Ward identity keeps the photon massless in a Dirac

material, leading to excellent detection reach in models of DM involving dark photons.

When � = 0, the low-energy degrees of freedom in a Dirac material correspond to two Weyl

fermions of opposite chiralities. Materials with this feature are classified as either Dirac or Weyl

2Real materials typically have anisotropic Fermi velocities, but this complication does not a↵ect the thrust of our
arguments; we treat this case in Appendices A and B.
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basis can be identified by diagonalizing the kinetic terms in Eq. (2.1), and can serve as either the

DM itself or as a mediator of the interactions between the Standard Model and the DM which

comprises the dark current Jµ

DM

.

Due to the induced coupling of the dark photon to the electromagnetic field strength, dark

photon interactions are modified in an optically responsive medium. The e↵ects of the medium on

the dark photon coupling can be derived by considering the e↵ects of the medium on an ordinary

photon, where the propagator is modified via its interactions with the medium. One finds [53] that

the transverse and longitudinal dark photon fields Ã0T,L
µ

interact with the electromagnetic current

with reduced coupling:

L � "e
q2

q2 � ⇧
T,L

Ã0T,L
µ

Jµ

EM

. (2.2)

Here, ⇧
T,L

are the transverse and longitudinal components of the in-medium polarization tensor,

⇧µ⌫ = ⇧
T

P
i=1,2

✏Tµ

i

✏T⇤⌫
i

+ ⇧
L

✏Lµ✏L⌫ , with ✏L = 1p
q

2

(|q|, ! q

|q|) and ✏T
1,2

= 1p
2

(0, 1, ±i, 0) . As

a result of Eq. (2.2), dark photon interactions inside a medium depend on the electromagnetic

response of the medium, parameterized by ⇧
T,L

(see detailed discussion in Ref. [53]). In this

section, we describe the behavior of an ordinary photon in an optically responsive medium. We

review the optical properties of Dirac materials in Section 2.1 and compare the results to that of

metals in Section 2.2. We will use these results to model dark photon scattering and absorption

processes in later sections of the paper.

2.1 Optical Properties of Dirac Materials

In Lorentz gauge, the in-medium photon propagator is written as

Gµ⌫

med

(q) =
Pµ⌫

T

⇧
T

� q2
+

Pµ⌫

L

⇧
L

� q2
, (2.3)

where q = (!,q) is the 4-momentum transfer, q2 = !2�q2, and P
L,T

are longitudinal and transverse

projection operators, respectively (see e.g., Ref. [72] for a complete derivation). From Eq. (2.3), we

see that the photon can develop an e↵ective mass in-medium if the real part of ⇧
T,L

(q) contains

terms that do not vanish at q2 = 0. In general, ⇧
T,L

(q) may be a complicated function of q with no

simple interpretation as an e↵ective mass, but large ⇧
T,L

will generally suppress electromagnetic

interactions. The imaginary parts of ⇧
T,L

determine the probability of photon absorption.

The transverse and longitudinal components of the in-medium polarization tensor are linked to

the optical response of the medium through the complex permittivity ✏
r

by

⇧
L

= q2(1 � ✏
r

) and ⇧
T

= !2(1 � ✏
r

) . (2.4)
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FIG. 4: Projected reach of dark matter scattering in Dirac semimetals through a light kinetically-
mixed dark photon mediator with in-medium e↵ects included. We assume a 3-event sensitivity
with 1 kg-yr exposure. For the two curves labeled “Dirac,” we assume an ideal gapless (� = 0)
or gapped (� = 2.5 meV) isotropic semimetal with v

F

= 2 ⇥ 10�4,  = 40, g = 1, ⇤ = 1 keV,
n
e

= 5⇥ 1024/kg, and V
uc

= 60 Å3. The curve labeled “ZrTe
5

” uses the parameters calculated in
Appendix D. [YK: Fill in info and curve when we have it, re-run curve with these parameters.]
For comparison we show also the reach of superconductors with a meV threshold, and the projected
single-electron reach of SuperCDMS-G2+Si [71]. Semimetals can probe the entire freeze-in region
below 1 MeV.

interactions are with the electron or proton, it gives rise to a prediction for the scattering

cross section in a direct detection experiment. For example, a process for producing the dark

matter through a massless dark photon via e+e� annihilation gives rise to a relic abundance

Y
�

⇠ "2g2
D

/m
e

if m
�

< m
e

. If the direct detection process happens through that same

ultralight [YK: was “massless,” is this change ok?] dark photon, the scattering cross-

section similarly scales with ✏g
D

, fixing �̂
e

for a given m
�

. For example, at m
�

= 50 keV,

✏g
D

' 10�12 and �̂
e

' [YK: ???]. This benchmark is shown in Fig. 4. [YK: I am confused

about these numbers, make sure they match plot.]

The constraints on this model depend on whether the dark photon is exactly massive

or just ultralight. In the former case, � carries an electric millicharge, and bounds on

millicharged particles apply [72]. Constraints from big bang nucleosynthesis, supernovae,

red giants, and white dwarves are shown in grey in Fig. 4. In the latter case, self-interaction

constraints apply. [YK: Kathryn continue discussion.]
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of DM velocities contributes to a scattering event with given k,k0, the rate depends on the halo

integral:

⌘(v
min

) =

Z
d3v

v
g
�

(v)✓(v � v
min

). (3.3)

Here, g
�

(v) is the DM velocity distribution, which we take to be the Standard Halo Model with

typical Galactic-frame velocity v
0

= 220 km/s (7.3⇥ 10�4 in natural units), average Earth velocity

with respect to the Galactic frame v
E

= 232 km/s (7.8⇥10�4), and escape velocity v
esc

= 550 km/s

(1.8⇥ 10�3). For simplicity, we will assume the DM velocity distribution is spherically symmetric.

The minimum velocity for a DM particle to scatter with momentum transfer q and energy deposit
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isotropic dispersion relation near the K-point given in Eq. (3.1); the result generalizes straightfor-

wardly to gapped or anisotropic dispersions.

There are three form factors that appear in Eq. (3.2), two of which are related to the DM
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for gapless isotropic materials, where V is the crystal volume. A complete derivation of Eq. (3.6),

generalized for anisotropic gapped Dirac materials, is provided in Appendix A.
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where g
D

is the dark photon gauge coupling and m
e

is the electron mass. Here, we are neglecting
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SEARCHING FOR AXIONS AND OTHER ULTRALIGHT PARTICLES

2

same way that superconductors and metals are excellent
absorbers of electromagnetic fields. For instance, we find
that a kg-day exposure on a superconducting target is
su�cient to exceed the stellar constraints for a hidden
photon whose mass is obtained via the Stuckelberg mech-
anism.

The outline of this paper is as follows. In Section IIA
we discuss how metals can be e�cient absorbers of low
mass particles. The process we consider involves ab-
sorbing all the mass-energy of the DM particle via an
electron recoil, with emission of an athermal phonon to
conserve momentum. We then describe in Sections II B
and II C our method to determine the DM absorption
rate from the optical properties of a metal. In Section III
we present the reach of superconducting detectors for ul-
tralight DM that couples to electrons, including hidden
photons, pseudoscalars, and scalars. We conclude in Sec-
tion IV.

II. DARK MATTER ABSORPTION WITH
SUPERCONDUCTORS

We begin by describing the DM absorption process, be-
fore computing its rate in a superconductor. We compare
our results for consistency against the standard Drude
theory for low-energy photon absorption in metals. Then,
in order to obtain accurate predictions at higher (& 0.1
eV) energies, we relate the DM absorption rate to mea-
sured photon absorption rates.

A. General Principle: Phonon emission

Absorption of low energy particles in a superconductor
can proceed when the energy of the absorbed radiation
(in this case the mass of the DM particle) exceeds the su-
perconducting gap. In the absorption process, a Cooper
pair is broken, and a pair of excitations is created. These
excitations have a long recombination and thermalization
time (of order a few milliseconds in aluminum), which al-
lows for their collection and measurement, as described
in Refs. [23, 24]. Once the energy of the absorbed par-
ticle significantly exceeds the superconducting gap, the
absorption process is identical in the superconducting
and normal phases of a metal. There are several ways
to absorb a particle (be it a photon or DM) in a metal.
One way is via impurities, where an o↵-shell electron pro-
duced in the absorption process becomes on-shell through
interaction with an impurity. In the case of interest here,
however, the target superconductor must be ultrapure in
order to enable the collection and measurement of the
created athermal excitations, and so this possibility is
not viable.

Instead, we make use of another process – that of par-
ticle absorption on electrons through the emission of an
athermal phonon in the final state, as shown in Fig. 1.
The emitted phonon is required for momentum conser-

X �

e e

q Q

k k0

X �

e e

q Q

k k0

FIG. 1. Absorption process on electrons for an incoming relic
particle X, where a phonon � is emitted in the final state:
X(q) + e(k) ! e(k0) + �(Q).

vation of the target material. Consider an electron with
initial momentum ~ki and energy Ei = ~k2

i /(2me). Assum-
ing the electron absorbs a single particle of energy !, the
final momentum of the electron is ~kf = ~ki +~q and energy
conservation gives

(~ki + ~q)2

2me
=

~k2

i

2me
+ !. (1)

(Note that momentum on the lattice is conserved up to an
additive reciprocal lattice vector, ~K. For electrons, the
typical energy scale associated with transitions involving
~K is K2/2me ⇠ 10 eV, which is above the energies con-
sidered here.) Then the required momentum transfer to

the electron is |~q| ⇠ !(me/|~ki|) ⇠ !/vF ⇠ 100 !, where
vF is the Fermi velocity. This cannot be satisfied for an
on-shell DM particle in the halo, which carries momen-
tum ⇠ 10�3!. However, energy and momentum can still
be conserved if a phonon with momentum ⇠ �~q is emit-
ted by the electron in the final state; in other words, the
electron recoils against the lattice. The emitted phonon
carries away a fraction of the excitation energy, but can
balance the large recoil momentum of the electron.

In the Debye model, the dispersion relation of a phonon
with 4-momentum (⌦, ~Q) is given by

⌦ = cs| ~Q| (2)

where the speed of sound in aluminum is cs '
6320 m/sec ⇠ 2 ⇥ 10�5 in natural units. There is a
maximum frequency !D = cskD for phonons, where the
maximum wavevector for lattice vibrations kD ⇠ 1/a
is set by the lattice spacing a. For aluminum, !D ⇡
0.037 eV; therefore the maximum phonon energy is rel-
atively low, but the maximum momentum can be much
higher, !D/cs ⇡ keV.

B. Dark Matter Absorption

We now turn to computing the rate of DM absorption
in a material. The total DM absorption rate per unit
mass per unit time R is

R =
1

⇢

⇢X
mX

hne�abs

v
rel

i , (3)
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where �
abs

is the absorption cross section on electrons,
⇢ is the mass density of the target material, and ⇢X =
0.3 GeV/cm3 is the local mass density of DM.

Treating the target as a free electron gas with Fermi
energy EF , the rate for the 2 ! 2 process of X(q) +
e(k) ! e(k0) + �(Q) (with � a phonon) is given by

hne�abs

v
rel

i =

Z
d3Q

(2⇡)3
h|M|2i

16E
1

E
2

E
3

E
4

S(q, Q) , (4)

S(q, Q) = 2

Z
d3k

(2⇡)3
d3k0

(2⇡)3
(2⇡)4�4(k + q � k0 � Q)

⇥ f(E)(1 � f(E0)) ,

where h|M|2i is the averaged and summed matrix-
element-squared for the process. The functions f(E) are
electron occupation numbers, with (1 � f(E0)) charac-
terizing Pauli blocking e↵ects. The four-momentum of
the absorbed particle is q = (!, ~q), while the emitted
phonon has Q = (⌦, ~Q) with ⌦ = cs| ~Q|. For T = 0
and |~q| ⌧ ! ⌧ EF , the integral over the initial and fi-
nal electron phase space S(q,Q) ⇡ S(!, ~Q) reduces to
a simple Heaviside theta function of allowed kinematic
configuration, with amplitude

S(!, ~Q) ' (m⇤
e)

2(! � ⌦)/(⇡| ~Q|) . (5)

Here m⇤
e is the e↵ective electron mass in the metal.

For each of the DM models we consider in Sec. III, we
compute h|M|2i for DM absorption via phonon-emission,
treating the phonon as a scalar field � and assigning the
electron-electron-phonon vertex with the dimensionless
coupling

y
�

= C
�

| ~Q|/p
⇢ (6)

(we refer the reader to Appendix J of Ref. [26] for a
derivation of this result). The parameter C

�

has units of
energy and is of order EF , but must be determined by
matching onto data.

In order to check the validity of this procedure and to
fix the electron-phonon coupling using existing data, we
must turn to photon absorption. Photon absorption pro-
ceeds by a similar 2-to-2 process as DM absorption, and
has been measured in aluminum over a range of energies.
By comparing the data with the photon absorption rate
computed with Eq. (4), we can then obtain the coupling
constant C

�

. Equivalently, we will find that the DM
absorption rate can be written in terms of the photon
absorption rate, and this relation holds even at larger
!, where the free-electron approximation breaks down.
We note that although the spatial momenta |~q| of mas-
sive DM di↵ers from that of the photon, this di↵erence
is unimportant for the absorption process. The reason
is that the momentum of both the absorbed photon and
DM particle is negligible compared to the electron mo-
menta.

We first calculate the rate for photon absorption at low
energies. Summing over the diagrams shown in Fig. 1,

and averaging over incoming electron spin and photon
polarizations, we find the matrix-element-squared in the
limit of ! ⌧ | ~Q| is given by

|M� |2 ⇡ 4e2

3

C2

�

⇢

| ~Q|4
!2

. (7)

The total rate for photon absorption is then (for ! ⌧ EF ,
where EF = 11.7 eV in aluminum)

hne�abs

v
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✓
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Z
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3 (2⇡)4
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�

c6s⇢
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e

ne

◆

⌘ nee2

m⇤
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2

1

⌧(!)
. (8)

The integral over ⌦ is restricted to energies either below
! (due to energy conservation) or below !D (due to the
cuto↵ in phonon momenta), whichever is smaller. Above
we have suggestively defined the !-dependent parameter
⌧(!) as the quantity in parenthesis in the first line of
Eq. (8), in order to compare this result to the standard
theory for absorption of EM fields in metals, the Drude
theory. We will see next that ⌧(!) is a time-scale for
phonon emission.

C. Photon Absorption and Superconductor
Response

In order to make a connection between our calculation
of the photon absorption rate, Eq. (8), and the Drude
theory, we begin by noting that the absorption rate of
photons can be related to the polarization tensor of the
EM field ⇧ via the optical theorem:

hne�abs

v
rel

i� = � Im ⇧(!)

!
, (9)

where in the local limit of |~q| ⌧ ! the transverse and
longitudinal modes of the polarization tensor are of equal
size, which we denote by ⇧(!). This ⇧ is related to
the complex conductivity �̂(!) ⌘ �

1

+ i�
2

, describing
the frequency-dependent response of electrons to an EM
perturbation, by

⇧(!) ⇡ �i�̂! . (10)

(See Appendix A and e.g. Ref. [24] for further details.)
As is evident, the real part of the conductivity �

1

is the
absorption rate for excitations of energy !, and is related
to the absorption cross section of photons by

�
1

= hne�abs

v
rel

i� , (11)

making clear from Eq. (3) that large non-zero �
1

is crucial
for absorption.

We can now compare the rate in Eq. (8) to the conduc-
tivity derived from the Drude model. The Drude model

Griffin, Knapen, Lin, KZ 1807.10291



EXPERIMENTAL PROGRESS

▸ A number of experimental proposals available both for 
small project development and R&D

Cosmic Visions Whitepaper, 1707.04591



COMMON R&D PATH

▸ Sensor can be coupled to multiple targets — target 
diversity 

▸ Sensor development and material exploration funded as 
part of QIS collaboration based in Berkeley / LBL
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SUPER-HEAVY DARK MATTER

▸ Keeping the eyes open….
10 Direct Detection Program Roadmap 39
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

??? ???



REMOVE ELECTROMAGNETISM FROM STANDARD MODEL

▸ Take BBN temp at 0.1 MeV (due to deuterium bottleneck) 

▸ Solve Boltzmann equation 

▸ With Coulomb barrier 

▸ Without Coulomb barrier

Then the evolution equations for average size N are

dN

d�
= N1/6e�

↵
v�(�)N

5/2

. (A3)

If v0
�(��)�� is very small compared to v�(��), then, defining � = ↵/v�(��) we have

� =

Z
N�1/6e�N

5/2
dN ⇡

⇢
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5

��1N�5/3e�N
5/2

if �N5/2 & 2
6

5

N5/6 if �N5/2 ⌧ 1
. (A4)

In the SM, with the synthesis starting around 0.1 MeV due to the deuterium bottleneck,

� ⇡ 3000, v� ⇠ p
T
BBN

/GeV ⇠ 10�2. Solving for N , one obtains N ⇡ 2.56 due to the strong

exponential dependence, indicating the ine�ciency of SM synthesis (and correctly predicting

that synthesis stops at around Z = 2, helium). On the other hand, if the Coulomb barrier were

absent, the same calculation would predict N ⇠ 104.

2. In the Presence of a Bottleneck

If there is a bottleneck at low N , large nuggets can build up by capture of small bound

states on sparse nucleation sites that squeeze through the bottleneck. Suppose the bottleneck

is at size k. The the size of the nucleation sites grows as

dN

dt
= knk�kNvk. (A5)

Taking knk = nX(1 � pN) and �kN = ��N
2/3e�↵N/vkf(vk) with f(vk) a possible suppression

factor due to quantum reflection e↵ects we have

dN

d�⇤ = (1 � pN)N2/3e�↵N/vk (A6)

where
d�⇤

dt
⌘ ��nXvkf(vk). (A7)

Here p is the probability of squeezing through the bottleneck. In the limit where vk is approx-

imately constant over the interaction timescale and if pN ⌧ 1 then

dN

d�⇤
= N2/3e��N (A8)

so that

�⇤ =

Z
N�2/3e�NdN ⇡

⇢
��1N�2/3e�N if �N & 2

3N1/3 if �N ⌧ 1
(A9)

Again using SM as an example, with �⇤ ⇠ 3000 and � = 1 one predicts N ⇠ 9.5. This estimate

confirms that a sparse population of A > 4 nuclei could not grow substantially through capture

of helium during BBN. If the Coulomb barrier were absent, however, one would predict N ⇠ 109.
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Again using SM as an example, with �⇤ ⇠ 3000 and � = 1 one predicts N ⇠ 9.5. This estimate

confirms that a sparse population of A > 4 nuclei could not grow substantially through capture

of helium during BBN. If the Coulomb barrier were absent, however, one would predict N ⇠ 109.
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FIG. 2. Contours of typical nugget number exiting big bang darkleosynthesis, k̄

fo

(dashed red) and

typical nugget mass M̄

fo

(solid purple) for ↵� = 0.03 (left) and ↵� = 0.3 (right). The temperature of

the dark sector is assumed to be roughly TX ⇡ T� . The blue shaded region corresponds to BE
2

< m�,

where 2

X synthesis will not be e�cient (Eq. (5)). The upper mX cuto↵ corresponds to the requirement

that 2

X fusion rate is smaller than Hubble as in Eq. (6), and the lower mX cuto↵ corresponds to

T

synth

. 10T

eq

. (See Fig. 1.). The various kinks in the contours are results of the change in g⇤ as the

synthesis temperature passes through QCD phase transition and neutrino decoupling.

so that the Boltzmann equation, Eq. (18), becomes

dyk
d�

=

"
X

ij

yiyjK(i, j, k) �
X

k+l<2m

ykylK(k, l, m)

#
. (30)

Analogous equations have been considered in the statisitical and mathematical physics literature

(see Ref. [16] for a pedagogical introduction), and when K(i, j, k) / �i+j,k, Eq. (30) is known

as the Smoluchowski equation for coagulation [17]. Here we consider the saturation limit and

utilize the CN-like picture for two-to-two processes, such that the kernel scales simply as,

K(i, j, k) =

r
1

i
+

1

j

⇣
i
1
3 + j

1
3

⌘
2 �k

�
, (31)

where �k is proportional to the partial width of a compound state i+j transitioning into a final

state k + (i + j � k), the squared factor characterizes the scaling of the geometric cross section,

and the square root factor characterizes the relative speed. A similar kernel was considered in

[7], but with �k = �i+j,k, corresponding to the case of coagulation [17]. There are generally

no closed form solutions even for a simplified choice of fusion kernel [16], and given that k̄
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DIRECT DETECTION

WHY ARE LOW THRESHOLD DETECTORS GOOD FOR SUCH BIG COMPOSITE STATES?

▸ Answer: form factor and coherent enhancement

FIG. 2. Pictorial representation of saturated nuggets. The rest energy per constituent, m̄X , and

density, n
sat

, are determined as functions of Lagrangian parameters. See Eq. (6) and Eq. (7). Even if

pseudoscalars and pseudovectors mediate DM interactions, we expect only a scalar and vector mediator

to contribute to large-N properties. Saturated bound state solutions are generic as long as the scalar

interaction is su�ciently strong so that m̄X < mX .

Since the surface energy ✏
surf

is only relevant when considering details of fusion processes,

nugget bound states are well characterized by just two dimensionless quantities m̄X/mX and

n
sat

/m̄3

X , along with mX that sets the scale of the system. In the RMFT approximation, the

constituents inside a nugget are described as a free Fermi gas with Fermi momentum kF , with a

Dirac mass shifted by the scalar mean-field, m⇤ = mX � g�h�i, and a chemical potential (m̄X)

shifted by the vector mean-field. The calculations are detailed in Appendix B, and here we

summarize key results (also see e.g. [26, 27]). We have

m̄X = gV hV 0i +
q

k2

F + m2

⇤ , and n
sat

= hX†Xi = g
dof

Z kF

0

d3~k

(2⇡)3
= g

dof

k3

F

6⇡2

, (5)

where m̄X is the mass per constituent (chemical potential) and g
dof

= 2 the fermionic degrees

of freedom. Binding requires m̄X < mX , and thus the e↵ective mass must always be smaller

than mX . The vector field equation of motion leads to hV 0i = gV
m2

V
hX†Xi, while the scalar field

equation of motion relates kF to m⇤. Together with the equilibrium condition of zero pressure,

m̄X and n
sat

are determined as functions of Lagrangian parameters. The saturation density is

constrained by the inequality n
sat

/m̄3

X  g
dof

/(6⇡2), with the upper bound realizable only in

the scalar-only and ultra-relativistic kF/m⇤ ! 0 limit.

In Appendix B we also derive analytic formulas for the nugget properties applicable in the

8

are uniformly distributed, the mass density is simply a three dimensional spherical top hat
function and thus the form factor is

FX(q) =
3j1(qRX)

qRX
=

3(sin(qRX)� qRX cos(qRX))

(qRX)
3

(18)

where j1(x) is a spherical Bessel function of the first kind (see Fig.1). The differential scattering
cross section of a nugget can then be written as

d�

dq d!

=

d�

dq d!

|FX(q)|2 (19)

where � is the cross section of a point-like dark matter particle with the same mass and coupling
strength as the nugget. We have normalized the form factor such that FX(0) = 1, such that we
manifestly recover the point-like limit if qRX ⌧ 1. In this regime all constituents contribute
coherently and the scattering rate scales like the square of the number of constituents. If the
Compton wavelength is smaller than the radius but still larger than the interparticle spacing
of the nugget, coherence is lost and the form factor drops rapidly. Finally, once the momentum
transfer is comparable larger than the inverse interparticle spacing, we enter the regime of
deep inelastic scattering (DIS), and form factor description breaks down. However, given the
relatively low speed of the DM in the galaxy, the maximum momentum transfer in a single
collision is only O(mN v) ⇠ 100 MeV, and in practice we never probe the DIS regime with
direct detection experiments.

We can combine Eq. (15) and Eq. (19) to obtain the differential rate per unit of exposure,
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FIG. 1. Form factor intensity (|FX(q)|2) vs momentum transfer q, for the DM form factor given by

Eq. (18).
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NUGGET REACH

▸ Small-low threshold detectors win by several orders of 
magnitude in cross-section

Coskuner, Grabowska, Knapen, KZ 1812.xxxxx

FIG. 8. Reach curves of experiments in Table II for light scalar mediator. The perturbativity, in-

medium effects and SIDM constraints are drawn assuming ge = 10�15, consistent with stellar cooling

bounds for m� = 1 eV. Pauli blocking is present only in superconductors.
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FIG. 9. Reach curves for experiments listed in Table II for dark photon mediators. All non-direct

detection constraints, denoted by dot-dashed lines, are drawn assuming ge = e = 10�10, consistent

with stellar cooling bounds for mA0 = 10�2 eV. Early universe nugget formation constraints how large

g� can be, marked with blue and green dot dashed curves.

35



THE CHALLENGE

▸ Now is not the time for narrowing our search for 
Invisibles; the playing field is still wide open 

▸ Moving beyond nuclear recoils into phases of matter 
crucial to access broader areas of DM parameter space 

▸ Target diversity essential.  graphene, superconductors, 
semiconductors, helium, polar crystals, Dirac or Weyl 
materials …. 

▸ Leverage progress in materials and condensed matter 
physics 

▸ Realizing program 5-10+ years into the future



THE OUTLOOK

▸ We are not without tools!

The universe is dominated by invisibles!
WIMP or (axion)

How to be ready for anything? Hidden Sectors

How do I search for these things?


