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Deformations of CFT,

In the last two years there has been some work on irrelevant
deformations of CFT, , that lead to solvable non-local theories.
Two types of deformations have been studied.

Oneis T'T deformed CFT,,

e F.Smirnov and A. Zamolodchikov, 1608.05499.
* A. Cavaglia, S. Negro, I. Szecsenyi and R. Tateo, 1608.05534.

These authors computed the spectrum of the theory on a circle of
radius R.



They found that for a state with energy E,, and momentum P, in
the undeformed theory, the energy at finite TT coupling t is given
by

1
En(Bay Pa ) = —— (%1 27TARE, + \12R2P2 — 1)

where A = R—tz is a dimensionless coupling, which can be thought of

as the coupling t at the scale R.



The qualitative features of the spectrum are different for the two
different signs of the coupling t.

e t>0:the energies are all real (for coupling below some critical value
— we will get back to this later). The spectrum interpolates
between the Cardy spectrum of the original CFT, and a Hagedorn
spectrum for sufficiently high energies. In particular, the high
energy physics is not governed by a fixed point. In that sense, the
theory is non-local.



* 1<0: for sufficiently large undeformed energies, the energies in
the deformed theory become complex. One of the open
questions in this field is what is the status of this theory? Is it
inconsistent? If it is consistent, should one omit from the
spectrum the states with complex energies? If not, what is the
physics associated with the apparent non-unitarity?



The second class of deformations is |T deformed CFT,

* M. Guica, 1710.08415.
e S. Chakraborty, A. Giveon, DK, 1806.09667

Here, we start with a CFT that has a holomorphic U(1) current, J(x),
and add to the Lagrangian the term

['int = ,U,J(ZC)T(E)

At higher order in u, one can adjust the Lagrangian such that the
theory satisfies the following properties:

» The (xx) component of the stress tensor, Ty, = T, remains
holomorphic, dT = 0.

> The current J remains holomorphic, 9] = 0.



Generalizing the analysis of the T'T case, one finds the following
spectrum of energies and charges
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Here (i = u/R is the coupling u at the scale R, E,, and P, are the
energy and momentum of the state at u = 0, and k is the anomaly

of the U(1) current J, (J(x)J(0)) = xiz

Note that this fixes the normalization of the charge in the deformed
theory. The charge of states depends on the coupling.



In this case, for both signs of the (real) coupling u the spectrum has
similar properties to those of TT deformed CFT with t<0. Highly

excited states in the undeformed theory give rise after deformation
to states with complex energies and charges.

Many of the questions raised above are relevant for this case as

well.



Deformations of AdS,

If a CFT, has an AdS3 dual, one can study deformations of the type
described above in the bulk theory. The direct analogs of TT and T
in AdS3 are double trace operators. The corresponding
perturbations were studied in a number of papers, starting (for TT
with t < 0) with

L. McGough, M. Mezei, H. Verlinde, 1611.03470.



A second construction involves adding to the Lagrangian of the
CFT, certain single trace operators, which have many properties
in common with TT and JT. In the bulk description they
correspond to adding to the worldsheet Lagrangian of the theory
certain truly marginal current-current deformations.

In the TT case they have been studied in the papers mentioned
on the first slide. For JT in

e S. Chakraborty, A. Giveon, DK, 1806.09667.
 L.Apolo, W. Song, 1806.10127.



We next provide a few details on the worldsheet construction of
these single trace deformations, and their interpretation in bulk

gravity and boundary CFT.

String theory on AdS; (stabilized by NS B field) has three left-moving
worldsheet currents /%(z), a = 3, +, —, that form an SL(2,R) current
algebra, and their right- moving analogs /%(Z). These currents play
an important role in the construction of the spacetime Virasoro
symmetry of the theory. In particular, the zero modes of ] 7, J3,]*

give the spacetime SL(2,R) generators L_4, Ly, L1, respectively.



In terms of these currents, one can show that the single trace analog
of the TT deformation corresponds to adding to the worldsheet

Lagrangian the term
6L =2A~(2)](2)

This is an intriguing result: the deformation is irrelevant in spacetime

but is marginal on the worldsheet!

Thus, from the worldsheet string theory point of view, we do not
expect to lose control of the theory when we turn on A. And, since
this is a current-current deformation, we expect the deformed

theory to be solvable. All this is reminiscent of TT.



Holography implies that the worldsheet deformation L must
correspond to a deformation of the boundary Lagrangian by the
term AD(x), where D(x) is an operator of dimension (2,2). This
operator was constructed in KS (1999). It is a quasi-primary of the
spacetime Virasoro, and has the same OPE with the spacetime

stress tensor as the operator TT of the boundary CFT.

| next provide some technical details as to its construction.



The left-moving SL(2,R) worldsheet currents can be combined into
the single current

J(z;2) = 22J3(2) — JT(2) — 22T (2)

Where x=position on the boundary, z=position on the worldsheet.
The left-moving spacetime stress tensor takes the form (in the
bosonic string)

1 _
T(x) = o /d2z(5’xJ8x<I>1 +202J®,1)J(T; %)
The operator @4 (x; z) is a certain dimension zero primary of

worldsheet Virasoro.



The operator D(x) takes the form
D(z) = / d?2(0, JOy + 202J)(03J 0z + 202J)®,
This operator has spacetime scaling dimension (2,2). Hence it is a

supergravity field. It is essentially the massive dilaton on AdS5. One
can show that

/ PuD(z, ) ~ / 220 (2)J ()



A simple way to think about the difference between the single
and double trace TT - type operators is the following. Suppose
the boundary CFT had the symmetric product form MY /Sy,

where M is itself a CFT. Denoting by T; the stress tensor of the
i'th copy of M, we can consider the following two deformations:

(*) Single trace:  Y; T;T;
(*) Double trace:  ¥;; T;T;

The single trace deformation corresponds to a TT deformation
of the building block of the symmetric product, M. The double
trace to a TT deformation of the full CFT, MV /Sy.



The above discussion can be repeated for the case of JT deformations.
In this case we assume that the worldsheet CFT has a holomorphic

current K(z). As shown in GKS (1998), this means that the boundary
CFT has a holomorphic current J(x), described by the vertex operator

Associated with it is the dimension (1,2) single trace operator

Az, T) = /dQZK(Z) (05 Js1,05®1 + 202T51,®1)



This operator has the same quantum numbers as the operator
JT in the boundary CFT, but as in the discussion of TT above, it is
a single trace operator, while JT is a double trace operator.

Adding the operator A(x, ) to the Lagrangian of the boundary
CFT corresponds to adding to the worldsheet Lagrangian the
term K(2)]~(2), since one can show that

/ >z A(x,T) ~ / d*2K (2)J g1 (Z)

As before, an irrelevant deformation of the boundary CFT
corresponds to a marginal, current-current, deformation of the
worldsheet one, and similar comments apply.



Adding the above single trace operators to the action corresponds
to a modification of the geometry. In the TT case with t>0, the
AdSs5 is replaced by a background M3 described by

ds3 = f; '2dydy + Rid¢?
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where (¢, y,y) are the radial and boundary coordinates, and the
various constants have an interpretation in terms of branes.

This geometry interpolates between AdSs3 in the infrared region
¢ — —oo, and a linear dilaton spacetime R¢><Rt><51 near the
boundary at ¢ — oo, This is in nice correspondence with the
behavior of the spectrum of TT deformed CFT mentioned above,
since the asymptotically linear dilaton spacetime is related by

holography to Little String Theory, which has a Hagedorn high
energy spectrum.



One can think of the background M3 as follows. We start with the
linear dilaton near-horizon geometry of fivebranes, which
corresponds to a vacuum of LST, and add to it a large number of
fundamental strings.

The infrared AdS5 describes the near-horizon geometry of both
the strings and the fivebranes, while the UV linear dilaton region
describes the geometry in the near-horizon geometry of the
fivebranes but far from the strings.

Thus, adding the single trace deformation AD(x, X) allows one to
connect the dynamics in the near-horizon region of the strings to
that far from them.



For TT with t<0 the harmonic function f; is replaced by

1
=—1 —_— _2¢
f1 +k€

In the IR (¢p - —0) it still corresponds to AdS53 , but now there is
a singularity at a finite value of ¢, and behind it the roles of
space and time are interchanged. In particular, there are closed
timelike curves.



For the JT case, the geometry one finds can be summarized by the
sigma model

_ _ _ 1 _
S(e) = % /dzz (6’gb8¢ + 22050 + 2€€%?9ydvy + E@y@y)

For € = 0 this is AdS3xS?!, with the current J associated with left-
moving momentum on S*.



Dimensionally reducing the deformed geometry on S? gives the
geometry

ds* =k (d¢® + e**dydy — e*e*®dy?)

some gauge field and B-field.

This geometry appeared before in the discussion of Schroedinger
spacetimes

 D.T.Son, 0804.3972.
K. Balasubramanian, J. Mcgreevy, 0804.4053.

and in the context of the Kerr/CFT correspondence. It is non-
singular, but has closed timelike curves beyond some critical value
of the radial coordinate ¢.



A natural question is what is the relation between the single trace
deformations of string theory on AdS; that give rise to the above
geometries, and the TT and JT deformations of CFT,.

The full answer to this question is not known, mainly because we

do not have complete control over the original AdS;/CFT, duality,
but one element in the story is the following.



By thinking about AdS3/CFT, duality as arising from the low
energy dynamics of strings and fivebranes, it is reasonable to
expect that the Ramond sector of the CFT, is described by a
symmetric product, MY /Sy , where N is the number of strings
creating the background. Indeed, there is a lot of evidence that

this is the case.

The single trace deformations of AdS; correspond in the
symmetric product to TT and JT deformations of the CFT M.

Thus one can use results from string theory on AdS5 to learn
about TT and ]JT deformed CFT, and vice versa.



The string theory systems one encounters in the process are of
independent interest. One may hope to learn more about
holography in asymptotically linear dilaton spacetimes (LST),
systems realizing Schroedinger symmetries, the Kerr/CFT
correspondence, and the physics associated with singularities and
closed timelike curves.

And, the study of deformations may teach us about the original
AdS;/CFT, duality.



Torus partition sum: |

In the rest of this talk, we will discuss the torus partition sum of
the deformed CFT’s discussed above. We will see that we can
derive the partition sums (and thus spectra) of these theories by
imposing certain general constraints, and discuss some of their
features.

Consider first the TT deformed theory. Thinking about it
abstractly, one can view it as a theory satisfying the following
conditions:



» It is a theory with one scale, associated with the coupling t.

» It is modular invariant, if we assign to the dimensionless coupling

t . : : :
A~ — @ non-trivial transformation property dictated by its

scaling dimension:
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» The energies of states in the deformed theory depend only on the
energies and momenta of the corresponding states in the
undeformed theory and on A.



We will show that these three assumptions uniquely determine the
partition sum (and thus the spectrum) to be that of the TT
deformation of the theory with A = 0, to all orders in A. Non-
perturbatively, some interesting issues arise.

Before doing that, some comments on the assumptions.



» The first assumption essentially means that the theory exists. If
we think of it as a CFT deformed by some irrelevant operator with
coupling t, this is the statement that physical observables are well
behaved in the limit where the UV cutoff A = oo. Incidentally, in
my presentation of the analysis, t will be taken to have dimension
-2, but it is easy to generalize to arbitrary dimension.

» The second assumption essentially means that the theory can be
formulated on the torus. If this is the case for the original CFT, it is
also the case for the deformed theory, at least to all orders in t.



» The third assumption is, of course, highly non-trivial. It is
satisfied by the spectrum of TT deformed CFT, , but it is a
qualitative assumption. The result of our analysis is that TT
deformed CFT, is the only theory that satisfies this
assumption (and the other two).



We now move on to proving the above result. The hero of our
story is going to be the partition sum

Z(T 7—_’)\) _ Z 627TiT1RPn—27T7'2R5n
)
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At A = 0 it approaches the usual CFT partition sum
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When we turn on A, the energies are deformed,

E, — E(E,, Py, ),

The deformed energies can be Taylor expanded

En(Bn, Po, ) = Y BN = EO + AED + M2 EQ + ...
k=0

where E,gk) are functions of £, (= E,(f’)) and B, , to be determined.



Plugging in the Taylor expansion of the energies into the partition
sum gives:

Z(T’,ﬂ)\):ZZk)‘k:ZO‘I’Zl)\+ZQ)\2+
k=0

The coefficients Zp are modular forms of weight (p, p),

Z

p
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We next show that they are uniquely determined by the above
assumptions.



To see that, consider the first few Zp:

A Z (—QWRTQES)) 627r7;7-1RPn—27r7-2REn’

n

2
Z2 — Z (%(QWRE;D)2 . 27TR7_2E7(,L2)> 627TiT1RPn—27TTQREn’

n

3
L3 = Z (—%(27TRES))3 + (27TR7‘2)2E£11)E7(12) — QWRTQES’)) 2T P =2mm Rl

n

E,gk) are functions of the unperturbed energies and momenta,
E, and P, . Therefore, in the expressions for Z,, we can replace

1
27TREn —> —87-2 — __<87- — 87—-), 27T’I,an —> 87-1 — 87— + 87—-
(4



This leads to an expression for Z,, that takes the form

Z, [75(5?)(@7,0;) + 757 OP(0:,0:) + -+ + 1OP(0,,07) | Zo(7, 7)

where 0'”(9,,0;) are differential operators that encode the
information about the energy shifts E,gk). Using this structure, one

can show that given Z(7, 7), there is a unique Z, (7, 7) that
satisfies all the constraints (see paper for details).



The solution satisfies the following recursion relation:

1
Ty = P (Dgp)Dgp) _ p(p"z )) Z,
p+1 473

where

k)_a_ﬁ 8_|_£
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are covariant derivatives acting on modular forms.



One way to make contact with the spectrum mentioned above is to
note that the recursion relation above is equivalent to a differential
equation satisfied by the partition sum:

2 (7. 7|N) = [TQaTaT - (z (0, — 8, — 1) A@A] Z(r. 7))
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Plugging the definition of the partition sum into this equation and
comparing the coefficients of a given exponential on the left and
right hand sides gives a differential equation for the energies,
which is precisely the inviscid Burgers equation obtained in the
original papers on TT deformed CFT,.



So far, our discussion has been perturbative in the coupling A. It is
natural to ask what happens when we go beyond perturbation
theory, and in particular work at small but finite A. It is not
completely clear how to define the theory in that case.

We will take the approach that the differential equation satisfied
by the partition sum should be valid non-perturbatively, and ask
whether it defines a unique function Z(r, 7|\) given the initial
condition

Z(1,7|0) = Zo(7,T)



The answer turns out to be the following.
 For A > 0 the differential equation has a unique solution.

 For A < 0 one encounters a non-perturbative ambiguity. This
ambiguity is associated with the fact that in that case the
differential equation is consistent with the existence of states

whose energies diverge like % as1 — 0.



One can think of these states as having energies of the same form
as the ones above, but with the opposite sign in front of the square
root.

As is clear from the formula for the energies, for A > 0 such states
have energies that go to —oo as A — 0, and therefore they are not
allowed (e.g. because their contribution to the partition sum does
not satisfy the boundary condition at A = 0).

For A < 0 these states have energies that go to 40, and therefore
they are allowed. Moreover, these states can be the negative
branch states of a different (modular invariant) CFT, unrelated to
the original one, with partition sum Z, (7).



The fact that for A > 0 we find a unique partition sum is in
agreement with the fact that the spectrum of the theory is real in
this case, and that the dual asymptotically linear dilaton dual
geometry is well behaved.

The non-perturbative ambiguity we find for A < 0 is likely related
to the breakdown of unitarity associated with the complex
energies, and with the fact that the dual geometry has singularities
and closed timelike curves. However, more work is needed to
understand this better.



Another interesting comment is the following. As mentioned
above, the theory with A > 0 has a Hagedorn spectrum, which

means that the partition sum is only convergent when the modular
parameter satisfies the constraint

Ty > TQH()\),



Another constraint on the coupling comes from the requirement
that low lying states in the deformed theory have real energies.
This leads to the constraint mcAd < 6. The two constraints are
related by the modular transformation

Z(7p }) = Z(12,\), with = —, A= 2

7_2 7_2

They can be summarized as the statement that on a square torus,
the partition sum is well defined only when both sides of the torus

are larger than 27,/%<.




* This is clearly a manifestation of the non-locality of the theory.

The non locality scale is proportional to v/ ct, as expected from
other considerations.

* Itis reminiscent of the usual relation between the high energy
density of states and the mass of the lowest lying state winding
around Euclidean time familiar from free critical string theory.



Torus partition sum: Il

The discussion above is easy to generalize to the case of JT deformed
CFT. Using the same logic as before, we define the theory by the
following conditions:



» It is a theory with one scale, associated with the coupling p.

» The partition sum with a chemical potential for the U(1) charge,

Z(T, 7—_7 V‘/j) _ E :627TZT1RPn—27T7'2R8n—|—27TZI/Qn

n

is modular covariant, if we assign to the dimensionless coupling
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» The energies and charges of states in the deformed theory
depend only on the energies, momenta and charges of the
corresponding states in the undeformed theory and on (.

Note that the transformation properties of v encode the fact that the

current J(x) is holomorphic in the deformed theory, and its anomaly,
k.



We can now run the same program as before. Expanding the
partition sum,

2(7_77__7V|ﬂ) — Zzpﬁp — ZO‘I‘Zl,l/Z‘l— Zgﬁz—l—
p=0

we find that the expansion coefficients Z,,, which are Jacobi forms of
weight (0,p) and rank k, are uniquely determined and satisfy the
recursion relation

7, = 2 |p,pr-y _ kb - ”] AL p (”—”k)] DYz,
D 2T.
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is a covariant derivative acting on Jacobi forms.



This recursion relation is equivalent to the differential equation

ki ki 1
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From this equation one can read off the flow equations for the

(dimensionless) energies and charges of states as a function of the
coupling,

E,(0) [1 +7uQn ()] = 7 [Py — Eu(12)] Qn(H),
wk

Q, (1) [1+ 71 Qn()] = =~ [P — En (i)

These are the analog of the Burgers equation of the TT case.



There is again a non-perturbative ambiguity in the partition sum, this
time for all values of the coupling, whose structure is similar to that
of the TT theory with negative coupling.

This is consistent with the fact that the energies of highly excited
states are complex, and the dual geometry has closed timelike
curves, though no curvature singularities.



Discussion

There is clearly a lot to do on this subject.

> On the field theory side, it seems that TT deformed CFT with
t > 0is a well defined theory with a Hagedorn spectrum. It
would be nice to understand other observables, and provide a
non-perturbative definition of the theory. There was some work
on this subject. E.g. it was observed early on that for ¢ = 24 the
spectrum of TT deformed CFT is the same as that of string
theory on a background that includes the CFT and an additional
RxS?', in a sector with winding one. However, it is not clear
whether/why the two are the same. For general c there is a
proposal of JT gravity coupled to matter. It would be nice to
understand these proposals better.



> For TT with t < 0 and JT we found complex energies and non-
perturbative ambiguities. It would be nice to understand
whether the theory makes sense, if it is unitary, and if so how is
unitarity reconciled with modular invariance on the torus.

» On the gravity side, it would be nice to develop the description
of the double trace deformations to the point that all the
phenomena we discussed in the field theory picture become
manifest.



» For single trace deformations, it would be nice to understand
their interpretation in the QFT better, and relate the
phenomena seen in the QFT to the deformed geometry more
precisely.

» Developing the last point might help understand the implications
of the recent results for LST, Kerr/CFT, Schroedinger backgrounds
and other systems with these symmetries.

» The string theory construction suggests that we should be able
to solve exactly more general theories, involving combinations of
couplings, such as TT, IT, T/, ]J. It would be interesting to
generalize the discussion to this case.



