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Deformations	of	-./0
In the last two years there has been some work on irrelevant 
deformations of -./0 , that lead to solvable non-local theories. 
Two types of deformations have been studied. 

One is /1/ deformed -./0 ,

• F. Smirnov and A. Zamolodchikov, 1608.05499.
• A. Cavaglia, S. Negro, I. Szecsenyi and R. Tateo, 1608.05534.

These authors computed the spectrum of the theory on a circle of  
radius R. 



They found that for a state with energy !" and momentum #" in 
the undeformed theory, the energy at finite $%$ coupling & is given 
by 

where ' = )
*+ is a dimensionless coupling, which can be thought of 

as the coupling & at the scale ,.

Thus, we conclude that the coefficients Zp must satisfy the recursion relation
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τ2

p+ 1

(
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τ D(p)
τ̄ −

p(p+ 1)

4τ 22

)
Zp. (2.17)

In particular, all Zp>0 are uniquely determined by the unperturbed partition sum Z0 (2.1).

As discussed above, one can use (2.17) to determine the energy shifts E(j)
n (2.5). The first

few of these are
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n), (2.18)
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These are the first terms in the expansion of the energy spectrum of T T̄ deformed CFTs,

En(En, Pn,λ) =
1

πλR

(√
1 + 2πλREn + λ2π2R2P 2

n − 1
)
, (2.19)

where we used the conventions of [3],4 with λ = 4t/R2. Note that for λ positive and

sufficiently small, these energies are real, while for any negative λ the spectrum arising from

large enough energies En becomes complex, so the theory cannot be unitary (the Hamiltonian

is not Hermitian).

Another way to see that the recursion relation (2.17) gives rise to the spectrum of a T T̄

deformed CFT is to note that it is identical to the one found in [18], from the diffusion

equation for the partition function of that model [12]. We will also see in the next section

that this recursion relation gives rise to the inviscid Burgers equation for the spectrum of a

T T̄ deformed CFT found in [2, 3].

So far in this section we assumed that the partition sum (2.6) has an expansion in

integer powers of the dimensionless coupling λ, as in (2.7), where λ transforms as (1.1).

The motivation for this was that λ is proportional to the coupling t, which we took to have

dimension (−1,−1). A natural question is whether there is another class of theories that

satisfies our requirements, in which the coupling has a different dimension, such that the

dimensionless coupling λ has a different modular weight.

If such a class existed, it could be studied in our formalism by defining a coupling λ̂ that

has the same weight as in our analysis, and writing the physical dimensionless coupling of

the theory as λ = λ̂a with some real number, a. Thus, in terms of our analysis, the question

becomes whether there is another class of partition sums satisfying our requirements, in

which the leading correction to the CFT partition sum Z0 is Z1λ̂a, with a ≠ 1.

4Our convention for the deformed energy is slightly different from the one in [3], 2πEhere = Ethere.
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The qualitative features of the spectrum are different for the two 
different signs of the coupling t. 

• t>0: the energies are all real (for coupling below some critical value 
– we will get back to this later). The spectrum interpolates 
between the Cardy spectrum of the original CFT, and a Hagedorn 
spectrum for sufficiently high energies. In particular, the high 
energy physics is not governed by a fixed point. In that sense, the 
theory is non-local.



• t<0: for sufficiently large undeformed energies, the energies in 
the deformed theory become complex. One of the open 
questions in this field is what is the status of this theory? Is it 
inconsistent? If it is consistent, should one omit from the 
spectrum the states with complex energies? If not, what is the 
physics associated with the apparent non-unitarity?



The second class of deformations is J "# deformed $%#& , 

• M. Guica, 1710.08415.

• S. Chakraborty, A. Giveon, DK, 1806.09667

Here, we start with a CFT that has a holomorphic U(1) current, J(x), 

and add to the Lagrangian the term 

At higher order in ', one can adjust the Lagrangian such that the 

theory satisfies the following properties:

Ø The (xx) component of the stress tensor, #(( = #, remains 

holomorphic, +̅# = 0.

Ø The current - remains holomorphic, +̅- = 0.

1. Introduction

Consider a two dimensional conformal field theory (CFT2), which contains a conserved

left-moving U(1) current1 J(x). Now, deform the theory by adding to its Lagrangian the

term

Lint = µJ(x)T (x), (1.1)

where T is the anti-holomorphic component of the stress-tensor, T = Txx. More precisely,

(1.1) is the form of the deformation for small µ; we will describe the form at finite µ later.

In particular, we will argue that one can define the theory in such a way that at every point

in the space of theories labeled by µ (1.1), there is a holomorphic current J(x) that satisfies

∂xJ(x) = 0, and changing µ by an infinitesimal amount δµ corresponds to adding to the

Lagrangian an infinitesimal version of (1.1), δLint = δµJ(x)T (x), where the operators J ,

T are defined in the theory with coupling µ.

Superficially, the theory (1.1) is problematic. The coupling µ has left and right-moving

scaling dimension (0,−1); hence, the theory is not Lorentz invariant. Moreover, since µ

has negative mass dimension, it goes to zero in the IR and grows in the UV. Thus, the

description (1.1) corresponds to a flow up the RG, which is usually ill-defined.

There are reasons to believe that in the case (1.1) the situation is better. The authors

of [1,2] analyzed the analogous model of TT deformed CFT2, found that it is exactly

solvable, and computed the spectrum on a cylinder (see also [3-5] for earlier work). This

model and closely related ones were further discussed in [6-23].

In a sense, the model (1.1) is an intermediate case between TT deformed CFT2 and

a model with left and right-moving currents J(x), J(x), with the marginal deformation

Lint = λJ(x)J(x). The latter preserves both (left and right-moving) copies of Virasoro,

and the left and right-moving U(1) affine Lie algebras generated by J and J , respectively.

The former breaks both copies of Virasoro to the U(1)’s corresponding to translations.

As we will discuss, the model (1.1) preserves the left-moving Virasoro, as well as the

left-moving affine Lie algebra. The right-moving Virasoro symmetry is broken to a U(1)

corresponding to translations of x.

In a recent paper [11], Guica studied JT deformed CFT2 following the analysis of

[1,2] of the TT deformation. In particular, she analyzed the spectrum of the theory on a

1 We will label the (Euclidean) space on which the theory lives by complex coordinates x, x.

The conservation equation for the current J is thus ∂xJ = 0.
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Generalizing the analysis of the !"! case, one finds the following 
spectrum of energies and charges 

Here $̂ = $/' is the coupling $ at the scale ', () and *) are the 
energy and momentum of the state at $ = 0, and k is the anomaly 

of the U(1) current J, , - , 0 = .
/0. 

Note that this fixes the normalization of the charge in the deformed 
theory.  The charge of states depends on the coupling.

The resulting system of equations can be written as5

∂

∂µ
(En − Pn) = πQn

∂

∂R
(En − Pn), (3.5)

∂Qn

∂µ
= πQn

∂Qn

∂R
−
πk

2
(En − Pn).

The differential equation on the second line of (3.5) looks like the inviscid Burgers’ equation

with a time-dependent source, where the coupling µ plays the role of time. The dynamics of

this source is described by the first line of (3.5).

The solution of (3.5) with the boundary conditions En(0) = En and Qn(0) = Qn is given

by

E (+)
n (µ̂) = −

2

π2µ̂2kR

√
(1 + πQnµ̂)2 + π2µ̂2kR(Pn − En) (3.6)

+
1

π2µ̂2kR

(
2 + 2πQnµ̂+ π2µ̂2kPnR

)
,

Q(+)
n (µ̂) =

1

πµ̂

√
(1 + πQnµ̂)2 + π2µ̂2kR(Pn − En)−

1

πµ̂
,

where we took the positive branch of the square root, so that

lim
µ̂→0

E (+)
n (µ̂) = En, lim

µ̂→0
Q(+)

n (µ̂) = Qn. (3.7)

Plugging (3.6) into (1.1) gives a partition sum that has a regular Taylor expansion in µ̂, and

satisfies limµ̂→0Z(τ, τ̄ , ν|µ̂) = Z0(τ, τ̄ , ν) (2.1).

It is instructive to compare the spectrum of energies and momenta described by (3.6)

to that obtained in the tT T̄ case [3, 4]. There, the structure of the spectrum was different

for the two different signs of the coupling t. For positive t, the energies were real and the

asymptotic high energy density of states exhibited Hagedorn growth [6, 19]. For t < 0, states

with sufficiently high energy in the original CFT had the property that their energies became

complex in the deformed theory.

In the µJT̄ case, the spectrum (3.6) is the same for both signs6 of µ̂, which are related

by the symmetry J → −J . The spectrum has the qualitative structure of that with t < 0 in

the tT T̄ case. Beyond a certain maximal undeformed (right-moving) energy, that depends

on the charge, the deformed energy and charge become complex. As in the tT T̄ case, this

means that the theory is not unitary; the consequences of this remain to be understood.

It is also worthwhile to note that, as in the T T̄ case [19], the spectrum (3.6) contains a

protected subsector. States with En = Pn retain their CFT charges and energies in the JT̄

5To reproduce the equations given in [26], we need to make the replacement µ̂ = µ/(2πR).
6We take µ̂ to be real so that the Lagrangian of the theory is real in Lorentzian signature. This is related

to the fact that for complex µ̂, the energies and charges (3.6) are in general complex.
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In this case, for both signs of the (real) coupling ! the spectrum has 
similar properties to those of "#" deformed CFT with t<0. Highly 
excited states in the undeformed theory give rise after deformation 
to states with complex energies and charges. 

Many of the questions raised above are relevant for this case as 
well.



Deformations	of	-./0
If a 1234 has an -./0 dual, one can study deformations of the type 
described above in the bulk theory. The direct analogs of 353 and J 53
in -./0 are double trace operators. The corresponding 
perturbations were studied in a number of papers, starting (for 353
with 7 < 0) with 

L. McGough, M. Mezei, H. Verlinde, 1611.03470. 



A second construction involves adding to the Lagrangian of the 
!"#$ certain single trace operators,  which have many properties 
in common with #%# and J %#.  In the bulk description they 
correspond to adding to the worldsheet Lagrangian of the theory 
certain truly marginal current-current deformations. 

In the #%# case they have been studied in the papers mentioned 
on the first slide. For J %# in 

• S. Chakraborty, A. Giveon, DK, 1806.09667.
• L. Apolo, W. Song, 1806.10127.



We next provide a few details  on the worldsheet construction of 

these single trace deformations, and their interpretation in bulk 
gravity and boundary CFT.

String theory on !"#$ (stabilized by NS B field) has three left-moving 
worldsheet currents %& ' , ( = 3,+,−, that form an SL(2,R) current 
algebra, and their right- moving analogs ̅%& ̅' . These currents play 

an important role in the construction of the spacetime Virasoro
symmetry of the theory. In particular, the zero modes of %/, %$, %0
give the spacetime SL(2,R) generators 1/2, 13, 12, respectively. 



In terms of these currents, one can show that the single trace analog 
of the !"! deformation corresponds to adding to the worldsheet
Lagrangian the term 

#$ = &'( ) ̅'(( ̅))

This is an intriguing result: the deformation is irrelevant in spacetime
but is marginal on the worldsheet! 

Thus, from the worldsheet string theory point of view, we do not
expect to lose control of the theory when we turn on &. And, since 
this is a current-current deformation, we expect the deformed 
theory to be solvable. All this is reminiscent of !"!.



Holography implies that the worldsheet deformation !" must 
correspond to a deformation of the boundary Lagrangian by the 
term #$(&), where $ & is an operator of dimension (2,2). This  
operator was constructed in KS (1999). It is a quasi-primary of the 
spacetime Virasoro, and has the same OPE with the spacetime 
stress tensor as the operator ()( of the boundary CFT. 

I next provide some technical details as to its construction.



The left-moving SL(2,R) worldsheet currents can be combined into
the single current 

Where x=position on the boundary, z=position on the worldsheet.
The left-moving spacetime stress tensor takes the form (in the
bosonic string) 

The operator Φ"($; &) is a certain dimension zero primary of 
worldsheet Virasoro.  

4. The T T̄ deformation in AdS3

In order to make contact with the discussion of [4,5], we need to construct the T T̄

deformation in string theory on AdS3. One possibility is to use the vertex operator of the

stress tensor in [13], whose construction we will review shortly, and consider the double

trace deformation by the product of the vertex operators for T and T̄ . We will next argue

that there is also a single trace T T̄ deformation, which is easier to study in the bulk.

To understand it, it is useful to start with a brief review of the construction of the

stress tensor in [13].2 There are two observables that play a key role in this construction.

One is the current

J(x; z) = 2xJ3(z)� J+(z)� x2J�(z), (4.1)

which combines the SL(2, IR)L currents into a single object labeled by the auxiliary variable

x. This variable can be thought of as position on the boundary of AdS3. There is also a

right-moving analog of (4.1) with the opposite worldsheet and spacetime chirality J̄(x̄; z̄).

The second observable is

�h(x; z) =
1

⇡

✓
1

|� � x|2e� + e��

◆2h

, (4.2)

which is an eigenfunction of the Laplacian on AdS3, and gives rise in the quantum theory

to a primary of the worldsheet and spacetime Virasoro, with worldsheet dimension �h =

�̄h = �h(h� 1)/(k � 2) and spacetime dimension (h, h).

In terms of the operators (4.1), (4.2), the vertex operator of the spacetime stress-tensor

is given by

T (x) =
1

2k

Z
d2z(@xJ@x�1 + 2@2

x
J�1)J̄(x̄; z̄). (4.3)

As explained in [13], this operator is physical (i.e. BRST invariant), its spacetime scaling

dimension is (2, 0), it is holomorphic, @x̄T = 0 (as expected from the unitarity of the

spacetime CFT), and it satisfies the standard OPE algebra of the holomorphic stress-

tensor in the spacetime CFT2. The anti-holomorphic stress tensor T̄ (x̄) is constructed

similarly by flipping all the chiralities in (4.3), (x, z, J) $ (x̄, z̄, J̄).

The T T̄ deformation of [4,5] corresponds in terms of the above discussion to adding

to the worldsheet action the product of the vertex operators for T and T̄ . Since each of

2
For simplicity, we will discuss the construction in the bosonic string. The generalization to

the superstring is explained in [13].
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The operator D(x) takes the form 

This operator has spacetime scaling dimension (2,2). Hence it is a 
supergravity field. It is essentially the massive dilaton on !"#$. One
can show that 

these vertex operators is given by an integral over the worldsheet, this leads to a non-local

worldsheet deformation, typical of double trace deformations in holography.

To construct the single trace deformation we will be interested in, we observe (following

[13]) that there is another vertex operator we can consider, that combines elements of the

constructions of T (4.3) and T̄ . That vertex operator is

D(x) =

Z
d2z(@xJ@x + 2@2

x
J)(@x̄J̄@x̄ + 2@2

x̄
J̄)�1. (4.4)

Since the left-moving part of the vertex operator (4.4) is the same as that of T (x) (4.3),

while its right-moving part is the same as that of T̄ , we know that from the point of view

of the spacetime Virasoro algebra it is a quasi-primary operator of dimension (2, 2). It is

natural to ask what is the spacetime interpretation of this vertex operator.

To answer this question it is useful to look back at the discussion of the previous

section, and in particular to recall that the spacetime CFT takes (at large p) the symmetric

product form (3.7). In terms of this structure, the stress tensor vertex operator (4.3)

corresponds to the sum of the stress tensors of the di↵erent factors in (3.7),

T (x) =
pX

i=1

Ti(x). (4.5)

It is a special case of (3.8), with the operator O(x) being the stress tensor of the CFT M.

In terms of the structure (3.7) there is a natural conjecture for the interpretation of

the operator D(x) (4.4) in the spacetime CFT,

D(x) = A
pX

i=1

Ti(x)T̄i(x̄), (4.6)

which again has the form (3.8), with O(x) ⇠ T (x)T̄ (x̄), the product of the holomorphic and

anti-holomorphic stress tensors in M. The constant A can be determined by computing

the OPE of T (x) (4.3) with D(y) (4.4). From the spacetime CFT we expect to get

T (x)D(y) =
AcM/2

(x� y)4
T̄ (ȳ) + · · · . (4.7)

On the worldsheet, this calculation can be done using the results of [13]. In addition to de-

termining the constant A, the structure of this OPE provides evidence for the identification

(4.6).
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We can now perform the x integral in (4.10). Since the only quantity that depends

on x is �1, the integral we need to perform is
R
d2x�1(x; z). Plugging in the form of �1

(4.2), we find an elementary integral, which gives a constant. Finally, we have

Z
d2xD(x, x̄) '

Z
d2zJ�(z)J̄�(z̄), (4.12)

where we did not keep track of an overall multiplicative constant.

We conclude that the T T̄ deformation of the CFT M in (3.7) is described from the

bulk perspective by a J�J̄� deformation of the SL(2, IR) CFT. In the next section we will

discuss this deformation of the bulk theory.

5. The J�J̄� deformation of AdS3

In the previous section we argued that a particular T T̄ deformation (4.6) of the bound-

ary CFT (3.7) corresponding to an AdS3 background in string theory is described in the

bulk by a deformation of the worldsheet theory by a term of the form

�Lws = �J�(z)J̄�(z̄). (5.1)

In this section we will discuss some properties of this deformation.

The first notable property of the deformation (5.1) is that it is truly marginal on the

worldsheet. It might seem surprising at first glance that the irrelevant T T̄ deformation

of the spacetime theory corresponds on the worldsheet to a marginal one, but this is

exactly what we should expect. The fact that the worldsheet deformation is marginal is

the statement that we have a solution of the bulk string theory equations of motion for all

values of �. The bulk background dual to the T T̄ deformed theory (4.9) should of course

have this property.

The irrelevant nature of the T T̄ deformation must be reflected in the fact that the

e↵ect of the deformation (5.1) should increase in the UV, i.e. as we approach the boundary

of AdS3. As a simple first check, one can calculate the (spacetime) scaling dimension of

the coupling � in the boundary CFT. As mentioned earlier, the operators J� and J̄� give

rise to the spacetime Virasoro generators L�1 and L̄�1, respectively. Thus, the operator

J�J̄� has spacetime scaling dimension (1, 1), and the corresponding coupling, � has scaling

dimension (�1,�1), in agreement with that of the coupling t in (2.1). Hence, we expect

this coupling to decrease in the infrared, and increase in the ultraviolet in the spacetime

theory.
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A simple way to think about the difference between the single 
and double trace !"! - type operators is the following. Suppose 
the boundary CFT had the symmetric product form #$/&$ , 
where # is itself a CFT.  Denoting by !' the stress tensor of the 
(’th copy of #, we can consider the following two deformations:

(*) Single trace:       ∑' !' *!'

(*) Double trace:     ∑'+ !' *!+

The single trace deformation corresponds to a !"! deformation 
of the building block of the symmetric product, #. The double 
trace to a !"! deformation of the full CFT, #$/&$.



The above discussion can be repeated for the case of J "# deformations. 
In this case we assume that the worldsheet CFT has a holomorphic 
current $(&). As shown in GKS (1998), this means that the boundary 
CFT has a holomorphic current (()), described by the vertex operator

Associated with it is the dimension (1,2) single trace operator 

This operator can be thought of as the vertex operator of a particular, almost pure gauge,

mode of the graviton-dilaton system on AdS3. It is holomorphic on the boundary (i.e.

@xT = 0), has spacetime scaling dimension (2, 0), and satisfies the standard OPE algebra

of the stress tensor in the spacetime CFT. Flipping all the chiralities in (2.9), (x, z, JSL) $

(x, z, JSL), gives the anti-holomorphic component of the stress tensor, T (x).

As discussed in [27,7], the above worldsheet construction leads to two natural operators

with the quantum numbers of TT . One is the product of the vertex operator for T , (2.9),

and the analogous one for T . This is a double trace operator – the product of two integrals

over the worldsheet. A second one is the vertex operator

D(x, x) =

Z
d2z(@xJSL@x + 2@2

xJSL)(@xJSL@x + 2@2
xJSL)�1(x; z). (2.10)

This operator transforms under the left and right-moving boundary Virasoro symmetries

generated by T (x) and T (x) as a quasi-primary operator of dimension (2, 2); its OPE’s

with T and T are the same as that of TT , but the two operators are distinct. D(x, x) is a

single trace operator – it is a massive mode of the dilaton gravity sector of string theory

on AdS3. As shown in [7], adding this operator to the Lagrangian of the boundary theory

is the same as adding the operator J�J
�

to the Lagrangian of the worldsheet theory.

This perturbed theory was studied in detail in [7,9,12,13,22]. On the other hand, adding

the operator TT to the Lagrangian of the boundary theory corresponds to a double trace

deformation; it was studied in [6,10,14-21].

In a string background of the form AdS3⇥N , holomorphic currents in the worldsheet

theory on N give rise to holomorphic currents in the dual CFT [26,27]. Given a holo-

morphic dimension (1, 0) worldsheet U(1) current K(z), one can construct a holomorphic

dimension (1, 0) spacetime U(1) current3

J(x) = �
1

k

Z
d2zK(z)JSL(x; z)�1(x, x; z, z). (2.11)

Multiplying this vertex operator by that of T (x) (the anti-holomorphic analog of (2.9))

gives rise to a double trace deformation of the boundary CFT, analogous to the TT one

discussed above.

Just like in that case, there is a single trace analog of the operator JT ,

A(x, x) =

Z
d2zK(z)(@xJSL@x�1 + 2@2

xJSL�1). (2.12)

3 Not to be confused with the worldsheet current JSL(x; z) (2.2).
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generated by T (x) and T (x) as a quasi-primary operator of dimension (2, 2); its OPE’s

with T and T are the same as that of TT , but the two operators are distinct. D(x, x) is a

single trace operator – it is a massive mode of the dilaton gravity sector of string theory

on AdS3. As shown in [7], adding this operator to the Lagrangian of the boundary theory

is the same as adding the operator J�J
�

to the Lagrangian of the worldsheet theory.

This perturbed theory was studied in detail in [7,9,12,13,22]. On the other hand, adding

the operator TT to the Lagrangian of the boundary theory corresponds to a double trace

deformation; it was studied in [6,10,14-21].

In a string background of the form AdS3⇥N , holomorphic currents in the worldsheet

theory on N give rise to holomorphic currents in the dual CFT [26,27]. Given a holo-

morphic dimension (1, 0) worldsheet U(1) current K(z), one can construct a holomorphic

dimension (1, 0) spacetime U(1) current3

J(x) = �
1

k

Z
d2zK(z)JSL(x; z)�1(x, x; z, z). (2.11)

Multiplying this vertex operator by that of T (x) (the anti-holomorphic analog of (2.9))

gives rise to a double trace deformation of the boundary CFT, analogous to the TT one

discussed above.

Just like in that case, there is a single trace analog of the operator JT ,

A(x, x) =

Z
d2zK(z)(@xJSL@x�1 + 2@2

xJSL�1). (2.12)

3 Not to be confused with the worldsheet current JSL(x; z) (2.2).
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This operator has the same quantum numbers as the operator 
! "# in the boundary CFT, but as in the discussion of #"# above, it is 
a single trace operator, while ! "# is a double trace operator. 

Adding the operator $ %, %̅ to the Lagrangian of the boundary 
CFT corresponds to adding to the worldsheet Lagrangian the 
term ( ) ̅!* ̅) , since one can show that

As before, an irrelevant deformation of the boundary CFT 
corresponds to a marginal, current-current, deformation of the 
worldsheet one, and similar comments apply.

Using the techniques of [27] one can show that this operator has dimension (1, 2) in the

boundary theory and it transforms under the a�ne Lie algebra generated by J(x) (2.11)

and under Virasoro like the operator JT . As explained in [27], this operator is not JT

since the latter is a double trace operator and (2.12) is a single trace one. As mentioned in

the previous section, the relation between the two is similar to that between the operators
PN

i,j=1 JiT j and
PN

i=1 JiT i in the symmetric product CFT M
N/SN .

In this paper we will study the theory obtained by adding to the Lagrangian of the

boundary theory the operator (2.12). This is an analog of the deformation (2.10) for the

JT case. In the TT case, it was shown in [7] that adding D(x, x) to the Lagrangian of

the boundary theory is equivalent to adding the operator J�
SLJ

�
SL to the Lagrangian of the

worldsheet theory. One can repeat the calculation for the JT case, and find

Z
d2xA(x, x) '

Z
d2zK(z)J

�
SL(z). (2.13)

Thus, adding the operator A(x, x) to the Lagrangian of the boundary theory is equivalent

to adding the operator KJ
�
SL to the worldsheet Lagrangian. In the next section we turn

to an analysis of this deformation.

3. KJ
�
SL deformation I – worldsheet sigma model

In this section we discuss string theory on AdS3 ⇥ S1, deformed by adding to the

worldsheet Lagrangian the operatorK(z)J
�
SL(z) (see (2.13)). HereK(z) is the holomorphic

current associated with the left-moving momentum on S1. We denote the coordinate on

S1 by y, such that

K(z) = i@y. (3.1)

J
�
SL is the SL(2, IR)R current discussed in the previous section.

We are interested in studying the boundary theory on the cylinder with SUSY pre-

serving boundary conditions, which is dual to the BTZ black hole with M = J = 0. To

construct the background of interest, we start by recalling some properties of the sigma

model on massless BTZ⇥S1 (see e.g. [38]).

An element g 2 SL(2, IR) can be parameterized in Poincaré coordinates as

g =

✓
1 0
� 1

◆✓
e� 0
0 e��

◆✓
1 �
0 1

◆
=

✓
e� �e�

�e� e�� + ��e�

◆
. (3.2)
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Adding the above single trace operators to the action corresponds 
to a modification of the geometry. In the !"! case with t>0, the 
#$%& is replaced by a background         described by 

Note added: String propagation in the “near-horizon” geometry of CY manifolds with

hypersurface singularities was also studied in [43,19]. The relation of our work to these

papers is discussed in [44].
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Appendix A. Interpolating between linear dilaton and AdS3 vacua

In the text we mentioned the fact that the two dimensional linear dilaton IR1,1 × IRφ

and AdS3 vacua are closely related. We also mentioned that there are solutions which

interpolate between the two. In this appendix we construct such solutions. While the

construction is general, we present it for the special case of vacua of the form

M3 × S3 × T 4 , (A.1)

where M3 interpolates between IR1,1 × IRφ for φ → ∞ and AdS3 for φ → −∞. We will

first describe the solution in supergravity, and then the corresponding exact worldsheet

CFT.

Consider a configuration of k NS5-branes wrapped on a four-torus of volume vl4s ,

parametrized by the coordinates xi, i = 1, 2, 3, 4. In the remaining non-compact dimensions

the fivebranes look like k strings whose worldsheet is the (γ, γ̄) plane. One can add to this

configuration p fundamental strings parallel to the fivebranes (i.e. extended in (γ, γ̄) as

well). The metric, dilaton and NS Bµν field for this configuration of branes, with the p

strings smeared over the four-torus, are [2,45,46]:

ds2 = f−1
1 l2sdγdγ̄ + f5(dr2 + r2dΩ2

3) + dxidxi ,

e2Φ = g2
sf5f

−1
1 ,

dB =
2ipg2

s

v
f5f

−1
1 ∗6 ϵ

′
3 + 2ikϵ′3 ,

(A.2)
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where dΩ2
3 and ϵ′3 are the metric and volume form on the unit 3-sphere, ∗6 is the Hodge

dual in the six dimensions parametrized by (γ, γ̄, r, Ω3) and

fj = 1 +
R2

j

r2
, R2

1 =
pg2

s l2s
v

, R2
5 = kl2s . (A.3)

At weak coupling the fivebranes are much heavier than the strings and thus they give rise

to a larger distortion of the geometry around them (i.e. typically R1 ≪ R5). Therefore, it

makes sense to study an intermediate region in the background (A.2) where one is in the

near-horizon geometry of the fivebranes but not necessarily of the strings. As is clear from

(A.3), this is the region r ≪ R5. In this limit, the geometry has the form (A.1), where the

three dimensional manifold M3 is described by:

ds2
3 = f−1

1 l2sdγdγ̄ + R2
5dφ

2 ,

e2Φ =
v

p
e−2φf−1

1 ,

dB = 2ie−2φf−1
1 ϵ3 = d

[

if−1
1 dγ ∧ dγ̄

]

,

(A.4)

where

f1 = 1 +
1

k
e−2φ , eφ =

lsr

R1R5
=

√

v

pk

r

gsls
, (A.5)

and ϵ3 = ∗6ϵ′3 = 1
kf−1

1 dγ ∧ dγ̄ ∧ dφ is the volume form defined by ds2
3/R2

5. For R1 ≪ r,

f1 ≈ 1 (A.3) and M3 looks like flat space with a linear dilaton, IR1,1×IRφ. For r ≪ R1 one

is in the near-horizon geometry of both the strings and the fivebranes and M3 becomes

the familiar AdS3 solution:

ds2
3 = kl2s(e

2φdγdγ̄ + dφ2) ,

e2Φ =
kv

p
,

dB = 2ikϵ3 = d
[

ike2φdγ ∧ dγ̄
]

.

(A.6)

Therefore, (A.1) interpolates between the linear dilaton and AdS3 vacua.

While the above discussion took place in supergravity, one can show that the back-

ground (A.4) in fact gives rise to an exact solution of the (classical) string equations of

motion, i.e. to a worldsheet CFT with the right properties. This CFT can be constructed

as a perturbation of CFT on AdS3. We next briefly review that construction.

CFT on AdS3 has an SL(2) × SL(2) current algebra. One of the null holomorphic

currents, J , and its (anti-holomorphic) complex conjugate, J̄ , can be written semiclassically

as

J ∼ e2φ∂γ , J̄ ∼ e2φ∂̄γ̄ . (A.7)
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where (", $, $̅) are the radial and boundary coordinates, and the 
various constants have an interpretation in terms of branes. 

This geometry interpolates between '()* in the infrared region 
" → −∞,	and a linear dilaton spacetime /0×/2×)3 near the 
boundary at " → ∞.	This is in nice correspondence with the 
behavior of the spectrum of 565 deformed CFT mentioned above, 
since the asymptotically linear dilaton spacetime is related by 
holography to Little String Theory, which has a Hagedorn high 
energy spectrum. 



One can think of the background          as follows. We start with the 
linear dilaton near-horizon geometry of fivebranes, which 
corresponds to a vacuum of  LST, and add to it a large number of 
fundamental strings.  
The infrared  !"#$ describes the near-horizon geometry of both 
the strings and the fivebranes, while the UV linear dilaton region 
describes the geometry in the near-horizon geometry of the 
fivebranes but far from the strings. 

Thus, adding the single trace deformation %&((, (̅) allows one to 
connect the dynamics in the near-horizon region of the strings to 
that far from them.

Note added: String propagation in the “near-horizon” geometry of CY manifolds with

hypersurface singularities was also studied in [43,19]. The relation of our work to these

papers is discussed in [44].
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For !"! with t<0 the harmonic function #$ is replaced by 

#$ = −1 + 1) *
+,-

In the IR (/ → −∞) it still corresponds to 3456 , but now there is 
a singularity at a finite value of /, and behind it  the roles of 
space and time are interchanged. In particular, there are closed 
timelike curves.



For the J "# case, the geometry one finds can be summarized by the 
sigma model 

For $ = 0 this is '()*×),, with the current J associated with left-
moving momentum on ),. 

The WZW action on SL(2, IR)× U(1), S = S[g, y], takes the form4

S =
k

2π

∫
d2z

(
∂φ∂φ+ e2φ∂γ∂γ +

1

k
∂y∂y

)
. (3.3)

This action has an affine SL(2, IR)L × SL(2, IR)R × U(1)L × U(1)R symmetry, where the

level of SL(2, IR)L,R is k. The massless BTZ black hole is obtained by compactifying the

spatial coordinate γ1 on the boundary, defined as

γ = γ1 + γ0 , γ = γ1 − γ0 , (3.4)

on a circle of radius R,

γ1 ≃ γ1 + 2πR . (3.5)

We are interested in a deformation of (3.3) by the marginal operator

δS = − ϵ

π

∫
d2zKJ

−
SL. (3.6)

To first order in ϵ, the deformed action is given by

S(ϵ) =
k

2π

∫
d2z

(
∂φ∂φ+ e2φ∂γ∂γ + 2ϵe2φ∂y∂γ +

1

k
∂y∂y

)
; (3.7)

the dilaton remains constant.

In general one expects higher order corrections in ϵ, however, one can check that in this

case the background (3.7) is an exact solution of the β-function equations to leading order

in α′ (i.e. in the gravity approximation). In the type II superstring, there are no higher

order corrections in α′, due to the fact that the background preserves (2, 2) worldsheet

supersymmetry [39].

Some additional properties of the background (3.7) are:

(1) Upon dimensional reduction along the y direction,5 one obtains the null warped AdS3

background discussed in [40-42],

ds2 = k
(
dφ2 + e2φdγdγ − ϵ2e4φdγ2

)
, (3.8)

with a gauge field, Aγ = 2
√
kϵe2φ, and a B-field, Bγγ = ke2φ/2.

4 See e.g. [26].
5 Or in the heterotic string, if K(z) is taken from the chiral internal space.
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Dimensionally reducing the deformed geometry on !" gives the 
geometry 

some gauge field and B-field. 

This geometry appeared before in the discussion of Schroedinger
spacetimes

• D. T. Son, 0804.3972.

• K. Balasubramanian, J. Mcgreevy, 0804.4053.

and in the context of the Kerr/CFT correspondence. It is non-
singular, but has closed timelike curves beyond some critical value 
of the radial coordinate #.
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5 Or in the heterotic string, if K(z) is taken from the chiral internal space.
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A natural question is what is the relation between the single trace 
deformations of string theory on !"#$ that give rise to the above 
geometries, and the %&% and J &% deformations of ()%*.

The full answer to this question is not known, mainly because we 
do not have complete control over the original !"#$/()%* duality, 
but one element in the story is the following.  



By thinking about !"#$/&'() duality as arising from the low 
energy dynamics of strings and fivebranes, it is reasonable to 
expect that the Ramond sector of the &'() is described by a 
symmetric product, *+/#+ ,	where . is the number of strings 
creating the background. Indeed, there is a lot of evidence that 
this is the case.

The single trace deformations of !"#$ correspond in the 
symmetric product to (/( and J /( deformations of the CFT *.

Thus one can use results from string theory on !"#$ to learn 
about  (/( and J /( deformed CFT, and vice versa. 



The string theory systems one encounters in the process are of 
independent interest. One may hope to learn more about 
holography in asymptotically linear dilaton spacetimes (LST), 
systems realizing Schroedinger symmetries, the Kerr/CFT 
correspondence, and the physics associated with singularities and 
closed timelike curves. 

And, the study of deformations may teach us about the original 
!"#$/&'() duality. 



In the rest of this talk, we will discuss the torus partition sum of 
the deformed CFT’s discussed above. We will see that we can 
derive the partition sums (and thus spectra) of these theories by 
imposing certain general constraints, and discuss some of their 
features. 

Consider first the !"! deformed theory. Thinking about it 
abstractly, one can view it as a theory satisfying the following 
conditions:

Torus	partition	sum:	I



Ø It is a theory with one scale, associated with the coupling t. 

Ø It is modular invariant, if we assign to the dimensionless coupling 
! ∼ #

$% a non-trivial transformation property dictated by its 
scaling dimension:

Ø The energies of states in the deformed theory depend only on the 
energies and momenta of the corresponding states in the 
undeformed theory and on !.

Contents
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1 Introduction

A T T̄ deformed conformal field theory (CFT), a non-local theory that has recently received

some attention [1–23], is obtained by adding to the Lagrangian of a two dimensional CFT

an irrelevant operator bilinear in stress tensors in a specific manner. The corresponding

coupling, t, has holomorphic and anti-holomorphic dimensions (−1,−1) (i.e. it scales like

length squared). Despite the fact that the perturbation is irrelevant, and thus corresponds to

a flow up the renormalization group, the authors of [2, 3] showed that the resulting theory is

in some sense solvable. In particular, they computed the spectrum of the theory on a circle

of radius R.

In [18] it was shown that the spectrum found in [2, 3] leads to a modular invariant torus

partition sum. In terms of the dimensionless coupling, λ ∼ t/R2, which can be thought of as

the value of the coupling t at the scale R, it was found in [18] that the partition sum satisfies

Z
(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

∣∣∣∣
λ

|cτ + d|2

)
= Z(τ, τ̄ |λ), (1.1)

where τ is the modular parameter of the torus, a, b, c, d ∈ Z and ad − bc = 1. At λ = 0,

(1.1) reduces to the modular invariance of the original CFT. In general, λ transforms as a

modular form of weight (−1,−1).
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We will show that these three assumptions uniquely determine the 
partition sum (and thus the spectrum) to be that of the !"!
deformation of the theory with # = 0, to all orders in #. Non-
perturbatively, some interesting issues arise. 

Before doing that, some comments on the assumptions. 



Ø The first assumption essentially means that the theory  exists. If 
we think of it as a CFT deformed by some irrelevant operator with 
coupling !, this is the statement that physical observables are well 
behaved in the limit where the UV cutoff Λ → ∞. Incidentally, in 
my presentation of the analysis, ! will be taken to have dimension 
-2, but it is easy to generalize to arbitrary dimension.

Ø The second assumption essentially means that the theory can be 
formulated on the torus. If this is the case for the original CFT, it is 
also the case for the deformed theory, at least to all orders in !.



Ø The third assumption is, of course, highly non-trivial. It is 
satisfied by the spectrum  of !"! deformed #$!% , but it is a 
qualitative assumption. The result of our analysis is that !"!
deformed #$!% is the only theory that satisfies this 
assumption (and the other two). 



We now move on to proving the above result. The hero of our 
story is going to be the partition sum 

At ! = 0 it approaches the usual CFT partition sum 

The torus partition sum of the undeformed CFT, as a function of τ = τ1 + iτ2, is given

by the standard expression

Z0(τ, τ̄) = Tr
[
e2πiτ(L0−

c

24 )e−2πiτ̄(L̄0−
c

24 )
]
=

∑

n

e2πiτ1RPn−2πτ2REn , (2.1)

where the sum over n runs over all the eigenstates |n⟩ of the Hamiltonian H and of the spatial

momentum P on a circle of radius R, and Pn and En are the momentum and energy of the

state |n⟩, related to the eigenvalues of L0, L̄0 via

(L0 − L0)|n⟩ = RPn|n⟩,
(
L0 + L0 −

c

12

)
|n⟩ = REn|n⟩. (2.2)

For any consistent CFT, the partition sum (2.1) is modular invariant

Z0

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
= Z0(τ, τ̄ ), (2.3)

for any integers a, b, c, d with ad− bc = 1.

We now consider a deformation of the CFT that satisfies the property mentioned in section

1: the states |n⟩ of the original theory with energies En and momenta Pn, are deformed at

finite λ to states |n⟩λ with energies En and the same (quantized) momenta,

En #→ En(En, Pn,λ), Pn #→ Pn, (2.4)

such that En depends only on the energy and momentum of the undeformed state |n⟩, and on

λ. For now we restrict our attention to states whose energies have a regular Taylor expansion

in λ,

En(En, Pn,λ) =
∞∑

k=0

E(k)
n λk = E(0)

n + λE(1)
n + λ2 E(2)

n + · · · , (2.5)

where E(0)
n = En is the undeformed energy (2.2), and E(k>0)

n are functions of En, Pn to be

determined.

Plugging (2.5) into the partition sum

Z(τ, τ̄ |λ) =
∑

n

e2πiτ1RPn−2πτ2REn (2.6)

leads to a Taylor expansion

Z(τ, τ̄ |λ) =
∞∑

k=0

Zk λ
k = Z0 + Z1 λ + Z2 λ

2 + · · · (2.7)

for the perturbed partition sum. Here Z0(τ, τ̄) is the undeformed CFT partition sum (2.1).
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If the deformed CFT contains a single scale, associated with a dimensionful coupling t, we

can form a dimensionless combination, λ, from t and an appropriate power of R, such that

the torus partition sum depends only on the modular parameter τ and on λ. Since modular

transformations act3 on R but do not change t, λ transforms non-trivially.

We begin with the special case in which t has scaling dimension (−1,−1), leading to the

modular transformation (1.1). This implies that the coefficients Zp(τ, τ̄) in (2.7) transform

as modular forms of weight (p, p),

Zp

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
= (cτ + d)p(cτ̄ + d)p Zp(τ, τ̄). (2.8)

We will next show that (2.4), (2.5), (2.8) determine Zp(τ, τ̄ ) uniquely.

To do that one can proceed as follows. Plugging the perturbative expansion of the energies

(2.5) into the partition sum (2.6), one gets explicit expressions for the coefficient functions

Zp(τ, τ̄) in terms of the energy shifts E(k)
n . The first few of those are:

Z1 =
∑

n

(
−2πRτ2E

(1)
n

)
e2πiτ1RPn−2πτ2REn , (2.9)

Z2 =
∑

n

(
τ 22
2
(2πRE(1)

n )2 − 2πRτ2E
(2)
n

)
e2πiτ1RPn−2πτ2REn,

Z3 =
∑

n

(
−
τ 32
6
(2πRE(1)

n )3 + (2πRτ2)
2E(1)

n E(2)
n − 2πRτ2E

(3)
n

)
e2πiτ1RPn−2πτ2REn .

Continuing to higher values of p, it is easy to see that the expression for Zp for general p has

the following properties:

1. Since E(k)
n are functions of the unperturbed energies and momenta, En and Pn, in

expressions such as (2.9) they can be replaced by differential operators in τ and τ̄ ,

using

2πREn "→ −∂τ2 =
1

i
(∂τ − ∂τ̄ ), 2πiRPn "→ ∂τ1 = ∂τ + ∂τ̄ . (2.10)

2. After doing that, Zp takes the general form

Zp =
[
τ p2 Ô

(p)
1 (∂τ , ∂τ̄ ) + τ p−1

2 Ô(p)
2 (∂τ , ∂τ̄ ) + · · ·+ τ2Ô(p)

p (∂τ , ∂τ̄ )
]
Z0(τ, τ̄), (2.11)

where Ô(p)
j (∂τ , ∂τ̄ ) are differential operators, that encode the information about the

energy shifts E(k)
n .

3This can be seen, for example, by noting that the area of the torus, R2τ2, must be invariant under

modular transformations.
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p (∂τ , ∂τ̄ )
]
Z0(τ, τ̄), (2.11)

where Ô(p)
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This leads to an expression for !" that takes the form 

where                    are differential operators that encode the 
information about the energy shifts #$(&). Using this structure, one 
can show that given !((), ̅)), there is a unique !"(), ̅)) that 
satisfies all the constraints (see paper for details).  
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The solution satisfies the following recursion relation:

where

are covariant derivatives acting on modular forms.  

Thus, we conclude that the coefficients Zp must satisfy the recursion relation

Zp+1 =
τ2

p+ 1

(
D(p)

τ D(p)
τ̄ −

p(p+ 1)

4τ 22

)
Zp. (2.17)

In particular, all Zp>0 are uniquely determined by the unperturbed partition sum Z0 (2.1).

As discussed above, one can use (2.17) to determine the energy shifts E(j)
n (2.5). The first

few of these are

E(1)
n = −

πR

2
(E2

n − P 2
n), (2.18)

E(2)
n =

π2R2

2
(E2

n − P 2
n)En,

E(3)
n = −

π3R3

8
(E2

n − P 2
n)(5E

2
n − P 2

n).

These are the first terms in the expansion of the energy spectrum of T T̄ deformed CFTs,

En(En, Pn,λ) =
1

πλR

(√
1 + 2πλREn + λ2π2R2P 2

n − 1
)
, (2.19)

where we used the conventions of [3],4 with λ = 4t/R2. Note that for λ positive and

sufficiently small, these energies are real, while for any negative λ the spectrum arising from

large enough energies En becomes complex, so the theory cannot be unitary (the Hamiltonian

is not Hermitian).

Another way to see that the recursion relation (2.17) gives rise to the spectrum of a T T̄

deformed CFT is to note that it is identical to the one found in [18], from the diffusion

equation for the partition function of that model [12]. We will also see in the next section

that this recursion relation gives rise to the inviscid Burgers equation for the spectrum of a

T T̄ deformed CFT found in [2, 3].

So far in this section we assumed that the partition sum (2.6) has an expansion in

integer powers of the dimensionless coupling λ, as in (2.7), where λ transforms as (1.1).

The motivation for this was that λ is proportional to the coupling t, which we took to have

dimension (−1,−1). A natural question is whether there is another class of theories that

satisfies our requirements, in which the coupling has a different dimension, such that the

dimensionless coupling λ has a different modular weight.

If such a class existed, it could be studied in our formalism by defining a coupling λ̂ that

has the same weight as in our analysis, and writing the physical dimensionless coupling of

the theory as λ = λ̂a with some real number, a. Thus, in terms of our analysis, the question

becomes whether there is another class of partition sums satisfying our requirements, in

which the leading correction to the CFT partition sum Z0 is Z1λ̂a, with a ≠ 1.

4Our convention for the deformed energy is slightly different from the one in [3], 2πEhere = Ethere.

8

3. Ô(p)
1 is fixed by E(1)

n (and vice versa). Ô(p)
2 is fixed by E(1)

n and E(2)
n . In general, Ô(p)

k is

fixed by E(j)
n , with j = 1, 2, · · · , k.

We can use the properties listed above to show that given Z0, there is a unique Zp that

satisfies all the constraints. We will do this using induction, by showing that if Z0, · · · , Zp
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Ô(1)
1 , it is useful to recall the modular covariant derivatives [24]

D(k)
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We are now ready to discuss the general induction step, going from p to p+1 (with p > 0).

As explained earlier, assuming that Z0, Z1, · · · , Zp have been uniquely fixed means that the

energy shifts E(j)
n , with j = 1, 2, · · · , p, have been fixed as well. In the expression (2.11) for
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k with k = 1, 2, · · · , p are thus uniquely determined, and the only

unknown operator is Ô(p+1)
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One way to make contact with the spectrum mentioned above is to 
note that the recursion relation above is equivalent to a differential 
equation satisfied by the partition sum:

Plugging the definition of the partition sum into this equation and 
comparing the coefficients of a given exponential on the left and 
right hand sides gives a differential equation for the energies, 
which is precisely the inviscid Burgers equation obtained in the 
original papers on !"! deformed #$!%.

Repeating the analysis from before, we can write Z1 in the form (2.12), and since Z1

must be a modular form of weight (a, a), Ô1(∂τ , ∂τ̄ )Z0(τ, τ̄) must have weight (a+ 1, a+ 1).

For positive integer a, we have seen before that this is impossible. It is easy to see that it is

impossible for non-integer a as well, due to the fact that the operator Ô1(∂τ , ∂τ̄ ) must have, by

construction, a good Taylor expansion in its arguments. Negative values of a (corresponding

to relevant perturbations of a CFT) can be ruled out in a similar way.

Thus, we conclude that perturbatively in any (single) dimensionful coupling, a T T̄ de-

formed CFT is the only solution to the requirements we imposed.

3 Non-perturbative analysis

In section 2 we determined the partition sum (2.6) to all orders in the coupling λ. It is

natural to ask what happens beyond perturbation theory. The first question we need to

address is what we mean by non-perturbative contributions to the partition sum from the

general perspective of the previous sections.

We saw that the coefficient functions Zp in the expansion (2.7) satisfy the recursion

relation (2.17). This recursion relation can be summarized in a compact way as a differential

equation for the partition sum Z(τ, τ̄ |λ) (2.7),

∂λZ(τ, τ̄ |λ) =
[
τ2∂τ∂τ̄ +

1

2

(
i (∂τ − ∂τ̄ )−

1

τ2

)
λ∂λ

]
Z(τ, τ̄ |λ). (3.1)

Indeed, plugging the expansion (2.7) into (3.1) gives the recursion relation (2.17). Alterna-

tively, plugging (2.6) into (3.1), and comparing the coefficients of particular terms in the sum

over n on the left and right hand sides, gives an ODE in λ. This ODE is equivalent to the

inviscid Burgers equation for the energies, En(λ), derived in [2, 3], which is indeed solved by

(2.19).

A natural non-perturbative completion of the construction of the previous sections is to

take the partition sum Z(τ, τ̄ |λ) to obey the differential equation (3.1) with the boundary

condition

Z(τ, τ̄ |0) = Z0(τ, τ̄ ), (3.2)

where Z0(τ, τ̄) is the partition sum of the original CFT (2.1).

In the context of a T T̄ deformed CFT, an identical equation (written in a different form)

was derived from the path integral in [12], so that this deformation gives an example of

such a non-perturbative completion5. From our more general perspective, which does not

5In fact, [12] showed that the same equation holds also for general T T̄ deformed theories (not necessarily

conformal), such that these theories also obey (1.1), even though they have more than one mass scale.

9



So far, our discussion has been perturbative in the coupling !. It is 
natural to ask what happens when we go beyond perturbation 
theory, and in particular work at small but finite !. It is not 
completely clear how to define the theory in that case. 
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The answer turns out to be the following. 

• For ! > 0 the differential equation has a unique solution. 

• For ! < 0 one encounters a non-perturbative ambiguity. This 
ambiguity is associated with the fact that in that case the 
differential equation is consistent with the existence of states 
whose energies diverge like %& as ! → 0. 



One can think of these states as having energies of the same form 
as the ones above, but with the opposite sign in front of the square 
root. 

As is clear from the formula for the energies, for ! > 0 such states 
have energies that go to −∞ as ! → 0, and therefore they are not 
allowed (e.g. because their contribution to the partition sum does 
not satisfy the boundary condition at ! = 0). 

For ! < 0 these states have energies that go to +∞, and therefore 
they are allowed. Moreover, these states can be the negative 
branch states of a different (modular invariant) CFT, unrelated to 
the original one, with partition sum *+(-).



The fact that for ! > 0 we find a unique partition sum is in 
agreement with the fact that the spectrum of the theory is real in 
this case, and that the dual asymptotically linear dilaton dual 
geometry is well behaved.

The non-perturbative ambiguity we find for ! < 0 is likely related 
to the breakdown of unitarity associated with the complex 
energies, and with the fact that the dual geometry has singularities 
and closed timelike curves. However, more work is needed to 
understand this better.



Another interesting comment is the following. As mentioned 
above, the theory with ! > 0 has a Hagedorn spectrum, which 
means that the partition sum is only convergent when the modular 
parameter satisfies the constraint 

4 Some properties of the torus partition function

In this section we briefly comment on some properties of the deformed partition function

Z(τ, τ̄ |λ).

Let us start with the case λ > 0, where the deformed energies are real for small enough

λ. As is shown in [5, 18], for λ > 0 and a CFT of central charge c, the density of

states of the deformed theory interpolates between Cardy behavior, ρ(E) ∼ e
√

2πRc

3 E in

an intermediate range of energies (which is only present for λ ≪ 1), and Hagedorn behavior,

ρ(E) ∼ e2πRE
√

πcλ

6 at asymptotically large energies.

Consider, for simplicity, the partition sum (2.6), for τ1=0. The Hagedorn behavior of the

asymptotic spectrum implies that the partition sum is convergent only for

τ2 > τH2 (λ), (4.1)

with

τH2 (λ) =

√
πcλ

6
. (4.2)

Modular invariance, (1.1), implies that

Z(τ̃2, λ̃) = Z(τ2,λ), with τ̃2 =
1

τ2
, λ̃ =

λ

τ 22
. (4.3)

The convergence requirement (4.1) is mapped by (4.3) to the condition

πcλ̃

6
< 1. (4.4)

Thus, the partition sum on a rectangular torus is only well-defined when both sides of the

torus are larger than 2π
√

2πct
3 .

It is useful to note that:

1. The Hagedorn singularity, that in terms of the original variables (τ2,λ), happens at a

particular value of τ2 that depends on λ, (4.1), (4.2), happens in the dual variables at

a particular value of the dual coupling λ̃, (4.4), for all values of the dual modulus τ̃2.

2. There is an independent reason to require the condition (4.4) on the coupling. Looking

back at (2.19), we see that this condition is necessary for the SL(2,R) invariant vacuum

of the original CFT, which has E0R = −c/12 and P0 = 0 (2.2), to have a real energy

E0 in the deformed theory. For larger values of λ, or equivalently smaller values of R

for a given t, this energy becomes complex. The condition (4.4) can be thought of as

the requirement that the coupling at the scale R be sufficiently weak.
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Another constraint on the coupling comes from the requirement 
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• This is clearly a manifestation of the non-locality of the theory. 
The non locality scale is proportional to !", as expected from 
other considerations.

• It is reminiscent of the usual relation between the high energy 
density of states and the mass of the lowest lying state winding 
around Euclidean time familiar from free critical string theory.



The discussion above is easy to generalize to the case of J!" deformed 
CFT. Using the same logic as before, we define the theory by the 
following conditions:

Torus	partition	sum:	II



Ø It is a theory with one scale, associated with the coupling !. 

Ø The partition sum with a chemical potential for the U(1) charge,

is modular covariant, if we assign to the dimensionless coupling 

!̂ ∼ $
% a non-trivial transformation property dictated by its scaling       

dimension:

of the coupling.3 We discussed possible relations between these field theoretic results and

holography.

In this note, we generalize the analysis of [1] to the case of a JT̄ deformed CFT. This

system was originally discussed in [25] and the spectrum was obtained in [26] (see also [27, 28]

for other works on this subject). As we will see, the techniques of [1] provide a powerful

approach for studying this theory. In particular, we will be able to rederive and extend the

results of [26] using this perspective.

Before turning on the deformation, the current J is holomorphic, i.e. it satisfies ∂̄J = 0,

as is standard in CFT. As emphasized in [26], the µJT̄ deformation is essentially defined by

the requirement that it preserves this property at arbitrary coupling µ, despite the fact that

the full theory is no longer conformal. We will assume in our analysis that this property

holds in the theories we discuss.

Usually, in two dimensional field theory, the presence of a holomorphic current means

that the theory has an essentially decoupled conformal sector (see e.g. [29]). This does not

seem to be the case here, probably because the theory is non-local (in the sense that its UV

behavior is not governed by a fixed point of the renormalization group). This issue deserves

further study.

As in [1], we assume that our theory has a single dimensionful coupling µ. The focus of

our discussion is going to be the partition sum of the theory,

Z(τ, τ̄ , ν|µ̂) =
∑

n

e2πiτ1RPn−2πτ2REn+2πiνQn , (1.1)

where µ̂ is the dimensionless coupling, µ̂ ∼ µ/R, and the sum runs over the eigenstates of

the Hamiltonian, the momentum operator P , and the charge operator Q. One can think of

(1.1) as the partition sum of the theory on a torus with modulus τ = τ1+ iτ2, in the presence

of a chemical potential ν that couples to the conserved current J .

At µ̂ = 0, (1.1) becomes the torus partition sum of a CFT with non-zero chemical

potential. It is modular covariant,

Z0

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d
,

ν

cτ + d

)
= exp

(
πikcν2

cτ + d

)
Z0(τ, τ̄ , ν), (1.2)

with a, b, c, d ∈ Z and ad− bc = 1. Here k is the level of the U(1) affine Lie algebra,

[Jm, Jn] = km δm+n,0 . (1.3)

3For this sign, the perturbative spectrum contains states whose energies become complex in the deformed

theory, which leads to problems with unitarity.
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Note that (1.2) implies that the chemical potential ν transforms as a modular form of weight

(−1, 0). This is due to the fact that it couples to a holomorphic current of dimension (1, 0)

(see e.g. [30, § 3.1] for a discussion).

As mentioned above, a key observation of [26] was that the current J remains holomorphic

in the JT̄ deformed theory as well. Motivated by this, we assume that the partition sum

(1.1) of our theory satisfies a similar modular covariance property,

Z
(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d
,

ν

cτ + d

∣∣∣∣
µ̂

cτ̄ + d

)
= exp

(
iπkcν2

cτ + d

)
Z(τ, τ̄ , ν|µ̂). (1.4)

The transformation of the (dimensionless) coupling µ̂ follows from the fact that we assume

that it couples in the action to an operator that in the undeformed theory has dimension (1, 2).

The transformation of ν is a consequence of the holomorphy of the current J , associated with

the charge Q that ν couples to (the discussion of [30] can be extended to this case). Note

that in our analysis we take this current to be normalized as in (1.3) for all µ̂. This choice is

reflected in the factor of k in the exponential on the right-hand side of (1.4). It provides the

normalization of the charges in (1.1), which will play an important role in our discussion.

Following the logic of [1], we now ask the following question. Suppose we are given a

theory with a single scale, set by a dimensionful coupling µ, and a current J(z) that is

holomorphic throughout the RG flow. Using the fact that the theory on a torus is modular

covariant, (1.4), and assuming that the energies En and charges Qn in (1.1) depend only on

µ̂ and on the values of the energy, momentum and charge of the corresponding states in the

undeformed (conformal) theory, what can we say about the theory?

We will see that, like in [1], the above requirements fix the partition sum (1.1) uniquely

to be that of a µJT̄ deformed CFT to all orders in µ̂. Thus, a JT̄ deformed CFT is the

unique theory with these general properties.

In the process of proving that, we will derive equations that govern the flow of energies

and charges as a function of the coupling µ̂. These equations generalize the inviscid Burgers’

equation that describes the flow of the energies in a T T̄ deformed CFT [3, 4]. We will also

discuss the theory non-perturbatively in µ̂, by using a differential equation for the partition

sum that generalizes the one used in [13, 19] for the T T̄ case, and discuss relations to

holography.

The plan of this paper is the following. In section 2 we generalize the discussion of [1] to

a theory with a holomorphic U(1) current. We show that modular covariance (1.4), and the

qualitative assumption about the spectrum mentioned above, determine the partition sum

of the model uniquely to be that of a µJT̄ deformed CFT, to all orders in the coupling µ̂. In

particular, we obtain a recursion relation, (2.16), satisfied by the partition sum.

In section 3 we show that the recursion relation (2.16) leads to a flow equation for the
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Ø The energies and charges of states in the deformed theory 
depend only on the energies, momenta and charges of the 
corresponding states in the undeformed theory and on "̂.

Note that the transformation properties of # encode the fact that the 
current J(x) is holomorphic in the deformed theory, and its anomaly, 
k. 



We can now run the same program as before. Expanding the 
partition sum,

we find that the expansion coefficients !", which are Jacobi forms of 
weight (0,p) and rank k, are uniquely determined and satisfy the 
recursion relation

where 

is a covariant derivative acting on Jacobi forms.

quantities in (2.3) allow regular Taylor expansions in µ̂

En =
∞∑

k=0

E(k)
n µ̂k = E(0)

n + E(1)
n µ̂+ E(2)

n µ̂2 + · · · , (2.4)

Qn =
∞∑

k=0

Q(k)
n µ̂k = Q(0)

n +Q(1)
n µ̂+Q(2)

n µ̂2 + · · · ,

where E(0)
n = En and Q(0)

n = Qn, and E(k)
n , Q(k)

n are functions of (En, Pn, Qn) that need to be

determined.

Plugging (2.4) into (1.1), we find the Taylor expansion of the deformed partition sum,

Z(τ, τ̄ , ν|µ̂) =
∞∑

p=0

Zpµ̂
p = Z0 + Z1µ̂+ Z2µ̂

2 + · · · . (2.5)

Modular covariance of the deformed partition sum, (1.4), implies that Zp transforms as a

non-holomorphic Jacobi form of weight (0, p) and holomorphic index k,

Zp

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d
,

ν

cτ + b

)
= (cτ̄ + d)p exp

(
iπkcν2

cτ + d

)
Zp(τ, τ̄ , ν). (2.6)

The first few orders in the µ̂ expansion are given by

Zp =
∑

n

f (p)
n e2πiτ1RPn−2πτ2REn+2πiνQn , (2.7)

where

f (1)
n = (−2πRE(1)

n )τ2 + 2iπνQ(1)
n , (2.8)

f (2)
n =

1

2!

(
−2πRE(1)

n

)2
τ 22 − 2πR

[
E(2)
n + 2iπνE(1)

n Q(1)
n

]
τ2 − 2

[
π2ν2(Q(1)

n )2 − iπνQ(2)
n

]
,

f (3)
n =

1

3!

(
−2πRE(1)

n

)3
τ 32 + 4π2R2

[
E(1)
n E(2)

n + iπν(E(1)
n )2Q(1)

n

]
τ 22

+
[
2Rπ2ν2E(1)

n (Q(1)
n )2 − 2πiRν(E(1)

n Q(2)
n + E(2)

n Q(1)
n )− 2πRE(3)

n

]
τ2

−
4

3
iπ3ν3(Q(1)

n )3 − 4π2ν2Q(1)
n Q(2)

n + 2πiνQ(3)
n .

As in [1], we can write Zp as a differential operator in τ , ν acting on Z0, by replacing

E(k)
n (En, Pn, Qn), Q

(k)
n (En, Pn, Qn) in (2.8) by differential operators, using the replacement

rules

En "→ −
1

2πR
∂τ2 , Pn "→

1

2πiR
∂τ1 , Qn "→

1

2πi
∂ν . (2.9)

This leads to a double expansion of Zp in powers of τ2 and ν,

Zp =
∑

l,m

τ l2ν
mO(p)

lm (∂τ , ∂τ̄ , ∂ν)Z0, (2.10)
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We are now ready to move on to the general induction step. We assume that Z1, · · · , Zp

(with p ≥ 1) have been determined, and want to show that Zp+1 can be determined as well.

We saw before that from the form of Z1, · · · , Zp we can read off the energy and charge

shifts E(k)
n , Q(k)

n with k = 1, 2, · · · , p. Consider now the expansion (2.10) of Zp+1. Most of the

terms in that expansion involve the energy and charge shifts with k ≤ p, which are assumed

to be already known. There are only two terms in the sum, corresponding to (l,m) = (1, 0)

and (0, 1), that involve the unknowns E(p+1)
n , Q(p+1)

n .

To show that there is no more than one solution for the expansion (2.10), suppose there

were two different ones. Subtracting them, and using the fact that most terms in the

expansion (2.10) cancel between the two, we find that there must exist differential operators

δÔ(p+1)
1,0 (∂τ , ∂τ̄ , ∂ν), δÔ

(p+1)
0,1 (∂τ , ∂τ̄ , ∂ν), such that

(
τ2 δÔ

(p+1)
1,0 (∂τ , ∂τ̄ , ∂ν) + ν δÔ(p+1)

0,1 (∂τ , ∂τ̄ , ∂ν)
)
Z0 (2.15)

is a Jacobi form of weight (0, p+1) and index k, for any Z0 which is a Jacobi form of weight

(0,0) and index k. The fact that such differential operators do not exist (for p > 0) can be

proven by using the properties of the covariant derivatives (2.12), (2.13), in a similar way to

the proof for the T T̄ case in [1], and we will not repeat it here.

So far, we have proved that if a Zp with the right properties exists, it is unique. In order

to prove existence, one can again proceed as in the T T̄ case [1]. There, it followed from a

recursion relation that gave Zp+1 in terms of Zp. It is natural to seek a similar recursion

relation in our case. It turns out that such a relation exists, but it is more complicated. In

particular, it relates Zp to all Zj with 0 ≤ j < p. It takes the form

Zp =
τ2
p

[
DνD

(p−1)
τ̄ −

iπkν(p− 1)

2τ 22

]
Zp−1 −

iπk

2p

p−2∑

j=0

(
πνk

2iτ2

)j

D(p−j−2)
τ̄ Zp−j−2 . (2.16)

One way to arrive at this recursion relation is to start with the known spectrum of the

theory [26], plug it into the partition sum (1.1), and expand in µ̂. Alternatively, Zp can

be determined order by order by taking an ansatz consisting of terms with the appropriate

modular properties and demanding it has the general form (2.10). The structure of this

expansion at low p is discussed in appendix B.

In the next section we will prove that (2.16) indeed provides a solution of (2.10) for all p,

which establishes that under the assumptions we described above, the partition sum (1.1) is

uniquely determined to all orders in µ̂.

Our discussion of uniqueness in this section started from the assumption that the coupling

µ has dimension (0,−1), i.e. that the corresponding perturbing operator has dimension (1, 2).

More generally, if µ has dimension (h, h̄), i.e. the corresponding perturbing operator has
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We can use the expansion (2.10) to prove that if Z1, · · · , Zp have been determined, Zp+1

can be determined as well. As in [1], we start by considering the case p = 1. Equation (2.10)

takes in this case the form

Z1 =
⇣
⌧2

bO(1)
1,0(@⌧ , @⌧̄ , @⌫) + ⌫ bO(1)

0,1(@⌧ , @⌧̄ , @⌫)
⌘
Z0. (2.11)

We are looking for di↵erential operators bO(1)
1,0, bO(1)

0,1, for which Z1 transforms as a Jacobi form

of weight (0, 1) and index k, for any Z0 of weight (0, 0) and index k. To find them, one can

proceed as follows.

In [1, 19], we used the modular covariant derivative operators

D
(r)
⌧ ⌘ @⌧ �

ir

2⌧2
, D

(r̄)
⌧̄ ⌘ @⌧̄ +

ir̄

2⌧2
. (2.12)

These operators have the following properties. Acting with D
(r)
⌧ on a modular form of weight

(r, r̄) gives a modular form of weight (r+ 2, r̄). Similarly, D(r̄)
⌧̄ increases the weight of such a

modular form to (r, r̄ + 2).4

In our case, it is useful to introduce another covariant derivative, with respect to ⌫,

D⌫ ⌘ @⌫ +
⇡k⌫

⌧2
. (2.13)

Acting with D⌫ on a Jacobi form of weight (r, r̄) and index k gives a Jacobi form of weight

(r + 1, r̄) and index k (see appendixA for more details).

Using the covariant derivatives in (2.12), (2.13), it is straightforward to find a combination

of the form (2.11) that has the correct modular properties under modular transformations

Z1 = ↵⌧2D⌫@⌧̄Z0. (2.14)

Here ↵ is a constant that can be absorbed in the definition of ⇢; we will set it to one below.

It is not hard to check that (2.14) is the unique object of the form (2.11) with the correct

transformation properties.

We are now ready to move on to the general induction step. We assume that Z1, · · · , Zp

(with p � 1) have been determined, and want to show that Zp+1 can be determined as well.

We saw before that from the form of Z1, · · · , Zp we can read o↵ the energy and charge

shifts E(k)
n , Q(k)

n with k = 1, 2, · · · , p. Consider now the expansion (2.10) of Zp+1. Most of the

terms in that expansion involve the energy and charge shifts with k  p, which are assumed

4Acting with D(r̄)
⌧̄ on a Jacobi form of weight (r, r̄) and holomorphic index k gives a Jacobi form of weight

(r, r̄+2) with the same index. On the other hand, acting with D(r)
⌧ on a Jacobi form with holomorphic index

k 6= 0 does not give a Jacobi form.
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This recursion relation is equivalent to the differential equation

From this equation one can read off the flow equations  for the 
(dimensionless) energies and charges of states as a function of the 
coupling,

These are the analog of the Burgers equation of the !"! case.

dimension (1− h, 1− h̄), the dimensionless coupling µ̂ transforms under the modular group

as a form of weight (h, h̄), and Z1 transforms as a Jacobi form of weight −(h, h̄) and index k.

One can show that the form (2.11) is inconsistent with this transformation property, except

for the case h = 0, h̄ = −1 that was analyzed above.

3 Non-perturbative analysis

The recursion relation (2.16) can be phrased as a differential equation for the partition sum

(1.1). Combining (2.5), (2.16), we find that Z(τ, τ̄ , ν|µ̂) satisfies
(
1 +

iπkµ̂ν

2τ2

)
∂µ̂Z = τ2DνDτ̄Z −

iπkµ̂

2

1

1 + iπkµ̂ν
2τ2

Dτ̄Z, (3.1)

where (compare to (2.12))

Dτ̄ ≡ ∂τ̄ +
i

2τ2
µ̂∂µ̂. (3.2)

For the T T̄ case, the flow equation for the torus partition sum can also be derived from a

description with a dynamical metric [13, 16]. It would be interesting to derive (3.1) from a

similar point of view, by including a dynamical gauge field as well.

As in [1], although (3.1) was derived from a perturbative expansion in µ̂, we assume that

it holds non-perturbatively as well. Before turning to a discussion of the non-perturbative

effects implied by (3.1), we would like to point out that from this equation we can read off

a system of differential equations that describes the evolution of the energies and momenta

of states with the coupling µ̂. To do that, we plug the general expression for the partition

sum (1.1) into (3.1), and compare the coefficients of a given exponential on the left and right

hand sides. This yields

E
′
n(µ̂) [1 + πµ̂Qn(µ̂)] = π [Pn − En(µ̂)]Qn(µ̂), (3.3)

Q′
n(µ̂) [1 + πµ̂Qn(µ̂)] =

πk

2
[Pn − En(µ̂)] ,

where En(µ̂) = REn(µ̂), and Pn = RPn is the quantized momentum.

Dividing the two equations in (3.3), one finds that

kEn(µ̂)−Qn(µ̂)
2 = independent of µ̂, (3.4)

which reproduces one of the results of [26].

Equations (3.3) can be expressed in a form that is closer to Burgers’ equation by writing

them in terms of the dimensionful µJT̄ coupling µ = µ̂R, and using the fact that the

dimensionless energies En depend only on the dimensionless coupling µ̂.
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There is again a non-perturbative ambiguity in the partition sum, this 
time for all values of the coupling, whose structure is similar to that 
of the !"! theory with negative coupling. 

This is consistent with the fact that the energies of highly excited 
states are complex, and the dual geometry has closed timelike
curves, though no curvature singularities.



Discussion
There is clearly a lot to do on this subject.

Ø On the field theory side, it seems that !"! deformed CFT with 
# > 0 is a well defined theory with a Hagedorn spectrum. It 
would be nice to understand other observables, and provide a 
non-perturbative definition of the theory. There was some work 
on this subject. E.g. it was observed early on that for & = 24 the 
spectrum of !"! deformed CFT is the same as that of string 
theory on a background that includes the CFT and an additional 
*×,-, in a sector with winding one. However, it is not clear 
whether/why the two are the same. For general & there is a 
proposal of JT gravity coupled to matter. It would be nice to 
understand these proposals better.



Ø For !"! with # < 0 and J"! we found complex energies and non-
perturbative ambiguities.  It would be nice to understand 
whether the theory makes sense, if it is unitary, and if so how is 
unitarity reconciled with modular invariance on the torus. 

Ø On the gravity side, it would be nice to develop the description 
of the double trace deformations to the point that all the 
phenomena we discussed in the field theory picture become 
manifest.



Ø For single trace deformations, it would be nice to understand 
their interpretation in the QFT better,  and relate the 
phenomena seen in the QFT to the deformed geometry more 
precisely.

Ø Developing the last point might help understand the implications 
of the recent results for LST, Kerr/CFT, Schroedinger backgrounds 
and other systems with these symmetries.

Ø The string theory construction suggests that we should be able 
to solve exactly more general theories, involving combinations of 
couplings, such as !"!, J"!, ! ̅$, $ ̅$. It would be interesting to 
generalize the discussion to this case.


