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✤ Motivational remarks about boundaries in quantum 
field theory and gravity

✤ Results for boundary contributions to the trace 
anomaly

✤ Boundary anomalies in a family of field theories 
related to graphene



What do D-branes, AdS/CFT, topological insulators, and 
entanglement entropy for field theories have in common?
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What do D-branes, AdS/CFT, topological insulators, and 
entanglement entropy for field theories have in common?

The importance of boundaries.
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D-branes as boundary conditions for open strings
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In AdS/CFT, conformal boundary of anti-de 
Sitter space is where the conformal field 
theory “lives”.
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For topological insulators, the insulating bulk 
material has conducting (massless) surface 
states that are protected by symmetry.



A
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In field theory, entanglement is often 
measured with respect to spatial regions, 
leading to the importance of the “entangling 
surface”.



✤ As CFT are fixed points in RG flow, it is natural to 
start a study of boundary/defect QFT with a study of 
boundary/defect CFT.

✤ Implicit importance of CFT in at least three of the four 
developments just mentioned — world sheet theory 
for strings, the boundary theory in AdS/CFT, the “a” 
and “c” theorems from entanglement entropy

Would all of these developments have been “obvious” 
if we just understood quantum field theory in the 

presence of a boundary a little better to begin with?



Boundary Conformal Field Theory

✤ Surprisingly unexplored.  McAvity and Osborn ’93 and ’95 
papers on two point functions.  The more recent just 
recently received more than 100 citations.

✤ Flat space: A planar boundary breaks the SO(d,2) symmetry 
to SO(d-1,2).

✤ Curved space: Require that the boundary and boundary 
terms in the action preserve Weyl invariance.

✤ In today’s talk, a focus on the trace anomaly…



Stress Tensor Trace

classically, Weyl invariance implies 

quantum mechanically, there are anomalies…

Today’s talk: To understand new terms in the trace anomaly
associated with the presence of a boundary.

A quick review:

S[⌦(x)gµ⌫ ] = S[gµ⌫ ]

⌦(x) = 1 + ��(x)infinitesimally and hence
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��
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�gµ⌫

@gµ⌫
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�gµ⌫
gµ⌫ ⇠ Tµ

µ



Trace Anomaly in 2d (no boundary)

✤ c is also the coefficient of the Tµn two-point function.

✤ Zamolodchikov c-theorem (’86), 

✤ Huerta-Casini (’04) entanglement entropy proof of c-
theorem

hTµ
µi =

c

24⇡
R

cUV > cIR

—towards a map of 2d QFTs

Ricci scalar curvature



Trace Anomaly in 4d (no boundary)

✤ c is also the coefficient of the Tµn two-point function.

✤ Cardy (’88) a-conjecture and later Komargodski-
Schwimmer proof (’11)

✤ Casini-Teste-Torroba (’17) entanglement entropy proof 
of a-theorem

—towards a map of 4d QFTs

hTµ
µi =

1

16⇡2
(cW 2 � aE.D.+ d⇤R)

Euler density
scheme dependent, 

ignore

aUV > aIR

Weyl curvature



Trace Anomaly in 6d (no boundary)

hTµ
µi ⇠ aE.D.+ c1W

3 + c2W
3 + c3W⇤W

hints from supersymmetry and AdS/CFT of a 6d a-theorem



Trace Anomaly with a Codimension 
One Boundary

2D

4D

6D

3D

5D

Jensen-O’Bannon (’15) b-theorem

Solodukhin-Fursaev (’16) conjecture

hTµ
µi =

c

24⇡
(R+ 2K�(xn))

hTµ
µi =

1

4⇡
(�aR+ b tr K̂2)�(xn)

hTµ
µi =

1

16⇡2
(cW 2 � aE.D.+ (�b1 tr K̂

3 + b2K
ABWnAnB)�(x

n))

b2 = 8c

aUV > aIR

KAB extrinsic curvature
hat on K removes trace

hTµ
µi ⇠ �(xn)(b1W

2 + b2K
4 + . . .)

hTµ
µi ⇠ aE.D.+ c1W

3 + c2W
3 + c3W⇤W + �(xn)(b1KW 2 + . . .)



Results for Boundary Charges

Can we say anything more about 

3d

4d

aR

b tr K̂2

b1 tr K̂
3

b2K
ABWAnBn

conjecture

yes

yes

yes

Related to displacement operator
two and three point functions



Displacement Operator

definition: operator sourced by small 
changes in the embedding

�I

�xn
⌘ Dn

diffeomorphism Ward identity:

@µT
µn = Dn�(xn)

@µT
µA = 0 tangential components

still conserved

Tnn

Dn

pill box argument implies

Tnn(~x, xn)|xn=0 = Dn(~x)



Results

3d

4d

aR

b tr K̂2

b1 tr K̂
3

b2K
ABWAnBn

(?)

b =
⇡2

8
cnn

hDn(~x)Dn(0)i = cnn
|~x|2d

hDn(~x)Dn(~x0)Dn(0)i = cnnn
|~x|d|~x0|d|~x� ~x0|d

b1 =
2⇡3

35
cnnn

b2 =
2⇡4

15
cnn

Argument analogous to Osborn
and Petkou’s result for c in 4d.  
(Fails for a in 3d because R is 
topological.)



D in other contexts

Deutsch and Candelas ’79

Correa, Henn, Maldacena, Sever ’12 (for line defects)

hTµ⌫i = A
K̂µ⌫

xd�1
n

+ . . .

R.-X. Miao ’18 showed that A is proportional to b in 3d and b2 in 4d

gives the cusp anomalous dimension in 
the small angle limit of a Wilson line 

in a gauge theory at a conformal fixed point

Z
hD(x)D(0)idx

— related to power radiated by a moving quark

Faulkner, Leigh, Parrikar ’16  (see also Myers et al.)
related to shape dependence of entanglement entropyhD(x)D(0)i



             in 3db tr K̂2

The term in the trace anomaly can be produced from 
an effective anomaly action in limit e goes to zero where 
µ is a UV regulator:

I(b) =
b

4⇡

µ✏

✏

Z

@M
tr K̂2

For small deviations from planarity KAB ⇡ @A@Bx
n

=) scale dependence of displacement 2-pt function

µ@µhDn(~x)Dn(0)i = b

4⇡
⇤2�(~x)

hDn(~x)Dn(0)i = cnn
|~x|6

hDn(~x)Dn(0)i = cnn
512

⇤3(logµ2~x2)2

The short distance behavior of 

can be regulated by writing instead
(Freedman, Johnson, Latorre ’92)



Checks for Free Fields

Using heat kernel methods, a number of these charges were
computed for free fields in the late 80s and early 90s 
(Melmed, Moss, Dowker, Schofield)  and later revisited in the 
last couple of years (Solodukhin, Fursaev, Jensen, Huang, CPH).

bs=0 =
1

64
(D or R) , bs=

1
2 =

1

32
,

b2 = 8c

bs=0
1 =

2

35
(D) , bs=0

1 =
2

45
(R) , b

s= 1
2

1 =
2

7
, bs=1

1 =
16

35
,

The displacement operator correlation functions 
yield the same results!



Why is               for free fields?b2 = 8c

For free theories

theory without
boundary

effect of image
points on other side

of the boundary

=) 2↵(0) = ↵(1)

v ! 1

v ! 0

:  boundary limit

:  coincident limit

by the old Osborn-Petkou (’93) argument↵(0) ⇠ c

↵(v) ⇠ 1 + v2d



What about interactions?

Wilson-Fisher fixed point for f4 scalar field theory, starting in 4d

McAvity and Osborn (’93, ’95) showed, both in the e expansion
and in a large N expansion that

2↵(0) 6= ↵(1)

Downside: We need to be in exactly 4d to connect
to b2, and in exactly 4d f4 scalar field theory is free

We need some more examples…



Mixed dimensional QED has 
something for everyone

S = �1

4

Z

M
d4xFµ⌫Fµ⌫ +

Z

@M
d3x(i ̄ /D )

FnA = g ̄�A Dµ = rµ � igAµwhere boundary conditions:

•relation to graphene
•relation to large Nf QED3 (Kotikov-Teber ’13)
•behavior under electric-magnetic duality (Son ’17) 
•example of a bCFT with an exactly marginal coupling
•supersymmetric versions
•playground for computing trace anomalies our work



Relation to Graphene

Son’s model of graphene (cond-mat/0701501):

�
NX

a=1

Z
dt d2x( ̄a�

0@0 a + v ̄a�
i@i a + iA0 ̄a�

0 a) +
1

2g2

Z
dt d3x(@iA0)

2

•only electric interactions
•electrons travel at speed 

things to note

v ⇡ c/300

p
@v(p)

@p
= � 4

⇡2N
v(p)

beta function for the electron velocity
once v gets sufficiently large, 
can restore magnetic interactions and
flow to a relativistic fixed point



Relation to large Nf QED3
(Kotikov-Teber ’13)

propagator for mixed dimensional QED (don’t FT the normal direction y) 

�i
e�py

p
⌘AB (Feynman gauge)

propagator for large Nf QED3, re-summed

�i
⌘AB

p2(1 +⇧(p)) where

Compensated by vertices, 3d e drops out of the amplitudes.
For scattering processes on the boundary (y=0), 
the Feynman rules are the same in the IR with the identification 

⇧(p) =
Nfe

2

8|p| +O(N0
f )

1

Nf
⇠ g2



Behavior under EM Duality
(Hsiao-Son ’17)

Using recent progress in 2+1 dimensional non-SUSY dualities

Integrating out aB or Aµ yields same mixed QED theory but with a new 

Z
d3x


i ̄�A(@A � iaA) � 1

4⇡
✏ABCAA@BaC

�
� 1

4g2

Z
d4xF 2

µ⌫

g̃ = 8⇡/g

Can use the duality to calculate the current-current and stress tensor 
correlation function at the self-dual point and at infinite coupling — 
calculate transport coefficients. 

(similar in spirit to H, Kovtun, Sachdev, Son ’07)



Mixed QED is a bCFT

The usual Ward identity for QED relates Z = Zg

The superficial degree of divergence of the photon self energy is one
(compared with two in four dimensional QED).

The gauge invariant prefactor pµp⌫ � �µ⌫p
2 ⇧µ⌫(p)of

cuts down the degree of divergence to -1.

In other words, Z� is finite.
 coupling is not perturbatively renormalized.=)

g0Z
1/2
Aµ

Z = gZgS = �1

4

Z

M
d4xFµ⌫Fµ⌫ +

Z

@M
d3x(i ̄ /D )



Perturbative Results

b1 and b2 depend on the coupling

b(N=0)
1 =

16

35
�

3g2

35
Nf +O(g4)

b(N=0)
2 =

4

5
�

g2

10
Nf +O(g4)

a and c are unaffected by the coupling

=) We have an example where b2 = 8c 



Marginal Directions

b1 and b2 depend on the exactly marginal coupling!

Unlike the situation for the bulk charges a and c in 4d.

Wess-Zumino consistency forces a 
to be constant along marginal directions.

No such argument for c.  However, SUSY fixes c
to be a constant, and it’s unknown how to construct
4d CFTs with marginal directions but without SUSY
(and without boundaries).

Are b1 and b2 protected by supersymmetry?



           Super GrapheneN = 1

Sbulk =

Z

M
d4x
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            Super Graphene

✤ The photino is symplectic Majorana instead of just 
Majorana

✤ Two extra bulk scalars, X and Y with corresponding 
extra Yukawa terms.

✤ The boundary multiplet can be kept the same, but 
there is now a preserved U(1) R-symmetry

N = 2



            Super GrapheneN = 2

Sbry =

Z

@M
d3x

 
�1

4
�̄i ~v · ~⌧ i

j�
5e⌘�

5

�j �X(~v · ~D + @nX)

+ i e �ADA � |DA�|2 + |F |2 +
p
2ig
�
�⇤ e�+ � � e �+

�

+ g e Y  � g2|�|2Y 2 � g(~v · ~D + @nX)|�|2
!

Sbulk =

Z

M
d4x

✓
�1

4
Fµ⌫F

µ⌫ +
i

2
�̄i�

µ@µ�
i � 1

2
(@µX)2 � 1

2
(@µY )2 +

1

2
~D2

◆
.

…we could do something similar with              super grapheneN = 4



Claim: Mixed dimensional QED along with 
                 and 4 super graphene are all bCFTs where the 
gauge coupling is exactly marginal.
N = 1, 2,



Summary of Perturbative Results

b(N=2)
1 =

38

45
�

19g2Nf

60
+O(g4)

b(N=2)
2 =

4

3
�

g2Nf

3
+O(g4)

b(N=1)
1 =

3

5
�

9g2Nf

40
+O(g4)

b(N=1)
2 = 1�

g2Nf

4
+O(g4)

b(N=4)
1 =

4

3
�

g2Nf

2
+O(g4)

b(N=4)
2 = 2�

g2Nf

2
+O(g4)

in all theories, b1 and b2 depend on the coupling 
(not protected by SUSY!)

(note however b(N=4)
1 � b(N=4)

2 is coupling independent at one loop)

b(N=0)
1 =

16

35
�

3g2

35
Nf +O(g4)

b(N=0)
2 =

4

5
�

g2

10
Nf +O(g4)

a and c are unaffected by the coupling



Summary of results

✤ Presented graphene like theories both with and without 
SUSY that are bCFTs with an exactly marginal coupling.

✤ Related boundary central charges in three and four 
dimensional bCFTs to two and three point functions of 
the displacement operator.

✤ Discussed graphene like theories as examples where b2 
= 8c and where both b1 and b2 depend on a marginal 
coupling.

b tr K̂2

b1 tr K̂
3

b2K
ABWAnBn



Future Projects

✤ Hemisphere localization for the    =2 super graphene. (Gava, Narain, et al. 

’16) 

✤ Higher codimension defects. (Billo, Goncalves et al. ’16)

✤ Find bounds on these boundary central charges. (Hofman-Maldacena ‘08)

✤ Computation of these central charges in AdS/CFT in Janus 
solutions. (Takayanagi ’11, Miao et al., Astaneh et al. ’17)

✤ Models with only boundary interactions, like mixed QED.

✤ Boundary bootstrap. (Liendo et al. ‘12)

N



Larger Vision: Structure of QFT

✤ Constrain QFT by constraining CFTs

✤ Provide a more local view of QFT by figuring out how 
to deal with boundaries.
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