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Why de Sitter? (Dark Energy)

~  de Sitter !
Also inflation  ~ de Sitter !



de Sitter from String Theory?



Massless Spectrum of String/M Theories
Theory Dimensions Supercharges Bosonic Spectrum

Heterotic 10 16 gMN , BMN , �

E8 ⇥ E8 Aij
M

Heterotic 10 16 gMN , BMN , �

SO(32) Aij
M

Type I 10 16 NS-NS gMN , �, Aij
M

SO(32) R-R CMN

Type IIA 10 32 NS-NS gMN , BMN , �

R-R CM , CMNP

Type IIB 10 32 NS-NS gMN , BMN , �

R-R C, CMN , CMNPQ

11D Supergravity 11 32 gMN , CMNP

5 General predictions of string theory

• One theory one parameter.

Even though over the years 5 consistent supersymmetruc string theories were identified

in the mid 1990s it was understood that all of them are di↵erent manifestations of one

single underlying theory, M -theory, that also includes as another weak coupling limit 11

dimensional supergravity. This is an important property that a candidate for a fundamental

theory should have. Furthermore, each of the di↵erent srtring theories has one single

parameter corresponding to the string length that defines the units and besides that there

are no free parameters, another desired property of a fundamental theory. This immediately

raises the question on how to determine all the 20 or so free parameters of the standard

model taking values in such a huge range. The answer should be dynamical and there is a

challenge on identifying the dynamics that selects all the observables we see in nature.

• Extra dimensions.

Another well known property of consistent string theories is the dimensionality. A positive

point is that contrary t o most theories of physics for which the spacetime dimension is

assumed from the start, in string theory it is determined by the condition of criticality of the

underlying conformal field theory. The fact that the critical dimension is 10 and not 4 sets

a challenge on how to obtain our 4-dimensional world. It immediately indicates that even

though the theory may be unique the number of solutions (giving rise to di↵erent universes)

most likely cannot be unique. In particular flat supersymmetric 10-dimensional spacetime

should be a solution. Furthermore the shape and size of the extra-dimensions (known as
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de Sitter Challenges
• Define S-matrix (resonance?)

• Classical no-go theorems (Gibbons; Maldacena-
Nuñez,...)

• Supersymmetry: Minkowski or AdS (e.g. AdS5 x 
S5)

• No dS solution of string theory under full 
calculational control (KKLT, LVS,...?)



Moduli Stabilisation



String Scenarios
• IIB (+F-theory)

KKLT
LVS

• IIA

• Heterotic   

• G2 manifolds

Moduli 
Stabilisation



IIB Advantages

• Fluxes backreaction (warped) Calabi-Yau
• No-scale structure
• Scales m3/2<< Ms<<Mp

• Two sets of 3-fluxes F3, H3 (allows `tuning’)

• GVW Superpotential W(S,U) not renormalised!
• Many loop (gs) and !’ corrections to K computed
• Kahler moduli gauge couplings Wnp(T)



IIB MODULI   STABILISATION

4-cycle size: τ
(Kahler moduli)

3-cycle size: U 
(Complex structure 
moduli)

+ String Dilaton: S

4-cycle size: τ
(Kahler moduli)

3-cycle size: U 
(Complex structure 
moduli) + Dilaton S



Moduli Stabilisation in IIB

• Moduli S, Ti, Ua

• Quantum corrections
• Three options: 

In IIB string theory flux compactifications [125, 126] naturally fix the value of all the

complex structure moduli U
a

and the dilaton S and reduce the number of vacua from a con-

tinuum to a discrete but large set of points determined by the quantised three-form fluxes.

In both DRS (Dasgupta, Rajesh, Sethi) ([125]) and GKP (Giddings, Kachru, Polchinski)

[126] we have flux stabilisation of the complex structure moduli and the dilaton of a con-

struction involving a Calabi-Yau orientifold X with internal G
3

fluxes. While in both cases

the (static) solution requires that the fluxes are ISD (imaginary self-dual i.e. ⇤
6

G
3

= iG
3

)

which is compatible with the Hodge decomposition G
3

2 (2, 1)� (0, 3). Supersymmetry is

preserved only if there is no (0, 3) component as considered in DRS.

Kähler moduli T
i

are not stabilised by the fluxes nor any perturbative e↵ect. The

reason behind this is the fact that there exists a Peccei-Quinn synmetry T
i

! T
i

+ ic
i

with

constant c
i

s that together with the holomorphicity of the superpotential forbids any T
i

dependence of W to all orders in perturbation theory. However these moduli are the gauge

couplings for matter fields localised in D7 branes and therefore standard non-perturbative

e↵ects generate a superpotential for these fields. The total superpotential for closed string

moduli is

W = W
flux

(S,U) +W
np

(S,U, T ). (2.4)

The source of non-perturbative e↵ects are Euclidean brane instantons and non-perturbative

dynamics in the field theory of D7 or D3 branes such as the condensation of gauginos in the

gauge sector of the D brane. In the past decade there has been substantial progress in the

understanding and computational control of Euclidean D brane instantons [127]. Gaugino

condensation, being a dynamical e↵ect, has been well understood from the standard 4d

e↵ective field theory (EFT) but it is more di�cult to study from the full 10d e↵ective

action and the full string theory.

V = eK
⇣
K�1

a

¯

b

D
a

WD
¯

b

W
⌘
� 0 (2.5)

The starting point of the 4D EFT is the F-term 4d supergravity scalar potential for arbi-

trary superpotential W (�
M

) and Kähler potential K(�
M

, �̄
¯

M

) in units of M
p

:

V
F

= eK
⇣
K�1

MN

D
M

WD
M

W � 3|W |2
⌘

(2.6)

The tree-level Kähler potential for the Kähler moduli satisfies the celebrated no-scale prop-

erty K�1

i|̄

K
i

K
|̄

= 3 which is just a consequence of the homogeneity of V. Using this and

the fact that the flux superpotential does not depend on the T
i

fields, it implies a positive

definite scalar potential for S and U and stabilises them supersymmetrically by solving

D
UaW = D

S

W = 0. As long as these equations have solutions for di↵erent values of the

quantised fluxes they will generate the huge number of solutions that define the string land-

scape but at this stage the Kähler moduli T
i

have a completely flat potential that vanishes

for all values of the fields even for those that break supersymmetry D
T

W ⇠ K
T

W
0

6= 0.

Two main scenarios have emerged to fix the Kähler moduli: the original KKLT [15]

and the Large Volume [36, 37] (LVS) scenarios. Both start from the flux superpotential,
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compute the structure of �V . It takes schematically the form [37]:

�V / W 2

0

�K +W
0

�W (2.11)

If there were only one single expansion parameter and if, as usual, W
0

� �W and �K �
�W (since perturbative terms dominate over non-perturbative terms at weak couplings),

the first term would be the leading order term. It would lift the potential but would

give rise to a runaway behaviour, unless di↵erent order terms compete to give rise to a

minimum which would happen only if the perturbative expansion breaks down and the

corresponding expansion parameter is not small. This is the Dine-Seiberg problem [61].

Flux compactifications in IIB allow two ways to overcome this issue. First, in the KKLT

scenario the big discrete degeneracy of flux vacua is used in such a way that W
0

is tuned

to W
0

⇠ �W = W
np

. This then requires �W 2 terms to be also included in the expansion

stabilising the T
i

fields when they compete with the W
0

�W terms. Notice that in this limit

the first term in �V above is of order �W 3 and is then subdominant. Justifying neglecting

quantum corrections to the Kähler potential.

In LVS the fact that there are more than one expansion parameters plays the key role.

In this case the two terms in equation (2.10) can compete with each other to provide a

minimum as long as each comes from a di↵erent expansion. In this case �K ⇠ W
0

�W which

for �K ⇠ 1/V and �W ⇠ e�a⌧ implies that the volume is exponentially large V ⇠ ea⌧ . Here

⌧ is usually a blow-up mode that gets stabilised to values of order 1/g
s

which is large at

weak string coupling g
s

and therefore the volume is exponentially large.

In summary KKLT requires tuning of the fluxes for W
0

⌧ 1 whereas LVS works for

standard values of W
0

⇠ O(1 � 100) (as it is found in concrete examples [117, 131]) but

depends more on the perturbative corrections to K. Notice that from the eK factor in the

general expression for V the order of V
0

is V
0

⇠ M4

p

/V2 ⇠ M4

s

whereas in LVS the order

of �V is �V ⇠ W 2

0

M4

p

/V3 ⇠ M2

s

m2

3/2

⌧ M4

s

. Having V
0

vanishing at the minimum and

�V ⌧ M4

s

supports the validity of using the EFT at scales below M
s

.

2.2.2 Advantages

We would like here to emphasise several advantages of type IIB constructions:

1. Controlled flux backreaction: Background fluxes can be turned on to generate a po-

tential for the moduli in a controlled way since their backreaction on the internal

geometry just renders the compactification manifold conformally Calabi-Yau. There-

fore the understanding of the underlying moduli space is better than in other string

theories. Some progress has been made recently in computing the form of the Kähler

potential including the e↵ect of warping [62–69]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on an orientifold of a Calabi-

Yau threefold X. This is a controlled procedure if the compactification volume V ⌘
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Anti-Brane ‘Uplift’   (KKLT)

• Nonperturbative effects:

• Anti D3 brane (SUSY breaking+uplift)

1 Effective Field Theory of KKLMMT Revisited
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1. Recall that a probe brane in a D-brane background is described by the combination of the
DBI and WZ actions:
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where the first term comes from the DBI action and the second term from the Chern-Simons
action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative interaction cancels as should be
for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the
vacuum energy plus Coulomb interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that introduced the
volume dependence in the warp factor also acts on the 5-form F5 = dC4 + · · · which is the
one that gives the potential for the antibrane. Let us follow KKLMMT as close as possible.
As we know, in the presence of fluxes the 10D metric is of the form:
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SUSY AdS Vacua: DW=0



LARGE Volume Scenario

Fluxes determine superpotential W0 (U,S)         (GKP 2002)

Perturbative corrections to K: 

Nonperturbative contributions to W:

Exponentially large volume for weak coupling 
(SUSY broken,Uplift as in KKLT but more options)

BBCQ, CQS 2005

June 21, 2015 13:36 World Scientific Review Volume - 9in x 6in QuevedoPerspectivesSP

6 Fernando Quevedo

this e↵ect is captured in the EFT by the flux superpotential W0(U, S)d.The
perturbative superpotential cannot depend on the T fields since their imag-
inary components are axion-like fields having a perturbative Peccei-Quinn
shift symmetry: ImTi ! ImTi + ci and the holomorphicity of W would
then not allow dependence on the full superfield T

i

. Therefore they can
only appear in W through non-perturbative e↵ects.

W
np

=
X

i

A
i

e�aiTi (1)

in which the A
i

may be functions of other moduli or even matter fields.
Combining this with the flux superpotential gives the fullW = W0+W

np

which combined with the corrections to K are able to fix all moduli. This
has been done in practice for only a handful of models.

The scalar potential derived from the general N = 1 supergravity ex-
pression V = V

F

+ V
D

, with:

V
F

= eK
h
KIJ̄D

I

WD
J̄

W̄ � 3|W |2
i

(2)

where KIJ̄ is the inverse of the Kähler metric K
IJ̄

= @
I

@
J̄

K and D
I

W =
@
I

W +W@
I

K is the Kähler covariant derivative. The D-term part of the
salar potential is:

V
D

=
1

Ref
(⇠

FI

(T ) +K�T �)2 (3)

where ⇠
FI

⇠ @K/@T are the (misnamed) field-dependent Fayet-Iliopoulos
terms, only present for abelian groups, � a matter field transforming under
the corresponding gauge group and T are the corresponding generators
(charges in the case of a U(1)). Gauge indices suppressed.

Concentrating on the moduli dependence, the typical shape of the mod-
uli scalar potential takes the form:

V
F

/
 
KSS̄ |D

S

W |2 +Kab̄D
a

WD̄
b̄

W̄

V2

!
+

✓
Ae�2a⌧

V � Be�a⌧W0

V2
+

C|W0|2
V3

◆

(4)
Here ⌧ = ReT represents a typical T modulus, with V the overall vol-

ume (function of the T fields) and the potential is meant to be seen as
an expansion in large volume, where the e↵ective field theory treatment
dMore explicitly the flux superpotential takes the form

R
G3 ^⌦ where G3 = H3 + iSF3

with H3, F3 the two 3-form field strengths of the two stringy 2-form potentials. Here ⌦

is the unique (3, 0) form that exists for every CY manifold. Expanding ⌦ in a basis of

three-forms generates a superpotential dependence on the U
a

fields.

the Kähler moduli, the Yukawa couplings and the µ-term can depend only on S and U at

the perturbative level with the T -moduli appearing only non-perturbatively. We discuss

this dependence in more detail in Sec. 3 and Appendix B.

As motivated in [33, 53], we assume the following form of the Kähler potential which

describes the regime for the visible sector near the singularity

K = −2 ln

(

V +
ξ̂

2

)

− ln(2s) + λSM

τ2SM
V + λb

b2

V +KdS +Kcs(U) +Kmatter , (2.5)

where ξ̂ ≡ ξs3/2, the λ’s are O(1) coefficients, Kcs(U) is the tree-level Kähler potential for

complex structure moduli and KdS encodes the dependence on the sector responsible for

obtaining a dS vacuum (see Sec. 2.3). The matter Kähler potential Kmatter is taken to be

Kmatter = K̃α(M,M )C
α
Cα + [Z(M,M )HuHd + h.c.] . (2.6)

We assume at this stage that the matter metric is flavour diagonal beyond the leading

order structure which was highlighted in [54].9 The only exception is that we allow for the

Higgs bilinear to appear in Kmatter which we parameterise with the function Z. Note that

K̃α is the matter metric for the visible sector which we will parameterise as [33]

K̃α =
fα(U,S)

V2/3

(

1− cs
ξ̂

V + K̃dS + cSMτ
p
SM + cbb

p

)

, p > 0 , (2.7)

where we have used K̃dS to parameterise the dependence on the dS mechanism (details will

be given in Sec. 3.2). The c’s are taken as constants for simplicity while p is taken to be

positive in order to have a well-behaved metric in the singular limit b, τSM → 0. As they

can in principle depend on U and S, we comment in due course on the influence on the

soft-terms of such a dependence. The appearance of the Higgs bilinear and its potential

parametrisation are discussed in Sec. 3.3.4 when we analyse the µ-term in this scenario.

In general the functions fα(U,S) could be non-universal. Such non-universality can have

interesting phenomenological implications (e.g. mass hierarchies among families of sfermion

masses needed for a realisation of natural SUSY). As we are interested in soft-terms arising

for D-branes at singularities, we take the gauge kinetic function to be

fa = δaS + κa TSM , (2.8)

where δa are universal constants for Zn singularities but can be non-universal for more

general singularities.

2.2 Moduli stabilisation

As outlined earlier in this section, we stabilise the moduli following the LVS procedure.

The complex structure moduli and the dilaton are fixed at tree-level by background fluxes

while the Kähler moduli are fixed using higher order corrections to the effective action [28].

9Subleading flavour off-diagonal entries which can in principle appear [55] are taken to be absent. This

is motivated by the appearance of additional anomalous U(1) symmetries in D-brane models, in particular

also in the context of del Pezzo singularities [41].

– 8 –
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2.6. dS from hidden F-terms

Let us now briefly present a general mechanism which can lead to dS vacua. In
globally consistent models τb is wrapped by a hidden stack of D7-branes because
of D7-tadpole cancellation. Moreover Freed-Witten anomaly cancellation induces
a non-zero gauge flux on τb.2–4 This modulus therefore acquires a U(1)-charge and
appears in the Fayet-Iliopoulos term of the D-term potential:

V bulk
D =

1

τb

(

∑

i

qD7i|φi|2 − ξD7

)2

with ξD7 =
3

(2V)2/3

The total scalar potential reads:

Vtot = V bulk
D + VF =

1

τb

(

qD7|φdS|2 − ξD7

)2
+m2

3/2|φdS|
2 + VO(V−3)

where is VO(V−3) the moduli potential (2). The minimum for φdS lies at

qD7|φdS|2 = ξD7 −
m2

3/2τb

2qD7

Substituting this result in Vtot we obtain:

Vtot = V bulk
D,0 + VF =

m4
3/2τb

4q2D7

+m2
3/2

ξD7

qD7
+ VO(V−3) (3)

The first term on the RHS of (3) is negligible since it scales as V−10/3 while the
second term on the RHS behaves as V−8/3 and can play the rôle of an uplifting
term. Minimising with respect to τs and V we obtain

⟨Vtot⟩ =
3W 2

0

4a3/2s V3

[

δV1/3 −

√

ln

(

V
W0

)

]

with δ ≃ 0.01

(

a3/2s

qD7

)

Clearly W0 can be tuned to get ⟨Vtot⟩ = 0. In particular, W0 ∼ O(1) gives rise
to solutions around V ∼ 106-107 which are the values needed to get TeV-scale
SUSY.2,3,5

This uplifting mechanism has an interesting higher dimensional understanding
in terms of T-branes.18 In fact, the effective field theory has to be expanded around
the correct background. For a hidden D7-stack this is parameterised by an adjoint
complex scalar Φ. The non-zero gauge flux breaks SO(8) to U(4) (focusing on the
case of 4 D7s on top of an O7), and so Φ decomposes as 28 → 160 ⊕ 6+2 ⊕ 6−2. A
deformation of Φ can be written as

δΦ =

(

φ160
φ6+2

φ6−2
−φT160

)

The 8D BPS equation of motion for a hidden D7-brane is J∧FD7+
[

Φ, Φ̄
]

dvol4 = 0,
implying that if J ∧ FD7 ̸= 0 for FD7 ̸= 0,

[

Φ, Φ̄
]

̸= 0. Thus Φ cannot be in the
Cartan and has to take the simple form:

⟨Φ⟩ =
(

0 φ6+2

0 0

)
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4D EFT: F and D terms

10D: T-branes

e.g. T- Branes



dS Kahler Moduli Stabilisation

Vuplift = A/V a

1<a<3

Vuplift



Other de Sitter proposals

• Anti D3 brane 

• D+F terms in EFT or T-branes

• Complex structure/Dilaton uplift (DUW≠ 0, DSW≠ 0)

• Non critical strings, negative curvature 
compactifications, Kahler uplift, nonperturbative 
effects on D3 branes, ...



String Landscape
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Friday, July 11, 14

One single theory (+ no free 
parameters) but MANY solutions



Compactification  



The String Landscape

Classical Solutions

Quantum Decay
(tunnel effect)



Multiverse

MANY solutions (>101000!): 
Anthropic ‘explanation’ of 
dark energy!!?????



The Landscape

• Good: A `solution’ of dark energy and allows  for the first 
time to trust calculations for low-energy SUSY breaking.

• Bad:  missed opportunity to have new physics at low 
energies from small Λ.

• Ugly: It may also be used to `solve’ other problems  (Split 
SUSY, High-energy SUSY) in unnatural ways. 



Achievements over the years
• Remarkable: well defined prescription exists that includes 

all stringy ingredients: branes, orientifolds, warping, anti (T)-
branes, perturbative, non-perturbative effects, etc. 

• IIB with fluxes~ Calabi-Yau (moduli space understood).

• W0<<1 is plausible (not achieved yet) 
• Concrete compact CY examples
• Perturbative effects computed so far harmless. 
• Antibrane: nonlinearly realised SUSY 

• Hierarchies: 

Type IIB flux compactifications provide two ways to overcome this problem. First,

in the KKLT scenario the big discrete degeneracy of flux vacua is used to tune W
0

to

an exponentially small value so that W
0

⇠ W
np

. This then requires W 2

np

terms to be

also included in (2.9) stabilising the T -fields when they compete with W
0

W
np

terms [15].

Notice that in this limit quantum corrections to the Kähler potential can be consistently

neglected since the first term in (2.9) is subdominant given that W 2

0

K
p

⌧ W
0

W
np

⇠ W 2

0

for K
p

⌧ 1 (this is always the case at large volume since the perturbative e↵ects K
p

are

suppressed by inverse powers of V).
The second case is LVS models where the fact that there is more than one expansion

parameter plays the key rôle. In this case the two terms in (2.9) can compete with each

other to provide a minimum as long as each comes from a di↵erent expansion. Hence at

the minimum one has W 2

0

K
p

⇠ W
0

W
np

which, for K
p

⇠ 1/V and W
np

⇠ e�⌧s , yields

an overall volume of order V ⇠ W
0

e⌧s . Here ⌧s is a blow-up mode that gets stabilised to

values of order 1/gs. It is therefore large for weak string coupling, implying that the CY

volume is exponentially large [47–49].

In summary, KKLT requires a major tuning of the fluxes to obtain W
0

⇠ W
np

⌧ 1,

whereas LVS works for natural values of the flux superpotential of order W
0

⇠ O(1� 100)

(as found in concrete examples [50, 51]) but depends more on perturbative corrections to

K. Notice that, from the eK factor in the general expression (2.5), the order of V
0

is

V
0

⇠ M4

p /V2 ⇠ M4

s , whereas in LVS the order of �V is �V ⇠ W 2

0

M4

p /V3 ⇠ M2

sm
2

3/2 ⌧ M4

s .

Having V
0

vanishing at the minimum and �V ⌧ M4

s supports the validity of the EFT at

scales below Ms.

2.2.2 Advantages

We would like here to emphasise several advantages of type IIB constructions:

1. Controlled flux backreaction: Background fluxes can be turned on to generate a po-

tential for the moduli in a controlled way since their backreaction on the internal

geometry just renders the compactification manifold conformally Calabi-Yau. There-

fore the understanding of the underlying moduli space is better than in other string

theories. Some progress has been made recently in computing the form of the Kähler

potential including the e↵ect of warping [52–59]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on a CY orientifold. This is

a controlled procedure if the compactification volume is large so that the following

hierarchy of scales is valid:

E ⌧ M
KK

=
Ms

V1/6
⌧ Ms ⌘ 1

`s
⌘ 1

2⇡
p
↵0

= g1/4s
Mpp
4⇡V . (2.10)

As mentioned above, at tree-level the dilaton and the complex structure moduli are

fixed supersymmetrically at DSW = DUW = 0 via non-zero quantised G
3

fluxes
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tation it was introduced as an uplift mechanism of the
original AdS vacuum providing a positive correction to
the scalar potential of the form:

¢V = e A

V ∞
, (12)

with e A the flux-induced warp factor and ∞ = 4/3 in the
warped region while ∞ = 2 in an unwarped region. The
warp factor can be used to tune the minimum to dS at
almost zero vacuum energy.

Criticism 1

Since it was proposed, this has been considered as the
weakest part of the KKLT proposal. Despite the relation
with the KPV scenario, adding an anti-brane seems ar-
bitrary. It also seems to break supersymmetry explicitly,
losing computational control of the EFT and giving a run-
away behaviour to 10D at the classical level7. Further-
more the original scenario was not substantiated by ex-
plicit models on concrete Calabi-Yau orientifolds. More
recently detailed study of the geometry corresponding to
anti-branes on a throat indicated the presence of singu-
larities that were claimed to destabilise the KKLT system
if anti-branes were present [20, 104].

Comments

The anti-brane sector has been probably the most ques-
tioned component of the KKLT proposal. Regarding the
apparent arbitrariness, the KPV scenario already provides
a natural motivation for its consideration. The fact that
supersymmetry is broken has been better understood
by the recent developments relating the EFT of the anti-
brane to non-linearly realised supersymmetry a la Volkov
and Akulov. Moreover, a concrete superspace formula-
tion in terms of a nilpotent chiral superfield X (X 2 = 0)
[105, 106] captures precisely the term in (12) by adding to
the original superpotential and Kähler potential a general
dependence on X :

¢W = c X , ¢K =ØX X̄ . (13)

Here c is in principle a function of the complex struc-
ture moduli which can be naturally associated to warping

7 For an early discussion of the problems with anti-branes in
KKLT see [103].

whileØ depends also on the Kähler moduli. The superfield
X has a single propagating degree of freedom correspond-
ing to the goldstino. Concrete Calabi-Yau orientifolds have
been constructed (compact and non-compact) with pre-
cisely this single degree of freedom [107,108], so providing
the first explicit realisations of the dS KKLT scenario. Fi-
nally an EFT analysis of the anti-brane singularity has
been done for the simplest case of one single anti-brane
(which is sufficient to achieve dS) for which the probe
approximation is under control and no divergences are
found, so addressing the anti-brane induced singular-
ity problem [109, 110]. The same conclusion has been
reached recently using different techniques [101,111,112].

Criticism 2

Another potential obstacle has been claimed by ref. [21] re-
garding the calculation of non-perturbative effects when
anti-branes are present. In an effort to have a 10D de-
scription of gaugino condensation, ref. [21] developed a
technique to compute the contribution of the anti-brane
to the scalar potential and found no dS solution. This was
understood also from the 4D EFT in terms of the nilpotent
superfield X by considering the X dependence of W as:

¢W = X
°
c +e Wnp

¢
. (14)

It is easy to check that for c = 0 and e 6= 0 the contribution
of X to the scalar potential is such that there is no dS
vacuum either in KKLT [21] or in LVS [113].

Comments

The result regarding the non-perturbative superpotential
in the presence of anti-branes is based on a number of
different assumptions which are not fully justified. The
most relevant is perhaps assuming that the dynamics of
gaugino condensation h∏∏i can be described in terms of
the ∏∏ dependence of the classical action. Gaugino con-
densation is clearly a 4D non-perturbative effect due to
the non-trivial low-energy dynamics of the corresponding
gauge theory. Its effect needs to be computed by properly
performing the path integral of the gauge degrees of free-
dom below the scale of the relevant gauge theory which
is a highly complicated quantum calculation. It is actu-
ally known in field theory that properly computing the
effective superpotential does not reproduce the result of
naively substituting ∏∏ª§strong in the classical effective
action where §strong is the condensation scale. In fact, at
least in the case of the heterotic string, one can show the
conflict quite explicitly [103, 114].

10 Copyright line will be provided by the publisher
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natural motivation for its consideration. The fact that supersymmetry is broken has been

better understood by the recent developments relating the EFT of the anti-brane to non-

linearly realised supersymmetry a la Volkov and Akulov. Moreover, a concrete superspace

formulation in terms of a nilpotent chiral superfieldX (X2 = 0) [102, 103] captures precisely

the term in (2.11) by adding to the original superpotential and Kähler potential a general

dependence on X:
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Here c is in principle a function of the complex structure moduli which can be naturally

associated to warping while � depends also on the Kähler moduli. The superfield X has

a single propagating degree of freedom corresponding to the goldstino. Concrete Calabi-

Yau orientifolds have been constructed (compact and non-compact) with precisely this

single degree of freedom [104, 105], so providing the first explicit realisations of the dS

KKLT scenario. Finally an EFT analysis of the anti-brane singularity has been done for

the simplest case of one single anti-brane (which is su�cient to achieve dS) for which

the probe approximation is under control and no divergences are found, so addressing the
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perturbative e↵ects when anti-branes are present. In an e↵ort to have a 10D description

of gaugino condensation, ref. [21] developed a technique to compute the contribution of
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Abstract: The magnitude of the flux superpotential Wflux plays a crucial rôle in de-

termining the scales of IIB string compactifications after moduli stabilisation. It has

been argued that values of Wflux ≪ 1 are preferred, and even required for physical and

consistency reasons. This note revisits these arguments. We establish that the cou-

plings of heavy Kaluza-Klein modes to light states scale with the internal volume as

g ∼ MKK/MP ∼ V−2/3 ≪ 1 and argue that consistency of the superspace derivative

expansion requires gF/M2 ∼ m3/2/MKK ≪ 1, where F is the auxiliary field of the light

fields and M the ultraviolet cutoff. This gives only a mild constraint on the flux superpo-

tential, Wflux ≪ V1/3, which can be easily satisfied for O(1) values of Wflux. This regime

is also statistically favoured and makes the Bousso-Polchinski mechanism for the vacuum

energy hierarchically more efficient.

1. Argument from Consistency I: a small W0 has been required by the following con-

sistency argument. The use of a derivative expansion in a supersymmetric effective

field theory indicates that there should also be an expansion in powers of ϵ ≡ F/M2

where F is the auxiliary field of the relevant light fields and M an ultraviolet cutoff.

Imposing ϵ ≪ 1 implies that the superpotential which is proportional to F should be

very small [3, 4].

2. Argument from Consistency II: a natural value W0 ≃ O(1−10) has been argued to be

incompatible with a four-dimensional effective field theory since it implies background

fluxes with an energy density of order the string scale: Vflux ≃ O(M4
s ). This is not

true since the important quantity to look at is not the scaling of the flux potential

energy but its vacuum expectation value (VEV). If the dilaton and the complex

structure moduli are fixed supersymmetrically, then this VEV is vanishing at leading

order, even if it would formally scale as M4
s . In order to trust the four-dimensional

effective field theory, one has to check that the effects used to fix the Kähler moduli,

develop a potential whose VEV satisfies ⟨V ⟩ ≪ M4
KK .

3. Argument from Phenomenology I: a small W0 has been argued to be necessary also

for a viable phenomenology. In the original efforts to stabilise the Kähler moduli T , a

non-perturbative term Wnp was added to Wflux [5]. In order to stabilise the T -moduli

at values large enough to trust the effective field theory, Wnp has to be of the same

order as Wflux, requiring the latter to be ‘fine tuned’ to values as small as 10−10 in

string units. Even though Wflux is determined from a combination of integers, small

values of Wflux are allowed in the multi-dimensional space of integer fluxes.

4. Argument from Phenomenology II: the string scale Ms is set by the Planck scale MP

and the internal volume V, Ms ≃ MP /V1/2, whereas the gravitino mass depends also

on W0: m3/2 ≃ W0MP /V. Therefore the standard phenomenological preference for

Ms ≃ MGUT ≃ 1016 GeV from unification and m3/2 ≃ Msoft ≃ O(1) TeV in order to

address the hierarchy problem, requires V ≃ O(104) and W0 ≃ O(10−11).

5. Argument from Statistics: a small W0 has also been argued to be preferred on statis-

tical grounds. In the original treatments [6] the magnitude of W0 was argued to be

uniformly distributed. More recently, arguments have been given that the statistical

distribution of W0 can peak at zero [7], indicating some preference for a hierarchically

small value of W0. Similarly, recent statements have been made arguing that a small

cosmological constant requires a small W0 [8, 9].
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Nilpotent Superfields EFT

2 Nilpotent goldstino

Here we will collect some properties of the nilpotent goldstino superfield X. In broken super-
gravity effective field theory the goldstino is eaten by the gravitino realising the super-HIggs
effect and the effective field theory has been known for more than 30 years. However if this
breaking happens at very low energies compared with the Planck mass, the goldstino cou-
plings can be described directly as an independent field in terms of a non-linear realisation
of supersymmetry, as in the original Volkov-Akulov formalism.

Extracting this effective field theory is useful if the process of supersymmetry breaking
is not fully under control such as due to strongly coupled systems or in brane models in which
the presence of different configurations of branes can break supersymmetry, sometimes even
partial breaking, and it would be important to have control on the low energy effective
theory in which supersymmetry is non-linearly realised.Over the years there have been
several approaches to describe the low-energy couplings of the goldstino in terms of spurion
or constrained superfields. We will follow here the approach of describing the goldstino in
terms of a chiral superfield X that is further constrained to be nilpotent X2

= 0 with the
aim at describing the breaking of supersymmetry due to the presence of an anti D3 brane
in flux compactifications.

The couplings of a nilpotent chiral superfield can be described in terms of very simple
Kahler and superppotential as follows:

K = K0XX⇤ W = ⇢X +W0 (2.1)

where K0, ⇢,W0 may be functions of other low-energy fields. Higher powers of X are not
present in K and W due to the nilpotency condition. Furthermore this condition implies
that for a nilpotent superfield X with components X0, , F :

X = X0(y) +
p
2 (y)✓ + F (y)✓¯✓ (2.2)

With, as usual, yµ = xµ + i✓�µ¯✓. It is easy to see that the nilpotency constraint implies
that the scalar component of X is not a propagating field but it is given by [3]:

X0 =
  

2F
(2.3)

The effective field theory (EFT) of X reproduces the Volkov-Akulov action and has
been studied both in global and local supersymmetry. For the anti D3 brane in the KKLT
scenario, the representation in terms of X is very convenient since it allows the treatment of
the presence of the supersymmetry breaking driven by the anti brane in terms of standard
supergravity couplings of matter and moduli superfields to the nilpotent goldstino. The
fact that the scalar component of X is not a propagating field is very relevant: first it fits
well with the fact that the anti D3 brane is fixed at the tip of a warped throat and so it does
not have a modulus describing its motion, contrary to D3 branes. Second, in calculating the
scalar fields potential energy, there is no contribution for X0 and it is consistent to simply
set X0 = 0 when looking for vacuum configurations in the same way we set all fermions to
zero. This simplifies substantially the calculations.
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1 Introduction

Constrained superfields can play important roles in supersymmetric theories and have been
subject to intensive research during the past few years (see for instance [? ]). The simplest
case is the nilpotent chiral superfield X (X2

= 0). X has as the single propagating compo-
nent the Volkov-Akulov goldstino with supersymmetry broken by its F term component.
The nonlinearly realised supersymmetry can be essentially represented by the standard su-
persymmetric couplings of standard chiral, gauge and gravity superfields coupled to the
goldstino superfield X. Implementing this idea to the low-energy effective action of string
compactifications in the presence of anti branes allows the description of the anti brane
states from a purely supersymmetric action.

In flux compactifications the presence of an anti D3 brane, as proposed in [2], provides
probably the simplest and more model independent realisation of de Sitter space in string
theory (for other proposals see for instance [? ]). However since the anti-brane breaks the
supersymmetry preserved by the rest of the components of the compactification, the non-
supersymmetric effective field theory was not fully under control. Describing the effective
field theory that captures the physics of this anti brane in terms of a purely supersymmetric
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1 Effective Field Theory of KKLMMT Revisited

Please check the next set of arguments:

V = K

�1
0

����
@W

@X

����
2

=

|⇢|2

K0
� 0 (1.1)

1. Recall that a probe brane in a D-brane background is described by the combi-
nation of the DBI and WZ actions:

S = �T3

Z
d

4
x

p
�g

✓
1

h

p
1� hg

µ⌫

@

µ

r@

⌫

r � q

h

◆
(1.2)

where the first term comes from the DBI action and the second term from
the Chern-Simons action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative
interaction cancels as should be for BPS states. For a brane/antibrane system,
q = �1 the two terms add and give rise to the vacuum energy plus Coulomb
interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that
introduced the volume dependence in the warp factor also acts on the 5-form
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With the first term giving the V2/3 factor that gives the uplift and the second
term shows the origin for the V2/3 factor on the Coulomb interaction term.
Therefore what we were missing before is the scaling of the C4 term in the
action showing that there is also a V2/3 in the Coulomb term.

1

~ Volkov-Akulov !

• The SM Landscape. The standard model including gravity imply a landscape of vacua.

The Lagrangian of the standard model has a unique solution in four dimensions describing

the physics that we know. However this same Lagrangian allows for an essentially infinite

number of solutions in which one of the spatial dimensions is curled into a circle so the

space instead of being the Euclidean R3 it is R2 ⇥ S1 with S1 a circle. In [?] explicit

solutions have been found fixing the value of the radius of the circle from the parameters

of the standard model and using well understood quantum corrections. This provides a

concrete realisation of a ’landscape’ of huge number of universes or multiverse. Notice

that usually the existence of a landscape is associated to theories like string theory or

higher dimensional gravitational theories that are not yet confirmed by experiment and

that the existence of a multiverse is too speculative. However especially after the discovery

of the Higgs, essentially nobody questions the validity of the standard model and yet this

experimentally confirmed theory also implies the existence of a landscape of vacua, each

vacuum describing a di↵erent universe. This makes the idea of the multiverse far less

speculative than it is usually presented.

• The SM is incomplete. The standard model is almost certainly not complete. It cannot

by itself allow for an explanation of dark matter, the density perturbations of the CMB

and baryogenesis for instance. Moreover the value of the many parameters of the SM

is not understood. In particular the mass of the Higgs is not protected under quantum

corrections which tend to bring it to be as high as the limit of validity of the e↵ective field

theory, namely Mplanck. The nature of dark energy responsible for the current accelerated

expansion of the universe is not understood, especially the fact that it seems to indicate

a vacuum energy as small as ⇤ ⇠ 10�120M4
planck. Furthermore gravity is described only at

the classical or e↵ective field theory level. So the SM is not ultraviolet complete. This is

the best evidence we have for the need to go beyond the standard model.

L = �⇢2 + i@a ̄�̄
a +

1

4⇢2
 ̄2@2 2 � 1

16⇢6
 2 ̄2@2 2@2 ̄2

In order to search for the new physics that will overcome the SM we have to explore experi-

mentally all possibilities, increasing the energy, intensity and reach to the highest possible limits,

the history of science tells us we are bound to find something. For theorists we can follow several

directions:

1. Simplicity. Add the simplest possible component to the SM (e.g. one extra neutral fermion

or boson to be dark matter and/or drive inflation, etc.) and contrast with observations.

This is a way to start at least to eliminate the simplest cases and start building up a more

meaningful theory.
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Nilpotent Superfields and KKLT

1 Introduction

It is well known that the presence of anti-branes in otherwise supersymmetric string configurations

breaks supersymmetry. Describing this e↵ect in a properly defined e↵ective field theory is an interesting

challenge. In particular, the KKLT scenario of de Sitter moduli stabilisation [1,2] relies on the presence

of at least one anti-D3-brane (D3) to lift the supersymmetric AdS minimum and allow the possibility

of dS string vacua. The uplift is due to the positive energy provided by the tension of the D3 brane

located at the tip of a warped throat.

Even though it is generally agreed that the presence of an antibrane breaks supersymmetry spon-

taneously, see for example [3], a manifestly supersymmetric action describing this e↵ect was missing

until recently. The corresponding action of the D3 was presented recently in [4] starting from a single

-symmetric brane in the supersymmetric background with fluxes. Using the consistent supersym-

metric orientifold condition for the fields on the brane one finds that the vectors and scalars are cut

o↵ in this procedure. It corresponds to placing the D3 on top of an O3-plane, and the surviving part

of the brane action coincides with the Volkov-Akulov (VA) action [5]. This action has a non-linearly

realized supersymmetry on a single N = 1 fermionic goldstino which has no bosonic supersymmetric

partners. The Volkov-Akulov goldstino model has also an alternative description via a nilpotent chiral

multiplet [6,7]. In such a multiplet the scalar component, sgoldstino, is not a fundamental field but a

bilinear combination of the fermions. The auxiliary field of the nilpotent multiplet is not vanishing,

which signifies a spontaneously broken supersymmetry.

The renewed interest to KKLT construction of de Sitter vacua is partly due to improved obser-

vational data on dark energy and inflationary cosmology. The update on dark energy follows from

combining Planck data with other astrophysical data, including Type Ia supernovae. The equation of

state of dark energy is now, according to [8]

w = �1.006± 0.045 . (1.1)

This supports the idea behind the KKLT construction and other constructions such as the large

volume scenario (LVS) [9] that lead to the string landscape scenario, that a cosmological constant

with w = �1 remains a good fit to data. In fact it is a much better fit than the one in 2003 when this

construction was suggested 1.

Further motivations for nilpotent superfields come from cosmology. The recent bottom-up approach

to cosmology [16–18] using an e↵ective d=4 N = 1 supergravity has very nice phenomenological

features. Namely, new supergravity models were constructed depending on two chiral superfields [16],

an inflaton superfield and a nilpotent superfield X satisfying the nilpotency condition X2(x, ✓) = 0.

These models agree nicely with the Planck data [8], during inflation the scale of �⇢

⇢

and the tilt of a

power spectrum n
s

take their known observational values. Meanwhile, the level of primordial gravity

waves r depends on the curvature of the moduli space and is therefore flexible with regard to future

discovery of gravity waves or a new bound on r. At the minimum of inflationary potential in the

recent models in [18] supersymmetry is broken spontaneously in de Sitter vacua and the cosmological

1For other approaches towards de Sitter space in string compactifications see [10–15].

2

Goldstino: Nilpotent chiral 
superfield

throat is dual to a cascade of Seiberg dualities in a theory with M fractional branes and N = KM

D3-branes (at some UV cuto↵ scale), the warp factor at the bottom of the throat is

z ⇠ exp
�
� 2⇡K

Mg
s

�
(3.7)

Actually, di↵erent throats lead to di↵erent order 1 numerical factors in the exponent, related to the

amount of D3-branes disappearing in a duality period. The important point is however that the

parametric dependence in K and M is maintained, and therefore the throats lead to exponential

suppressions with respect to the bulk or cuto↵ scales.

4 Coupling the Nilpotent field to moduli and matter fields

We have seen that the parameter M reflects the breaking of supersymmetry, and the goldstino belongs

to a chiral nilpotent superfield X. In this section we provide a preliminary discussion of how X

might couple to the moduli and matter fields in a full string compactification, leaving a more detailed

description for the future.

Let us assume that the complex structure moduli and dilaton have been stabilised supersymmet-

rically by the fluxes, and consider as simple model of the remaining dynamics. We consider the (for

simplicity, a single) Kähler modulus T , the nilpotent superfield X, and a chiral superfield C as a

representative matter field, which we assume to be stabilized at C = 0 but we keep it in the action to

study how its components split after supersymmetry breaking.

In general the Kähler potential can be written as

K = �3 log (T + T ⇤) + c (T + T ⇤)n XX⇤ + ZCC⇤ + · · · (4.1)

where

Z = (T + T ⇤)m + b (T + T ⇤)k XX⇤ (4.2)

The coe�cients c, b are arbitrary (after absorbing other coe�cients as field redefinitions of C ) and

also the ‘modular weights’ n,m, k which are expected to be non-positive rational numbers. Particular

cases are n,m, b = 0 corresponding to canonical kinetic terms for both X and C. Also the case

n = m = �1, k = �2, b = 1/3 corresponds to the Kähler potential K = �3 log(T +T ⇤�CC⇤� cXX⇤)
after scaling properly the fields C and X. The superpotential is

W = W
0

+MX +W
matter

+W
np

(4.3)

where both W
0

and M are functions of the complex structure moduli and dilaton at their minimum,

W
matter

= C3 + · · · , and W
np

= Ae�aT . We will work in the limit a (T + T ⇤) � 1 in order to have a

proper non-perturbative expansion.

The coupling between T and X modifies the appearance of M in the scalar potential and gives:

V
uplift

=
|M |2

c (T + T ⇤)n+3

(4.4)
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Plug into SUGRA expression for V, V= VKKLT + Vuplift :

(like KKLT, KKLMMT)

Antibrane uplift from manifestly SUSY EFT!

Rocek,...,Komargodski, Seiberg,...

Kallosh et al. 2013-15
see also Polchinski
@ SUSY 2015

1 Effective Field Theory of KKLMMT Revisited

Please check the next set of arguments:
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W = W0 +Wmatter +W
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Vuplift =
|⇢|2

c(T + T

⇤
)

n+3
(1.3)

1. Recall that a probe brane in a D-brane background is described by the combi-
nation of the DBI and WZ actions:
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where the first term comes from the DBI action and the second term from
the Chern-Simons action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative
interaction cancels as should be for BPS states. For a brane/antibrane system,
q = �1 the two terms add and give rise to the vacuum energy plus Coulomb
interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that
introduced the volume dependence in the warp factor also acts on the 5-form
F5 = dC4 + · · · which is the one that gives the potential for the antibrane. Let
us follow KKLMMT as close as possible. As we know, in the presence of fluxes
the 10D metric is of the form:

ds

2
10 = e

2A
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dx
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The 5-form field strength F5 = dC4 + ... is:

(F5)
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(1.6)

Rescaling the 6d metric by g

mn

! �g

mn

is compensated by e

2A ! �e

2A which
for � = V1/3 is what introduces the V1/3 factor in the 4d part of the metric
and gives rise to the famous V�4/3 in the uplift term. But this also scales the
solution for C4 by C4 ! �

2
C4. Recall that this is the source of the brane

antibrane coupling determined by h

�1 with h
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4A. So in the modification
of the antibrane to the coupling h
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Figure 1: Description of a deformed conifold with 3-form fluxes (a KS throat) embedded

in a compact geometry, with anti-D3-branes trapped at the tip of the throat. Beyond the

throat, the compactifications may include other ingredients, like D7-branes wrapped on

4-cycles, etc, which are not relevant for the generation of the warp factor on the throat,

but may lead to other interesting effects (like non-perturbative superpotentials).

embeds it into different possible compactification manifolds. This approach separates

the local properties of the models, such as the gauge group, the massless matter

spectrum, running of gauge coupling, etc, from properties depending strongly on the

global features of the compactification, such as supersymmetry breaking, scalar field

potentials, etc.

A large class of local D-brane configurations leading to chiral 4d world-volume

gauge sectors is provided by D3-branes (or D3-branes) at singularities. It is thus

natural to combine techniques of model building with D3-branes at singularities

with the construction of highly warped throats using deformed conifolds with fluxes.

Indeed in this paper we construct explicit geometries containing deformed conifolds,

and orbifold singularities sitting at the corresponding 3-spheres. Introduction of an

explicit set of suitable 3-form fluxes leads to a warped throat, with the compact

3-cycles and the orbifold singularity at its tip. Finally introducing a set of D3-branes

and D7-branes (all dynamically trapped at the tip of the throat) at the orbifold
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Abstract

We describe in detail how the spectrum of one anti-D3-brane in four-dimensional orientifolded

IIB string models reproduces precisely the field content of a constrained nilpotent chiral superfield

with one single physical component corresponding to the goldstino. In particular we explicitly

consider D3 on top of an O3-plane in warped throats, induced by (2, 1) fluxes. More general systems

including several anti-branes and other orientifold planes are also discussed. This provides further

evidence to the claim that non-linearly realised supersymmetry due to the presence of antibranes in

string theory can be described by standard supersymmetric theories including nilpotent superfields.

Implications to the KKLT and related scenarios of de Sitter moduli stabilisation, to cosmology and

to the structure of soft SUSY-breaking terms are briefly discussed.
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(no scalars, no  gauge fields)
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Spectrum on (anti) D3 brane

2 String theory realization of the nilpotent goldstino

In this section we provide the string theory construction of a local system of D3-branes on warped

throats and show that the worldvolume spectrum contains only the goldstino of the broken super-

symmetries, with no extra fields. This shows, with account of a non-linear goldstino coupling, that

the presence of the D3-brane breaks supersymmetry spontaneously. This also simplifies the descrip-

tion of systems including this kind of antibranes, by using the nilpotent goldstino multiplet to write

supersymmetric actions [7].

The construction is based on one D3-brane on top of an O3-plane at the bottom of a warped throat

(or in more generality, in the presence of imaginary self-dual (ISD) 3-form flux G
3

). This is precisely

the setup used in uplifting to de Sitter (in the KKLT or LARGE volume scenarios), and in the inflation

models described in the introduction.

In this section we only use general features of warped throats, like the presence of supersymmetric

3-form fluxes. Explicit examples will be discussed in section 3.

2.1 D3- and D3-branes on warped throats

We now describe the worldvolume spectrum on D3- and/or D3-branes on top of O3-planes. These

computations are relatively standard, and we basically quote the results and their physical interpre-

tation.

2.1.1 Open string spectra in 10d flat space

As a warmup, consider a stack of N D3-branes in flat 10d space. As is familiar [3], the massless open

string spectrum, classified according to representations of the SO(3, 1) 4d Lorentz group on the brane

worldvolume, the SO(6) ' SU(4) rotation group in the transverse dimensions, and the U(N) gauge

group, is shown in Table 1.

Field SO(3, 1) SO(6) U(N)

Gauge boson vector 1 Adj

Scalar 1 6 Adj

Fermion spinor 4 Adj

Table 1: Spectrum on a stack of N D3-branes in flat space

It is the N = 4 U(N) super Yang-Mills vector multiplet. The supersymmetry of the open string

sector is related, by open-closed duality, to the BPS cancellation of NSNS and RR closed string

exchange between parallel D3-branes, as follows. The one-loop open string partition function (annulus

5

diagram) is given (up to a center of mass momentum factor) by

Z
annulus

= trH
open NS+R

�
qL0

�
(2.1)

where q = e�2⇡t is the modular parameter and L
0

is the open string Hamiltonian in the NS or R

Hilbert space H
open

. The diagram can be transformed into a tree level exchange of NSNS and RR

closed string states between boundaries, i.e. D3-branes, with the structure

Z
annulus

= hD3| q0 2L0 |D3i
NSNS

+ hD3| q0 2L0 |D3i
RR

(2.2)

where now L
0

is the closed string Hamiltonian in the NSNS and RR sectors, the factor of 2 in the

exponent accounts for left- and right-moving sectors, and q0 = e�2⇡t

0
with t0 = 1/t.

If we instead consider a stack of N D3-branes, we obtain precisely the same spectrum, as there is no

way to distinguish D3- from D3-branes if they are isolated configurations (see e.g. [23] for review). The

only di↵erence, since they preserve opposite set of supersymmetries, is that the fermions transform in

the 4 of SU(4), which amounts to a mere convention in the absence of extra ingredients. Of course,

in real string compactifications there are many ingredients that distinguish them. In our case, we are

interested in branes located on warped throats supported by fluxes. We turn to consider their e↵ect

on the worldvolume spectrum.

2.1.2 E↵ects of fluxes in warped throats

The masslessness of the above spectrum is in general modified in the presence of NSNS and RR 3-form

fluxes G
3

, such as those supporting the throat (or with more general fluxes introduced to stabilize

compactification moduli) [24, 25].

We start by pointing out that such fluxes have no e↵ect on the gauge group, so the gauge bosons

remain massless. The e↵ect of fluxes on the remaining massless sector was considered in [26–28] (see [4]

for a recent analysis of the action of the D3-brane action subject to orientifolding condition). We use

a language from [27,4]. Consider first the fermions �, which transform as a 4 (or 4̄) under the SO(6)

rotation group. As shown by these references, the fermions pick up a mass term of the form

G
3

�� (2.3)

The precise flux components providing mass for each of the four fermions follow from the SO(6)

selection rules. The flux density G
3

is a 3-index antisymmetric tensor, which decomposes into an

imaginary self-dual (ISD) and imaginary antiself-dual (IASD) parts, transforming as a 10 and 10 of

SO(6), respectively. Therefore, the fermions on a D3-brane can couple (through 4 ·4 ·10) to the IASD

flux component, and remain massless in ISD fluxes. This is a consequence of the cancellation between

contributions from the DBI and the CS actions, as checked explicity in the above references. On the

other hand, we get the opposite result for D3-branes, whose fermions remain massless in the presence

of IASD flux, but get masses (through 4̄ · 4̄ · 10) in the presence of ISD fluxes.

6

G3=10 (ISD) + 10 (IASD)

for anti D3 brane

1 Effective Field Theory of KKLMMT Revisited
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1. Recall that a probe brane in a D-brane background is described by the combination of the
DBI and WZ actions:
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where the first term comes from the DBI action and the second term from the Chern-Simons
action

R
C

tx1x2x3 . For a D3 brane q = 1 the non-derivative interaction cancels as should be
for BPS states. For a brane/antibrane system, q = �1 the two terms add and give rise to the
vacuum energy plus Coulomb interactions. So reading h

�1 gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that introduced the
volume dependence in the warp factor also acts on the 5-form F5 = dC4 + · · · which is the
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Rescaling the 6d metric by g
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is what introduces the V1/3 factor in the 4d part of the metric and gives rise to the famous
V�4/3 in the uplift term. But this also scales the solution for C4 by C4 ! �

2
C4. Recall that

this is the source of the brane antibrane coupling determined by h

�1 with h

�1
= e

4A. So
in the modification of the antibrane to the coupling h

�1 ! h

�1
0 (1 � �h/h0) we have now a

scaling of h0 as h

�1
0 ! V2/3

h

�1
0 and so

h

�1
0

✓
1� �h

h0

◆
! V2/3

h

�1
0

✓
1� V2/3 �h

h0

◆
(1.9)

1

Masses from fluxes
−

(10=6+3+1 and 4=3+1 of SU(3))

diagram) is given (up to a center of mass momentum factor) by

Z
annulus

= trH
open NS+R

�
qL0

�
(2.1)

where q = e�2⇡t is the modular parameter and L
0

is the open string Hamiltonian in the NS or R

Hilbert space H
open

. The diagram can be transformed into a tree level exchange of NSNS and RR

closed string states between boundaries, i.e. D3-branes, with the structure

Z
annulus
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(2.2)
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0
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0
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Local to Global Throats

Figure 1: From local to global orientifold realisation of the anti-D3-brane at the tip of

orientifolded conifold threaded by three-form fluxes on two dual three-cycles

brane uplift and its representation in an EFT by nilpotent superfields. Section 3 is devoted

to addressing in a systematic way the local realisation of an D3 sitting on top of orientifold

plane configuration O3 at the tip of a deformed and orientifolded Klebanov-Strassler (KS)

throat. Finally in section 4 we address the main goal of the article which is to embed the local

constructions into compact CY backgrounds. We present two concrete examples. In the first

example we illustrate how to construct models with the right local structure basically from

scratch. It turns out that F-theory provides an e�cient way of building such models. The

second example is in fact a Calabi-Yau that had already been studied in the model building

context before. We show that it has the right local structure in order to admit a nilpotent

Goldstino sector. We end with the conclusions in section 5.

2 Anti-D3-branes and nilpotent goldstino

In type IIB string theory has RR and NSNS three forms field strength, encoded into the

complex three-form G3, can thread quantised fluxes on the non-trivial 3-cycles of Calabi-Yau

compactifications. Their impact is to fix the corresponding complex structure moduli and at

the same time inducing a warp factor e2D in the background metric:

ds2 = e2Dds24 + e�2Dds2CY . (2.1)

One can write the (internal coordinate dependent) warp factor such as e�4D = 1 + e�4A

V2/3 .

A large warped region, called warped throat, is made up of points where e�2D � V1/3.

Typically these throats arise around deformed conifold singularities. At the tip of the throat

– 3 –
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with

P̂ =
X

i=1,3,4

(z25⇤+ sz2i )sz
2
i + (z25 + z22)z

2
2⇤

2 � t2z45⇤
2 (4.22)

and

ĥ = ⇤p2(z2, z5) + sq2(z1, z3, z4) (4.23)

the proper transforms of the original divisors. We start by imposing ⇠ = 0. This gives rise to a

toric space A⇠ of one dimension lower, which can easily be seen to be smooth. Similarly, ĥ = 0

gives rise to a smooth hypersurface Y in A⇠, and it can be seen that the O7 locus P̂ = 0 ⇢ Y is

also smooth. So by straightforward repeated application of the Lefschetz hyperplane theorem

we learn that H1(O7,Z) = H1(Â,Z), with Â the ambient toric space (4.20). But it is easy to

see that ⇡1(Â) = 0 from standard considerations in toric geometry (see for instance theorem

12.1.10 in [50]), so by the Hurewicz isomorphism and Poincaré duality on the O7 worldvolume

we learn that H3(O7,Z) = 0.

4.2 Goldstino retrofitting

The model in the previous section was designed in order to display the structure of interest.

While this is interesting, it is also interesting to see if existing, phenomenologically inter-

esting type IIB models with O3-planes admit the addition of a nilpotent Goldstino sector,

“retrofitting” them with a possible de Sitter uplift mechanism at little cost.

To show that this is indeed the case, we consider the model in [51, 52]. It is constructed

starting from a hypersurface in the toric ambient space

W1 W2 W3 W4 W5 Z X Y DH

C⇤
1 0 0 0 0 0 1 2 3 6

C⇤
2 1 1 1 0 0 0 6 9 18

C⇤
3 0 1 0 1 0 0 4 6 12

C⇤
4 0 0 1 0 1 0 4 6 12

, (4.24)

with SR-ideal

SR = {W1W2W3, W2W4, W3W5, W4W5, W1W2X Y, W1W3X Y, W4 Z, W5 Z, X Y Z} .
(4.25)

The last column indicates the degree of the polynomial defining the CY three-fold. This

polynomial takes the form of a Weierstrass model

Y 2 = X3 + f(Wi)X Z4 + g(Wi)Z
6 , (4.26)

where f and g are respectively polynomials of degree (0, 12, 8, 8) and (0, 18, 12, 12) in the

coordinates W1, . . . ,W5.

This CY X has Hodge numbers h1,1 = 4 and h1,2 = 214. The intersection form takes the

simple expression

I3 = 9D3
1 +D3

2 +D3
3 + 9D3

4 (4.27)
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Potential Problems
• To EFT

• To fluxes

• To perturbative effects

• To nonperturbative effects

• To de Sitter



Challenges to KKLT, LVS,...
• Fluxes under control only in SUSY 10D

• All SUSY breaking part is 4D EFT (with string inputs). 

Trust EFT?

• Tuning W0<<1? in KKLT

• Higher correction in LVS?

• Antibranes (by hand, non susy, singularity?)

• T-branes in a controlled region?

• Antibranes and non-perturbative effects?

Sethi

Bena et al.

Moritz et al.

e.g. Danielson, Van Riet



Open Questions
• Full control of quantum corrections 

• EFT of branes at singularities

• Realistic phenomenology (de Sitter but no SM?)

• F-theory moduli stabilisation

• Populating the landscape (large # of U moduli + vacuum 

transitions)

• ...



Partly full Partly empty



Quintessence



Swampland conjectures
• Swampland: Quantum gravity vs EFT !

• Weak gravity conjecture

• Distance conjecture

• New (‘anti’ de Sitter?) conjecture: 

(It would imply quintessence and no de Sitter 

and hard to have inflation!).

inflationary models. The conjecture states that everywhere in field space the full quantum

scalar potential V obeys the relation:

Mp
|rV |
V

& c , (1.1)

where c is an O(1) positive constant. It is important to examine whether such a criterion

can be consistent with phenomenology. The criterion (1.1) has many strong implications

for cosmology [9–11]. In particular it implies that at present we are necessarily in an

epoch of quintessence. The tight bounds on fifth-forces [12] and the time variation of

fundamental constants [13], provide strong constraints on the couplings of the quintessence

field. Furthermore, in the context of N = 1 supergravity it seems very hard to be able to

decouple a quintessence field from the Standard Model. Finally, depending on the model,

naturalness considerations require fine-tuning of the quintessence potential at the functional

level,1 or at least one additional tuning compared to dS models. This makes explicit

constructions of quintessence models from string compactifications very challenging.

This conjecture is the most recent of a series of articles claiming potential problems

with the standard approach to obtain a landscape of metastable dS string vacua as initiated

by the KKLT seminal paper [15] and followed-up by many other developments that have

improved the robustness of the original and other related scenarios. The challenges vary

from points of principle (e.g. how to properly define an S-matrix and a quantum theory in

general in dS space [16–18]) to details about each of the di↵erent steps of the KKLT scenario

[19–21] which seem to make it natural to explore alternatives to dS. The main purpose of

the first part of this article is to assess the pros and cons of the di↵erent approaches to dS

compactifications. This is important in order to have a clear idea of the assumptions used

and the continuous progress but also the open challenges. We will argue that dS models

reached a good level of concreteness and calculational control which has been improving

over time and provide interesting phenomenological applications to cosmology and particle

physics. Moreover we shall stress that some of the computational challenges apply also to

4D N = 1 supersymmetric vacua which, above all, do not seem to be promising starting

points for phenomenology. We will also point out that, even if dS string models are not

characterised by expansion parameters which can be made parametrically small, these

parameters can still be small enough to trust the phenomenological implications of these

constructions.

In the second part of the paper we first discuss the theoretical consistency of quintessence

models pointing out that in general, in the absence of a symmetry principle, their construc-

tion is more challenging that dS models since one needs to perform two fine-tunings to get

the correct energy scale and mass of the quintessence field. We then use a more phe-

nomenological approach to assess to which extent quintessence is a viable alternative to

dS from observations. In particular, we found (as recently shown also in [22]), that if

the quintessence picture is valid, and there is no other scalar field around other than the

Higgs, in order to satisfy the swampland conjecture (1.1), the Higgs field has to couple

1A similar problem has been discussed in the context of attempts to explain time variation of coupling

constants in terms of a time varying field [14].

– 2 –

Vafa et al.

Obied et al 



Challenges for the de Sitter 
conjecture

• Higgs potential with quintessence field? (at the <H>=0 
point.

• If V asymptotes to infinity from above even 
supersymmetric AdS forbidden.

• Both addressed if modify conjecture (allow saddle points 
for V>0). 

Denef et al.

Conlon

see e.g. Andriot, 
Ooguri et al.





Higgs and Quintessence
• Higgs as quintessence??

• Higgs-quintessence coupling?

• Several fields?

There are several ways to cure this problem but none of them seems very natural from

the string theory point of view:

• Higgs as quintessence: As a first pass at a solution one might ask whether the

quintessence field can be identified with the Higgs field itself along the lines for

instance of Higgs inflation, modified appropriately for quintessence. In this case at

low energies (below the scale of electroweak breaking) the Higgs potential (for the

neutral Higgs in unitary gauge) may acquire the form:

V = ⇤4 + C4 e�k h/M
p . (3.7)

Imposing that the Higgs is rolling today at h = v with values of the slow-roll pa-

rameter ✏ =
M2

p

2

⇣
Vh
V

⌘
2

of order 1/2 and V ' ⇤4 together with the right Higgs

mass, one can fix the values of the parameters C and k at C ' 10�52e2.5·10
71

M
p

and

k = 1088. Notice that this model is in agreement with observational data since, due

to the huge value of k, one can get around 5 efoldings of exponential expansion for

�h ' 10�85.7M
p

, implying that no time-variation of the fermion masses could be

observable. However the unreasonable value of k and C show that this is more a

curious observation rather than a real solution.

• A direct Higgs-quintessence coupling: Ref. [22] modified the initial potential

(3.5) via the introduction of a coupling between � and h of the form:

V = f(�) Ṽ (h) + V̂ (�) with f(�) = e�� . (3.8)

In this case the swampland conjecture is satisfied since the ratio in (3.6) at h = 0

where Ṽh(h) = 0 takes the form:

f�(�) Ṽ (h) + V̂�(�)

f(�) Ṽ (h) + V̂ (�)
' f�(�)

f(�)
' 1 . (3.9)

However, even if the Higgs-quintessence coupling in (3.8) is not ruled out by fifth-

force constraints [22], one would need to explain why the SM fermions are instead

decoupled from the quintessence field since a direct coupling between them and �

would not be allowed by fifth-force bounds. Given that in 4D string models a direct

coupling between � and h would generically also imply a direct coupling between the

quintessence field and SM fermions, we interpret this tension as a phenomenological

hint against the validity of the swampland conjecture.

• Adding more fields: Another solution involves the introduction of a third field �

which is heavy in the electroweak vacuum but makes a non-trivial contribution to

the criterion at the symmetric point of the Higgs potential. Hence the potential (3.5)

gets modified to:

V = f(�) Ṽ (h) + g(�) + V̂ (�) . (3.10)
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f�(�) Ṽ (h) + V̂�(�)
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where Ṽh(h) = 0 takes the form:
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�h ' 10�85.7M
p

, implying that no time-variation of the fermion masses could be

observable. However the unreasonable value of k and C show that this is more a

curious observation rather than a real solution.

• A direct Higgs-quintessence coupling: Ref. [22] modified the initial potential

(3.5) via the introduction of a coupling between � and h of the form:

V = f(�) Ṽ (h) + V̂ (�) with f(�) = e�� . (3.8)

In this case the swampland conjecture is satisfied since the ratio in (3.6) at h = 0

where Ṽh(h) = 0 takes the form:

f�(�) Ṽ (h) + V̂�(�)

f(�) Ṽ (h) + V̂ (�)
' f�(�)

f(�)
' 1 . (3.9)

However, even if the Higgs-quintessence coupling in (3.8) is not ruled out by fifth-

force constraints [22], one would need to explain why the SM fermions are instead

decoupled from the quintessence field since a direct coupling between them and �

would not be allowed by fifth-force bounds. Given that in 4D string models a direct

coupling between � and h would generically also imply a direct coupling between the

quintessence field and SM fermions, we interpret this tension as a phenomenological

hint against the validity of the swampland conjecture.

• Adding more fields: Another solution involves the introduction of a third field �

which is heavy in the electroweak vacuum but makes a non-trivial contribution to

the criterion at the symmetric point of the Higgs potential. Hence the potential (3.5)

gets modified to:

V = f(�) Ṽ (h) + g(�) + V̂ (�) . (3.10)
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There are several ways to cure this problem but none of them seems very natural from

the string theory point of view:
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quintessence field and SM fermions, we interpret this tension as a phenomenological

hint against the validity of the swampland conjecture.

• Adding more fields: Another solution involves the introduction of a third field �

which is heavy in the electroweak vacuum but makes a non-trivial contribution to
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de Sitter vs Quintessence
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Quintessence from Strings?
• Need stabilise all moduli except for quintessence field: 

as difficult as getting de Sitter

• Or have many fields rolling but slower than 

quintessence. Difficult.

• Fifth force and varying couplings constraints (e.g. 

volume modulus or dilaton problematic)
e.g. Banks, Dine, Douglas ‘00

Yukawa’s

bounds from fifth-forces [12]. Moreover, if the quintessence field is a string modulus

which sets the visible sector gauge kinetic function, a rolling modulus would give

rise to a time variation of the coupling constants. This last problem can be avoided

simply by considering a modulus which is not supporting the visible sector stack of

D-branes. However, evading fifth-force bounds is more complicated. The volume

mode couples democratically to all fields with Planckian strength, and so it cannot

be the quintessence field. This is a direct consequence of the locality of the SM

construction. The fact that the volume mode has to couple to SM fields can be

seen by looking at the relation between the physical Yukawa couplings Ŷijk and the

holomorphic ones Yijk(U) which depend just on the complex structure moduli because

of the holomorphicity of the superpotential and the axionic shift symmetry [139]:

Ŷijk = eK/2 Yijk(U)q
K̃iK̃jK̃k

, (3.4)

where K̃i is the Kähler metric for matter fields. Due to locality, the physical Yukawa

couplings should not depend on the overall volume, and so the matter Kähler metric

K̃i has to depend on the volume mode V in order to cancel the powers of V in

eK/2. Consequently, the volume mode has always a direct M
p

-suppressed coupling

to SM-fields from expanding the matter Kähler metric in the kinetic terms.

The best case scenario is therefore when the quintessence field is a modulus di↵er-

ent from the overall volume which supports a hidden sector stack of branes, while

the visible sector is localised on a blow-up mode which does not intersect with the

quintessence divisor. This has been advocated in the context of swampland conjec-

tures in [9]. However even in this case, one would need to check that no interaction

between the quintessence modulus and visible sector fields is induced by kinetic mix-

ing between the moduli (see for example the moduli redefinitions in [140–142] induced

by non-canonical kinetic terms) or between hidden and visible sector Abelian gauge

bosons [143–146]. This issue is currently under detailed investigation [147].

3.2 The swampland and the Higgs

As already pointed out in [22], the swampland conjecture is in tension with basic features

of the Higgs potential. In fact if h is the standard Higgs field and � the quintessence field,

the total scalar potential can be written as:

V = Ṽ (h) + V̂ (�) with Ṽ (h) = �
�
h2 � v2

�
2

. (3.5)

The swampland conjecture at the maximum of the Higgs potential for h = 0 then implies:

|rV |
V

& 1 , V̂�(�)

Ṽ (h) + V̂ (�)
=

V̂�(�)

�v4 + V̂ (�)
& 1 . (3.6)

However the quintessence potential today has to scale as V̂ (�
0

) = ⇤4. Typical quintessence

potentials have the form V̂ (�) = ⇤4 e�� with �
0

' 0. Hence V̂�(�0

) ' V̂ (�
0

) = ⇤4, imply-

ing that the ratio in (3.6) violates the swampland conjecture by 57 orders of magnitude!
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Quintessence Candidates
• Modulus (fibre, blow-up) that does not couple 

directly to SM. It also would require a very small 
string scale (e.g. Ms~TeV)

• Axions 

Cicoli, et al 
‘12 

K. Choi ’99
Panda et al ‘11
Kaloper et al. ’08
Kamionkowski et al ‘13

smaller than 'max
core belong to the stable branch while those with larger core amplitude

belong to the unstable branch. Oscillaton configurations perturbed around the un-

stable branch can either collapse to black holes or radiate energy and migrate back

to the stable branch, depending on the perturbation. If self-interaction terms are

present and ⇤ = MP the numerics become extremely more involved and the study

of a generic interacting potential is currently missing. Equilibrium configurations in

the case of a repulsive quartic interaction has been studied in [50, 56] for moderately

large values of the dimensionsless coupling g̃ =
gM

2
P

m

2 in the range g̃ ⇠ 1-4. In this

case the expected maximum oscillaton mass is enhanced but to numerically check

the behaviour in eq. (4.30) it would be necessary to probe the region of parameter

space g̃ � 1. Finally, dense solutions with ⇤ ⌧ MP correspond to the regime in

which gravity is negligible. In this case compact objects corresponding to oscillons

can be formed in the presence of attractive self-interactions. As an example, oscillons

formed in blow-up potentials studied in [28] belong to this case. In particular we

stress that it is self-consistent to neglect gravity in that case.

Oscillatons include the important case in which the real scalar is an axion-like particle

giving rise to axion stars (see [54] and references therein for the state of the art). The

Lagrangian is

L = �1

2
@µ✓@

µ

✓ � µ4

✓
1� cos

✓
✓

f

◆◆
, (2.15)

where µ is an energy scale generated by non-perturbative e↵ects that break the original

PQ shift-symmetry. If the leading interaction term is an attractive quartic term (e.g.

Vinteraction = � (g/4!)'4) as for axion-like particles there is an additional regime for which
f

8⇡MP
. '0

2⇡f . 1, called the critical regime [54]. In the critical regime the amplitude

of the background field is still small but large enough such that the leading order self-

interaction is stronger than gravity and balance the kinetic pressure from the uncertainty

principle. Configurations in the critical regime are unstable against small perturbations:

they either disperse or collapse to denser objects [57–59]. The critical regime exists only

if the quartic order self-interaction is attractive: in the repulsive case there is a single

branch with 'core/⇤ < 1 that is always stable [60]. The dense regime of axion stars has

first been studied in the Thomas-Fermi approximation that resulted to be not well justi-

fied [61]. Recently, the it has been properly studied in full GR [58]: it turns out that axion

stars have a di↵erent evolution depending on their mass and on the axion decay constant:

they can be (meta-)stable, collapse to black holes or disperse. One particularly interesting

application of axion stars appears for an ultralight axion-like particle (ULA) with mass

mULA ⇠ 1-10⇥10�22 eV, which constitutes a good dark matter candidate called fuzzy dark

matter [62] or ultralight dark matter (ULDM). Interestingly, ULDM could address several

issues arising in the cold dark matter case [63], even though m . 1-2 ⇥ 10�21 eV are in

tension with observations of the Lyman-↵ forest [64]. In particular, numerical simulations

show that in the presence of ULDM solitonic cores of O (kpc) size are formed in dark mat-

ter halos [65–67], potentially addressing the cusp-core problem of cold dark matter [68].

– 8 –



de Sitter and Quintessence



Axion Quintessence in LVS

value parametrises the size of the cycle supporting non-perturbative e↵ects. As ⌧ can be

rather large, i.e. much larger than the values needed to trust the e↵ective field theory, the

axion mass can easily be very small, as required for quintessence. Moreover, if the saxions

receive a mass from perturbative e↵ects, the low-energy EFT includes only the ultra-light

axions. Concrete examples that feature all these properties are LVS models which admit

at least one ultra-light axion corresponding to the axionic partner of the overall volume

mode (which is stabilised perturbatively) with mass [48, 164]:

ma '
r

gs
8⇡

Mp

V2/3
e�

⇡
N V2/3

Mp , (3.20)

which can be in the right range for example for gs = 0.1, N = 3 (N is the rank of the

condensing gauge group) and V = 1400 as required to match the observed amplitude of the

density perturbation in fibre inflation models [165]. LVS models with more than one large

cycle would feature more ultra-light axionic candidates for explaining dark energy (as in

the case of fibred CY threefolds where the fibre moduli are stabilised perturbatively and the

corresponding axions remain light [165]). Another positive property of axions is that they

feature a shift-symmetry at the perturbative level that naturally prevents their potential

to acquire large quantum corrections. Finally ultra-light axions, being pseudo-scalars, can

easily evade existing constraints from fifth-forces. For these reasons, axions are arguably

one of the best candidate fields for quintessence in string theory. In this section we briefly

review how axions can give rise to an accelerated late-time expansion of the universe.

In a moduli stabilisation scenario such as LVS we can separate the moduli between

those that are stabilised by non-perturbative e↵ects (such as blow-up modes) and those that

are stabilised by perturbative e↵ects (such as the overall volume and many fibre moduli).

For the first group both the modulus and its corresponding axion get mass of the same

order ma ⇠ m
3/2. For the second group, the axions are much lighter than the moduli

and we can study the EFT only for these ultra-light axions after integrating out all other

massive fields. Since most known CY manifolds have a fibration structure, the number

N
ULA

of ultra-light axions can be very large (N
ULA

⇠ O(100)). To leading order in the

non-perturbative expansion this axion potential takes the form:14

V = ⇤4 �
N

ULAX

i=1

⇤4

i cos

✓
ai
fi

◆
+ · · · , (3.21)

where fi is the axion decay constant of the i-th canonically normalised axion field ai, ⇤

is the cosmological constant scale that can be tuned by fluxes and ⇤i is the scale of the

non-perturbative e↵ect that gives mass to the i-th axion. In string compactifications the

axion decay constant is roughly given by fi ' Mp/⌧i < Mp for ⌧i > 1 [161–163]. For a

quintessence candidate we need the slow-roll condition ✏ =
M2

p

2

⇣
V 0

V

⌘
2

< 1 to be satisfied.

The scalar potential in (3.21) has a minimum at hV i = ⇤4 � P
i ⇤

4

i and a maximum at

V
max

= ⇤4 +
P

i ⇤
4

i with inflection points at V
infl

= ⇤4 as well as many (2NULA

�1) saddle

points. In phenomenological and cosmological discussions it is usually assumed that the

14For potential generalisations of this scalar potential see for instance [166].
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one of the best candidate fields for quintessence in string theory. In this section we briefly
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For the first group both the modulus and its corresponding axion get mass of the same
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3/2. For the second group, the axions are much lighter than the moduli

and we can study the EFT only for these ultra-light axions after integrating out all other

massive fields. Since most known CY manifolds have a fibration structure, the number
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of ultra-light axions can be very large (N
ULA

⇠ O(100)). To leading order in the

non-perturbative expansion this axion potential takes the form:14

V = ⇤4 �
N

ULAX
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where fi is the axion decay constant of the i-th canonically normalised axion field ai, ⇤

is the cosmological constant scale that can be tuned by fluxes and ⇤i is the scale of the

non-perturbative e↵ect that gives mass to the i-th axion. In string compactifications the

axion decay constant is roughly given by fi ' Mp/⌧i < Mp for ⌧i > 1 [161–163]. For a

quintessence candidate we need the slow-roll condition ✏ =
M2

p
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⇣
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⌘
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< 1 to be satisfied.

The scalar potential in (3.21) has a minimum at hV i = ⇤4 � P
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i and a maximum at
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max
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i with inflection points at V
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= ⇤4 as well as many (2NULA

�1) saddle

points. In phenomenological and cosmological discussions it is usually assumed that the

14For potential generalisations of this scalar potential see for instance [166].
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minimum is tuned to zero but this is not natural in the landscape since the tuning for the

overall minimum is not necessarily related with the scales of each the ⇤i’s. Therefore we

may study di↵erent possibilities in particular for ⇤ greater, smaller or of the same order as

the smallest ⇤i.

Depending on the values of ⌧i and the coe�cients of the non-perturbative e↵ects, the

corresponding axions can also be integrated out until we reach the lightest one, that we

denote with a`. Focusing for simplicity on a`, the corresponding slow-roll condition is:

✏ =
1

2

"✓
⇤`

⇤

◆
4 Mp

f`

#
2

sin2 (a`/f`)⇣
1� (⇤`/⇤)

4 cos (a`/f`)
⌘
2

< 1 . (3.22)

However, before integrating out the heavier axions, the original potential can give rise to

interesting early universe cosmology. In particular, as the universe evolves and the Hubble

parameter decreases, each axion field is essentially frozen at its value after inflation due to

the large Hubble friction. Once the Hubble scale hits the mass threshold of a given axion,

the axion starts to roll and oscillates around its minimum. Depending on the relative values

of ⇤ and ⇤i as well as the initial value of the field, the slow roll condition may or may not

be satisfied.

Depending on the values of di↵erent constants we will have distinctive scenarios which

we now state:

1. Alignment mechanism: If the minimum of the potential is tuned to be at vanishing

energy (i.e. if ⇤ = ⇤`) as is usually done in the literature, we can observe from eq.

(3.22) that in order to get an accelerated expansion of the universe the axion decay

constant has to be f` & Mp. Getting a (super-)Planckian axion decay constant is a

well-known issue in string theory since it is in tension with the fact that the cycles

volumes are expected to be larger than the string scale (⌧` & 1). However there might

be possible way-outs that rely on alignment mechanisms involving two [167, 168] or

many fields [169, 170].

2. Hilltop quintessence: As explained above, the generic situation is to have axions

with sub-Planckian decay constants. In this case, even if ⇤ = ⇤`, the axion a` could

still drive the present epoch of accelerated expansion without the need to rely on

complicated misalignment-like mechanisms. In fact, if the maximum of the potential

for a` is located at positive energy (i.e. ⇤4+⇤4

i > 0), as in the two examples reported

in Fig. 1, and the field is initially displaced close to it, the universe undergoes

accelerated expansion [171]. Notice that in order for this mechanism to work, the

minimum of the potential does not need to be tuned to 0: the crucial point is just

that a region of the potential around the maximum is at positive energy. Moreover,

axion fields are very light, and so it is very easy to displace them from their minima,

e.g. during inflation. Given the large number of ultra-light axions in generic string

compactifications, we expect that the displacement of these fields is evenly distributed

in the range ai/fi 2 [�⇡,⇡], and so it should not be di�cult to find one of them around

its maximum. We stress that this case is not considered for axion inflation since for
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of ⇤ and ⇤i as well as the initial value of the field, the slow roll condition may or may not

be satisfied.

Depending on the values of di↵erent constants we will have distinctive scenarios which

we now state:

1. Alignment mechanism: If the minimum of the potential is tuned to be at vanishing

energy (i.e. if ⇤ = ⇤`) as is usually done in the literature, we can observe from eq.

(3.22) that in order to get an accelerated expansion of the universe the axion decay

constant has to be f` & Mp. Getting a (super-)Planckian axion decay constant is a

well-known issue in string theory since it is in tension with the fact that the cycles

volumes are expected to be larger than the string scale (⌧` & 1). However there might

be possible way-outs that rely on alignment mechanisms involving two [167, 168] or

many fields [169, 170].

2. Hilltop quintessence: As explained above, the generic situation is to have axions

with sub-Planckian decay constants. In this case, even if ⇤ = ⇤`, the axion a` could

still drive the present epoch of accelerated expansion without the need to rely on

complicated misalignment-like mechanisms. In fact, if the maximum of the potential

for a` is located at positive energy (i.e. ⇤4+⇤4

i > 0), as in the two examples reported

in Fig. 1, and the field is initially displaced close to it, the universe undergoes

accelerated expansion [171]. Notice that in order for this mechanism to work, the

minimum of the potential does not need to be tuned to 0: the crucial point is just

that a region of the potential around the maximum is at positive energy. Moreover,

axion fields are very light, and so it is very easy to displace them from their minima,

e.g. during inflation. Given the large number of ultra-light axions in generic string

compactifications, we expect that the displacement of these fields is evenly distributed
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Naturally very small!

Minimum not necessarily at zero

Slow-roll

Not necessarily

ULA: (fuzzy) dark matter and dark radiation or dark energy and dark radiation?



(A)dS and Axion Quintessence 
• Hilltop Quintessence

• Quasi-natural quintessence

• Oscillating quintessence

0 0

0 0

Figure 1. Examples of potentials that allow for hilltop quintessence. The red domains schemati-
cally represent the regions of the potentials where slow-roll can take place.

0 0

Figure 2. In the case ⇤ � ⇤` slow-roll can happen also in the region close to the inflection point
of the potential, and given (3.23) this does not require a super-Planckian axion decay constant.

low redshift. Their considerations can be adapted to the present discussion but with the

di↵erence that we do not assume the minimum of the potential to vanish.

In summary string theory axions provide interesting candidates to be quintessence for

several reasons:

• Ultra-light axions are a natural outcome of moduli stabilisation scenarios with expo-

nentially suppressed masses.

• Depending on the value of these masses, the axions can be ultra light dark matter or

dark energy.

• These ultra-light axions are also natural candidates for dark radiation produced after

the decay of the corresponding modulus field [174–178] which can put constraints on
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Figure 3. We illustrate how the equation of state oscillates while the axion oscillates around its
minimum (time is in units of the axion mass). Contrary to the dark matter case in which the
average w vanishes, here the presence of ⇤ causes the average to be non-zero. This behaviour can
be compared with data from low-redshift observations, in order to explore the existence of axions
with mass around H0.

string scenarios but also can partially address cosmological issues such as the tension

between high and low redshift measurements of the Hubble parameter by increasing

the value of N
e↵

[179].15

• The fact that there may be hundreds or thousands of ultra-light axions can give rise

to interesting cosmological periods in early universe cosmology with also potential

implications for di↵erent measurements of H.

• If the overall minimum of the potential is not tuned at zero several scenarios emerge

with accelerating universes. A negative vacuum energy is allowed if slow-roll starts

close to a maximum or a saddle point at positive V and the slow-roll condition can

be easily satisfied with no trans-Planckian decay constant as long as ⇤ � ⇤`. The

di↵erent axions oscillating around their minima do not risk overclosing the universe

since the minimum is not at zero. An oscillating scalar around a minimum with

positive vacuum energy can give rise to a varying equation of state. The time in

which the field climbs the potential may mimic w < �1 as suggested in [180]. How-

ever, reproducing the recent analysis, which suggests a turning point for the Hubble

parameter [24–26], remains a theoretical challenge if these results were confirmed.

4 Conclusions

In this paper we have analysed general aspects regarding dS and quintessence scenarios to

have a concrete realisation in e↵ective field theories derived from string compactifications.

We have seen that even though in order to have full control of dS moduli stabilisation a

non-perturbative formulation of string theory is needed, there has been substantial progress

15Notice however that larger values of N
e↵

, even if they decrease the tension between di↵erent determi-

nations of H
0

, increase the existing tension between di↵erent measurements of the �
8

parameter.
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minimum is tuned to zero but this is not natural in the landscape since the tuning for the

overall minimum is not necessarily related with the scales of each the ⇤i’s. Therefore we

may study di↵erent possibilities in particular for ⇤ greater, smaller or of the same order as

the smallest ⇤i.

Depending on the values of ⌧i and the coe�cients of the non-perturbative e↵ects, the

corresponding axions can also be integrated out until we reach the lightest one, that we

denote with a`. Focusing for simplicity on a`, the corresponding slow-roll condition is:

✏ =
1

2

"✓
⇤`

⇤

◆
4 Mp

f`

#
2

sin2 (a`/f`)⇣
1� (⇤`/⇤)

4 cos (a`/f`)
⌘
2

< 1 . (3.22)

However, before integrating out the heavier axions, the original potential can give rise to

interesting early universe cosmology. In particular, as the universe evolves and the Hubble

parameter decreases, each axion field is essentially frozen at its value after inflation due to

the large Hubble friction. Once the Hubble scale hits the mass threshold of a given axion,

the axion starts to roll and oscillates around its minimum. Depending on the relative values

of ⇤ and ⇤i as well as the initial value of the field, the slow roll condition may or may not

be satisfied.

Depending on the values of di↵erent constants we will have distinctive scenarios which

we now state:

1. Alignment mechanism: If the minimum of the potential is tuned to be at vanishing

energy (i.e. if ⇤ = ⇤`) as is usually done in the literature, we can observe from eq.

(3.22) that in order to get an accelerated expansion of the universe the axion decay

constant has to be f` & Mp. Getting a (super-)Planckian axion decay constant is a

well-known issue in string theory since it is in tension with the fact that the cycles

volumes are expected to be larger than the string scale (⌧` & 1). However there might

be possible way-outs that rely on alignment mechanisms involving two [167, 168] or

many fields [169, 170].

2. Hilltop quintessence: As explained above, the generic situation is to have axions

with sub-Planckian decay constants. In this case, even if ⇤ = ⇤`, the axion a` could

still drive the present epoch of accelerated expansion without the need to rely on

complicated misalignment-like mechanisms. In fact, if the maximum of the potential

for a` is located at positive energy (i.e. ⇤4+⇤4

i > 0), as in the two examples reported

in Fig. 1, and the field is initially displaced close to it, the universe undergoes

accelerated expansion [171]. Notice that in order for this mechanism to work, the

minimum of the potential does not need to be tuned to 0: the crucial point is just

that a region of the potential around the maximum is at positive energy. Moreover,

axion fields are very light, and so it is very easy to displace them from their minima,

e.g. during inflation. Given the large number of ultra-light axions in generic string

compactifications, we expect that the displacement of these fields is evenly distributed

in the range ai/fi 2 [�⇡,⇡], and so it should not be di�cult to find one of them around

its maximum. We stress that this case is not considered for axion inflation since for
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f` < Mp hilltop inflation would not give rise to enough efoldings of inflation. For

quintessence this problem is absent since a large number of efoldings is not needed.

3. Quasi-natural quintessence: Notice that in the landscape there is no reason to

tune the minimum to vanishing vacuum energy. If the minimum of the potential for

the lightest axion is tuned to be of the order of the current value of the cosmological

constant ⇤, the slow-roll condition just implies (the term which depends on a`/f` in

eq. (3.22) is always smaller than 1):

f` &
✓
⇤`

⇤

◆
4

Mp , (3.23)

which allows for a sub-Planckian axion decay constant f` < Mp as long as ⇤ � ⇤`.

The slow-roll condition ✏ < 1 is naturally satisfied for a very large region of field space,

not only close to the hilltop as can be seen in Fig. 2). The corresponding equation

of state would give a small modification to the cosmological constant scenario:

w =
p

⇢
=

ȧ2

2

� V
ȧ2
2

+ V
⇠ �1� 1

3

✏

1 + 1

3

✏
⇠ �1 +

2

3
✏ . (3.24)

It is worth mentioning that the case ⇤ � ⇤` is never considered for inflation since the

energy scale of the potential would be of order the cosmological constant scale, and so

would be way too low to match the observed amplitude of the density perturbations.

Moreover, for ⇤ � ⇤`, if f` is not too low, ✏ is below unity everywhere in the axion

field space, and so there would be no way to end inflation.

4. Oscillating scalar: Another possible modification of the constant dark energy sce-

nario could be given by an oscillating axion. Assuming that ⇤ is tuned at the current

value of the cosmological constant as in the left panel of Fig. 3 and that a` is initially

displaced from its minimum, the field starts oscillating around its minimum when H

is of order of its mass. This will then produce an interesting oscillating equation of

state, as shown in the right panel of Fig. 3 for f/Mp = 1 and ⇤`/⇤ = 0.85. This

expected behaviour could be used to study the existence of axions with mass of the

same order of H
0

, comparing with low-redshift observations.

Notice that cases (3) and (4) necessarily violate the swampland conjecture (1.1) since

they require dS minima, while case (1) would violate the swampland conjecture on field

distances [5] since it requires trans-Planckian physics. On the other hand, as shown in Fig.

1, case (2) just requires the presence of a maximum at positive energy but it would work

also for sub-Planckian axion decay constants. Hence this case would violate the swampland

conjecture (1.1) but it would still be allowed by a refined conjecture which does not exclude

dS maxima [10].

Considerations of ultra-light axions corresponding to a quintessence field have been

made in several recent studies [171–173]. The fact that there may be many axions domi-

nating the energy density at di↵erent stages of the evolution of the universe may be a way

to address the apparent discrepancy among the di↵erent measurements of H at high and
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f` < Mp hilltop inflation would not give rise to enough efoldings of inflation. For

quintessence this problem is absent since a large number of efoldings is not needed.

3. Quasi-natural quintessence: Notice that in the landscape there is no reason to

tune the minimum to vanishing vacuum energy. If the minimum of the potential for

the lightest axion is tuned to be of the order of the current value of the cosmological

constant ⇤, the slow-roll condition just implies (the term which depends on a`/f` in

eq. (3.22) is always smaller than 1):
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which allows for a sub-Planckian axion decay constant f` < Mp as long as ⇤ � ⇤`.

The slow-roll condition ✏ < 1 is naturally satisfied for a very large region of field space,

not only close to the hilltop as can be seen in Fig. 2). The corresponding equation
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would be way too low to match the observed amplitude of the density perturbations.

Moreover, for ⇤ � ⇤`, if f` is not too low, ✏ is below unity everywhere in the axion
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4. Oscillating scalar: Another possible modification of the constant dark energy sce-

nario could be given by an oscillating axion. Assuming that ⇤ is tuned at the current

value of the cosmological constant as in the left panel of Fig. 3 and that a` is initially

displaced from its minimum, the field starts oscillating around its minimum when H

is of order of its mass. This will then produce an interesting oscillating equation of

state, as shown in the right panel of Fig. 3 for f/Mp = 1 and ⇤`/⇤ = 0.85. This

expected behaviour could be used to study the existence of axions with mass of the

same order of H
0

, comparing with low-redshift observations.

Notice that cases (3) and (4) necessarily violate the swampland conjecture (1.1) since

they require dS minima, while case (1) would violate the swampland conjecture on field

distances [5] since it requires trans-Planckian physics. On the other hand, as shown in Fig.

1, case (2) just requires the presence of a maximum at positive energy but it would work

also for sub-Planckian axion decay constants. Hence this case would violate the swampland

conjecture (1.1) but it would still be allowed by a refined conjecture which does not exclude

dS maxima [10].

Considerations of ultra-light axions corresponding to a quintessence field have been

made in several recent studies [171–173]. The fact that there may be many axions domi-

nating the energy density at di↵erent stages of the evolution of the universe may be a way

to address the apparent discrepancy among the di↵erent measurements of H at high and
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f` < Mp hilltop inflation would not give rise to enough efoldings of inflation. For

quintessence this problem is absent since a large number of efoldings is not needed.

3. Quasi-natural quintessence: Notice that in the landscape there is no reason to

tune the minimum to vanishing vacuum energy. If the minimum of the potential for

the lightest axion is tuned to be of the order of the current value of the cosmological

constant ⇤, the slow-roll condition just implies (the term which depends on a`/f` in

eq. (3.22) is always smaller than 1):
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which allows for a sub-Planckian axion decay constant f` < Mp as long as ⇤ � ⇤`.

The slow-roll condition ✏ < 1 is naturally satisfied for a very large region of field space,

not only close to the hilltop as can be seen in Fig. 2). The corresponding equation
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It is worth mentioning that the case ⇤ � ⇤` is never considered for inflation since the

energy scale of the potential would be of order the cosmological constant scale, and so

would be way too low to match the observed amplitude of the density perturbations.

Moreover, for ⇤ � ⇤`, if f` is not too low, ✏ is below unity everywhere in the axion

field space, and so there would be no way to end inflation.

4. Oscillating scalar: Another possible modification of the constant dark energy sce-

nario could be given by an oscillating axion. Assuming that ⇤ is tuned at the current

value of the cosmological constant as in the left panel of Fig. 3 and that a` is initially

displaced from its minimum, the field starts oscillating around its minimum when H

is of order of its mass. This will then produce an interesting oscillating equation of

state, as shown in the right panel of Fig. 3 for f/Mp = 1 and ⇤`/⇤ = 0.85. This

expected behaviour could be used to study the existence of axions with mass of the

same order of H
0

, comparing with low-redshift observations.

Notice that cases (3) and (4) necessarily violate the swampland conjecture (1.1) since

they require dS minima, while case (1) would violate the swampland conjecture on field

distances [5] since it requires trans-Planckian physics. On the other hand, as shown in Fig.

1, case (2) just requires the presence of a maximum at positive energy but it would work

also for sub-Planckian axion decay constants. Hence this case would violate the swampland

conjecture (1.1) but it would still be allowed by a refined conjecture which does not exclude

dS maxima [10].

Considerations of ultra-light axions corresponding to a quintessence field have been

made in several recent studies [171–173]. The fact that there may be many axions domi-

nating the energy density at di↵erent stages of the evolution of the universe may be a way

to address the apparent discrepancy among the di↵erent measurements of H at high and
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f` < Mp hilltop inflation would not give rise to enough efoldings of inflation. For

quintessence this problem is absent since a large number of efoldings is not needed.

3. Quasi-natural quintessence: Notice that in the landscape there is no reason to

tune the minimum to vanishing vacuum energy. If the minimum of the potential for

the lightest axion is tuned to be of the order of the current value of the cosmological

constant ⇤, the slow-roll condition just implies (the term which depends on a`/f` in

eq. (3.22) is always smaller than 1):
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ȧ2
2

+ V
⇠ �1� 1

3

✏

1 + 1

3

✏
⇠ �1 +

2

3
✏ . (3.24)
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energy scale of the potential would be of order the cosmological constant scale, and so

would be way too low to match the observed amplitude of the density perturbations.

Moreover, for ⇤ � ⇤`, if f` is not too low, ✏ is below unity everywhere in the axion

field space, and so there would be no way to end inflation.
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nario could be given by an oscillating axion. Assuming that ⇤ is tuned at the current
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also for sub-Planckian axion decay constants. Hence this case would violate the swampland
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Conclusions 

• de Sitter and Quintessence: Many 
achievements, challenges, open questions

• Observational challenges for both!                   
(w<-1 and varying??)



Message Mailbox Folders Compose Addressbook Manage Help Logout

Maths Webmail Service

Reminder: Logout when you have finished. User currently logged into Maths : fq201

From: Joseph Polchinski <joep@kitp.ucsb.edu>
To: fq201@damtp.cam.ac.uk
Cc: Senarath de Alwis <dealwiss@gmail.com>
Date: Mon, 7 Aug 2017 17:01:48 -0700
Subject:Re: Question on: Hartle-Hawking

By the way, I have a new principle: if we have a seemingly powerful no-go
theorem, then we will find a powerful exception just beyond the limit of
validity of the theorem.

Example:

No stable atoms in classical electrodynamics.

No symmetries beyond Coleman-Mandula.

No composite graviton in field theory.

No de Sitter in classical GR (including branes).

(are there others?)

So when Sav uses the no-go argument (15 times!), it is just a red flag that it
is irrelevant.

Best,
Joe

> On Aug 7, 2017, at 3:13 PM, fq201@damtp.cam.ac.uk wrote:
> 
> Dear Joe:
> 
> Good. I am glad you find the AJL results surprising. We also and thought that
> FGG could be the answer but then found the et al Shenker but also your paper
> FMP. So there is hope that there is a way to establish that despite AJL the
> dS-dS transitions work. Will keep trying.
> 
> Also good to know your opinion on Sav's draft (I was given a hard time at a
> conference in Lucca (Tuscany) a few months ago where Sav made some of these
> claims (other participants included Tom Banks and Bena)).
> 
> Best regards,
> 
> Fernando
> 

Maths Webmail Service https://webmail.maths.cam.ac.uk/session/fq201:16510//AABO@...

1 of 5 17/09/2018, 23:02


