

IceCube:

Building a New Window on the Universe

francis halzen

- IceCube
- cosmic neutrinos: three independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
 - \rightarrow high energy tau neutrinos
- where do they come from?
- Fermi photons and IceCube neutrinos
- the first high-energy cosmic ray accelerator

icecube.wisc.edu

- 20% of the Universe is opaque to the EM spectrum
- non-thermal Universe powered by cosmic accelerators
- probed by gravity waves, neutrinos and cosmic rays

Cosmic Horizons – Optical Sky

wavelength = 10^{-6} m \Leftrightarrow energy = 1 eV

Cosmic Horizons – Microwave Radiation 380.000 years after the Big Bang

wavelength = 10^{-3} m \Leftrightarrow energy = 10^{-4} eV

Cosmic Horizons – Gamma Radiation

wavelength = 10^{-15} m \Leftrightarrow energy = 1 GeV

Cosmic Horizons – Gamma Radiation

wavelength = 10^{-21} m \Leftrightarrow energy = 10^3 TeV

The opaque Universe

$\gamma + \gamma_{CMB} \rightarrow e^+ + e^-$

PeV photons interact with microwave photons (411/ cm³) before reaching our telescopes enter: neutrinos

Neutrinos? Perfect Messenger

- electrically neutral
- essentially massless
- essentially unabsorbed
- tracks nuclear processes
- reveal the sources of cosmic rays

... but difficult to detect: how large a detector?

- 20% of the Universe is opaque to the EM spectrum
- non-thermal Universe powered by cosmic accelerators
- probed by gravity waves, neutrinos and cosmic rays

cosmic ray accelerators

LHC accelerator should have circumference of Mercury orbit to reach 10²⁰ eV!

accomodating energy and luminosity are challenging

the sun constructs an accelerator

accelerator must contain the particles

challenges of cosmic ray astrophysics:

- dimensional analysis, difficult to satisfy
- accelerator luminosity is high as well

the sun constructs an accelerator

the sun constructs an accelerator

origin of cosmic rays: oldest problem in astronomy

cosmic ray accelerators: where, how?

gravitational energy from collapsing stars is converted into particle acceleration?

LHC filling the orbit of Mercury

supernova remnants

Chandra Cassiopeia A

gamma ray bursts

active galaxy

particle flows near supermassive black hole

accelerator is powered by large gravitational energy

black hole neutron star

radiation and dust

 $p + \gamma \rightarrow n + \pi^+$ ~ cosmic ray + neutrino

 \rightarrow p + π^0 ~ cosmic ray + gamma

$\mathbf v$ and $\boldsymbol \gamma$ beams : heaven and earth

IceCube

francis halzen

IceCube

- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
 - \rightarrow high energy tau neutrinos
- where do they come from?
- Fermi photons and IceCube neutrinos
- the first high-energy cosmic ray accelerator

iceCube.wisc.edu

M. Markov 1960

M.Markov : we propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation.

charged secondary particles produced as the neutrino disappears

> nuclear interaction

neutrino

lattice of photomultipliers

- find an optically clear medium shielded from cosmic rays
- map its optical properties
- ice 1.4 kilometers below geographic South Pole
 fill with photomultipliers with spacings ~ absorption length
- add data acquisition and computers

10,000 times too small to do neutrino astronomy...

(c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo,

ultra-transparent ice below 1.5 km

instrument 1 cubic kilometer of natural ice below 1.45 km

IceCube

photomultiplier tube -10 inch

architecture of independent DOMs

10 inch pmt

HV board

LED flasher board

> main board

... each Digital Optical Module independently collects light signals like this, digitizes them,

...time stamps them with 2 nanoseconds precision, and sends them to a computer that sorts them events...

Signals and Backgrounds

... you looked at 10msec of data !

muons detected per year:

• atmospheric* μ ~ 10¹¹ • atmospheric** $\nu \rightarrow \mu$ ~ 10⁵ • cosmic $\nu \rightarrow \mu$ ~ 10

* 3000 per second

** 1 every 6 minutes

muon track: color is time; number of photons is energy

89 TeV

radius ~ number of photons time ~ red \rightarrow purple

Run 113641 Event 33553254 [Ons, 16748ns]

IceCube

francis halzen

- IceCube
- cosmic neutrinos: two independent observations

\rightarrow muon neutrinos through the Earth

- \rightarrow starting neutrinos: all flavors
- \rightarrow high energy tau neutrinos
- where do they come from?
- Fermi photons and IceCube neutrinos
- the first high-energy cosmic ray accelerator

IceCube.wisc.edu

~ 550 cosmic neutrinos in a background of ~340,000 atmospheric atmospheric background: less than one event/deg²/year

IceCube

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
 - \rightarrow high energy tau neutrinos
- where do they come from?
- Fermi photons and IceCube neutrinos
- the first high-energy cosmic ray accelerator

iceCube.wisc.edu

GZK neutrino search: two neutrinos with > 1,000 TeV

date: August 9, 2011 energy: 1.04 PeV topology: shower nickname: Bert

electron showers versus muon tracks

- 10 m long
- volume ~ 5 m^3
- isotropic after 25~50 m

size = energy & color = time = direction

- > 300 sensors
- > 100,000 pe reconstructed to 2 nsec

 select events interacting inside the detector only

 \checkmark no light in the veto region

 veto for atmospheric muons and neutrinos (which are typically accompanied by muons)

 energy measurement: total absorption calorimetry

data: 86 strings one year

2 old + 26 new events

RESEARCH

28 High

Energy

Events

Anima

Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector

IceCube Collaboration*

2000 TeV event in year 3

IceCube

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
 - \rightarrow high energy tau neutrinos
- where do they come from?
- Fermi photons and IceCube neutrinos
- the first high-energy cosmic ray accelerator

iceCube.wisc.edu

high-energy starting events - 7.5 yr

oscillations of PeV neutrinos over cosmic distances to 1:1:1

a cosmic tau neutrino: livetime 17m

the first Glashow resonance event: anti- v_e + atomic electron \rightarrow real W at 6.3 PeV

Partially contained event with energy ~ 6 PeV

Glashow resonance: anti- v_e + atomic electron \rightarrow real W

- partially-contained PeV search
- deposited energy: 5.9±0.18 PeV
- typical visible energy is 93%

$$\rightarrow$$
 resonance: E_v = 6.3 PeV

work on-going

muon (v=c) outraces the light propagating from the electromagnetic component (v<c)

are the observations consistent?

total energy measurement all flavors, all sky astronomy: angular resolution superior (<0.4°)

IceCube

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
 - \rightarrow high energy tau neutrinos
- where do they come from?
- Fermi photons and IceCube neutrinos
- the first high-energy cosmic ray accelerator

iceCube.wisc.edu

138322 neutrino candidates in one year

120 cosmic neutrinos

~12 separated from atmospheric background with E>60 TeV structure in the map results from neutrino absorption by the Earth

- we observe a diffuse flux of neutrinos from extragalactic sources
- a subdominant Galactic component cannot be excluded (no evidence reaches 3σ level)
IceCube

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
 - \rightarrow high energy tau neutrinos
- where do they come from?
- Fermi photons and IceCube neutrinos
- the first high-energy cosmic ray accelerator

iceCube.wisc.edu

accelerator is powered by large gravitational energy

black hole neutron star

radiation and dust

 $p + \gamma \rightarrow n + \pi^+$ ~ cosmic ray + neutrino

 \rightarrow p + π^0 ~ cosmic ray + gamma

$\mathbf v$ and $\boldsymbol \gamma$ beams : heaven and earth

gamma rays accompanying IceCube neutrinos interact with interstellar photons and fragment into multiple lower energy gamma rays that reach earth

e

e

 energy density of neutrinos in the non-thermal Universe is the same as that in gamma-rays

note that the gammas rays accompanying < 100 TeV neutrinos are not seen suggesting a hidden source(s)

- energy density of neutrinos in the non-thermal Universe is the same as that in gamma-rays
- origin of events from opaque sources < 100 TeV ?

Fermi sources are mostly blazars

common sources?

→ multimessenger ___astronomy

Vµ

π°

π

SHOCKWAVE

mm e

Vu

Ve

IceCube

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
 - \rightarrow high energy tau neutrinos
- where do they come from?
- Fermi photons and IceCube neutrinos
- the first high-energy cosmic ray accelerator

iceCube.wisc.edu

IceCube Trigger

43 seconds after trigger, GCN notice was sent

GCN/AMON NOTICE TITLE: NOTICE DATE: Fri 22 Sep 17 20:55:13 UT NOTICE TYPE: AMON ICECUBE EHE RUN NUM: 130033 EVENT NUM: 50579430 SRC RA: 77.2853d {+05h 09m 08s} (J2000), 77.5221d {+05h 10m 05s} (current), 76.6176d {+05h 06m 28s} (1950) +5.7517d {+05d 45' 06"} (J2000), SRC DEC: +5.7732d {+05d 46' 24"} (current), +5.6888d {+05d 41' 20"} (1950) 14.99 [arcmin radius, stat+sys, 50% containment] SRC ERROR: 18018 TJD; 265 DOY; 17/09/22 (yy/mm/dd) DISCOVERY DATE: 75270 SOD {20:54:30.43} UT DISCOVERY TIME: REVISION: 0 1 [number of neutrinos] N EVENTS: 2 STREAM: DELTA T: 0.0000 [sec] SIGMA T: 0.0000e+00 [dn] 1.1998e+02 [TeV] ENERGY : 5.6507e-01 [dn] SIGNALNESS: 5784.9552 [pe] CHARGE:

IceCube 170922

MAGIC detects emission of > 100 GeV gammas

IceCube 170922 Fermi detects a flaring blazar within 0.06°

MAGIC atmposheric Cherenkov telescope

Follow-up detections of IC170922 based on public telegrams

THE REDSHIFT OF THE BL LAC OBJECT TXS 0506+056.

SIMONA PAIANO,^{1,2} RENATO FALOMO,¹ ALDO TREVES,^{3,4} AND RICCARDO SCARPA^{5,6}

¹INAF, Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5 I-35122 Padova - ITALY

²INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova - ITALY

³ Università degli Studi dell'Insubria, Via Valleggio 11 I-22100 Como - ITALY

⁴INAF, Osservatorio Astronomico di Brera, Via E. Bianchi 46 I-23807 Merate (LC) - ITALY

⁵Instituto de Astrofisica de Canarias, C/O Via Lactea, s/n E38205 - La Laguna (Tenerife) - SPAIN

⁶ Universidad de La Laguna, Dpto. Astrofisica, s/n E-38206 La Laguna (Tenerife) - SPAIN

(Received February, 2018; Revised February 7, 2018; Accepted 2018)

Submitted to ApJL

ABSTRACT

The bright BL Lac object TXS 0506+056 is a most likely counterpart of the IceCube neutrino event EHE 170922A. The lack of this redshift prevents a comprehensive understanding of the modeling of the source. We present high signal-to-noise optical spectroscopy, in the range 4100-9000 Å, obtained at the 10.4m Gran Telescopio Canarias. The spectrum is characterized by a power law continuum and is marked by faint interstellar features. In the regions unaffected by these features, we found three very weak (EW ~ 0.1 Å) emission lines that we identify with [O II] 3727 Å, [O III] 5007 Å, and [NII] 6583 Å, yielding the redshift $z = 0.3365\pm0.0010$.

Keywords: galaxies: BL Lacertae objects: individual (TXS 0506+056) – distances and redshifts – gamma rays: galaxies –neutrinos

- we do not see our own Galaxy
- we do not see the nearest extragalactic sources
- we find a blazar at 4 billion lightyears!

multiwavelength campaign launched by IC 170922

IceCube, *Fermi* –LAT, MAGIC, Agile, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, KISO, Liverpool, Subaru, *Swift*, VLA, VERITAS

- neutrino: time 22.09.17, 20:54:31 UTC energy 290 TeV direction RA 77.43° Dec 5.72°
- Fermi-LAT: flaring blazar within 0.06° (7x steady flux)
- MAGIC: TeV source in follow-up observations
- follow-up by 12 more telescopes
- \rightarrow IceCube archival data (without look-elsewhere effect)
- → Fermi-LAT archival data

search in archival IceCube data:

- 150 day flare in December 2014 of 19 events (bkg <6)
- 10⁻⁵ bkg. probability
- spectrum E^{-2.1}

Why not seen before?

we identified a source of high energy cosmic rays:

the active galaxy (blazar) TXS 0506+056 at a redshift of 0.33

extensive multiwavelength campaign will allow us to study the first cosmic accelerator

Victor Hess 1912

AGILE DETECTION OF A CANDIDATE GAMMA-RAY PRECURSOR TO THE ICECUBE-160731 NEUTRINO EVENT

F. LUCARELLI,^{1,2} C. PITTORI,^{1,2} F. VERRECCHIA,^{1,2} I. DONNARUMMA,³ M. TAVANI,^{4,5,6} A. BULGARELLI,⁷ A. GIULIANI,⁸ L. A. ANTONELLI,^{1,2} P. CARAVEO,⁸ P. W. CATTANEO,⁹ S. COLAFRANCESCO,^{10,2} F. LONGO,¹¹ S. MEREGHETTI,⁸ A. MEREGHETTI,⁸ A. DEREMERTI,¹³ A. DEREMERTI,¹³ A. DEREMERTI,⁸ A. MEREGHETTI,⁸ A. MEREGHETI,⁸ A. MEREGHETI,⁸ A. MEREGHETI,⁸ A. MEREGHETI,⁸ A. MEREGHE

A. MORSELLI,¹² L. PACCIANI,⁴ G. PIANO,⁴ A. PELLIZZONI,¹³ M. PILIA,¹³ A. RAPPOLDI,⁹ A. TROIS,¹³ AND S. VERCELLONE¹⁴

Corresponding author: Fabrizio Lucarelli fabrizio.lucarelli@asdc.asi.it

Conclusions

- discovered cosmic neutrinos with an energy density similar to the one of gamma rays.
- neutrinos are essential for understanding the non-thermal universe.
- identified the first high-energy cosmic ray accelerator

 from discovery to astronomy: more events, more telescopes IceCube-upgrade (→ IceCube-Gen2), KM3NeT and GVD (Baikal)

THE ICECUBE COLLABORATION

The Highest Energy Emission Detected by EGRET from Blazars

Brenda L. Dingus¹ & David L. Bertsch²

 Physics Department, University of Wisconsin, Madison, WI 53711 <u>dingus@physics.wisc.edu</u>
(2)NASA Goddard Space Flight Center, Greeenbelt, MD 20771

Abstract. Published EGRET spectra from blazers extend only to 10 GeV, yet EGRET has detected approximately 2000 γ -rays above 10 GeV of which about half are at high Galactic latitude. We report a search of these high-energy γ -rays for associations with the EGRET and TeV detected blazers. Because the point spread function of EGRET improves with energy, only $\sim 2 \gamma$ -rays are expected to be positionally coincident with the 80 blazars searched, yet 23 γ -rays were observed. This collection of > 10 GeV sources should be of particular interest due to the improved sensitivity and lower energy thresholds of ground-based TeV observatories. One of the blazers, RGB0509+056, has the highest energy γ -rays detected by EGRET from any blazar with 2 > 40 GeV, and is a BL Lac type blazar with unknown redshift.

Why not seen before?

after 6 years: $3.7 \rightarrow 6.0$ sigma

HESE 4 year unfolding $(\rightarrow \text{ dominated by shower-like events})$

cosmic rays interact with the microwave background

$$p + \gamma \rightarrow n + \pi^+ and p + \pi^0$$

cosmic rays disappear, neutrinos with EeV (10⁶ TeV) energy appear

$$\pi \rightarrow \mu + \upsilon_{\mu} \rightarrow \{e + \overline{\upsilon_{\mu}} + \upsilon_{e}\} + \upsilon_{\mu}$$

1 event per cubic kilometer per year ...but it points at its source!

