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chiral pentagon, and it is intimately connected with the fact that its integrand has “unit
leading singularities,” as emphasized in Ref. [13].

Evidently this is a happy example where there is a very clear separation between the
LLS, which tell us only about the overall algebraic singularities of the amplitude (and which
actually end up washed out by the fact that the leading singularities of the integrand are
normalized to 1), and the sub-(sub-)leading Landau singularities which probe past the pref-
actor and into the symbol. Let us recall that MHV amplitudes are expected to evaluate to
pure transcendental functions, with no algebraic prefactors (other than the tree-level MHV
amplitude indicated on the left-hand side of (3.1)) to all orders in perturbation theory [16].

IV. TWO-LOOP MHV AMPLITUDES

We now turn our attention to the chiral double pentagon integral, which is the basic
building block for two-loop MHV amplitudes.

A. The Chiral Double Pentagon

The two-loop MHV amplitude for n particles in SYM theory may be expressed as [13]
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in terms of the chiral double pentagon integrand
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(4.2)

The numerator factors in (4.2) serve the same purpose as in the one-loop pentagon dis-
cussed in the previous section. Each of the two nontrivial numerator factors vanishes on
half of the leading singularities of the scalar double pentagon integrand; their product is
non-zero on one quarter of them. The integrand is normalized to have residue 1 on these
leading singularities. The numerator factors also suppress the soft/collinear divergences,
rendering the integral finite for generic i, j, k, l.

Explicit analytic results for the chiral double pentagon integral have been obtained only
for the special case l = k + 2 = j + 3 = i + 5 at n = 6 [17]. However it is expected that
for generic i, j, k, l the integral is expressible as a generalized polylogarithm with a symbol
alphabet similar to that described in (3.5) and (3.6). Specifically, the letters appearing in
the first entry of the symbol are expected on general physical grounds [14] to be

ha a+1 b b+1i, a, b 2 {i�1, i, j�1, j, k�1, k, l�1, l} . (4.3)
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Planar	N=4	Yang-Mills
• N=4	Yang-Mills	is	a	quantum	field	theory	which	
describes	“real	world”	particle	interactions.	Many	
techniques	we	develop	for	YM	have	been	applied	

to	QCD	and	Standard	Model.
• N=4	Yang-Mills	is	a	string	theory	(via	AdS/CFT),	so	

learning	about	N=4	Yang-Mills	teaches	us	about	
quantum	gravity.

• N=4	Yang-Mills	is	solvable	(integrable)	which	is	a	
non-trivial	fact	for	four-dimensional	quantum	

field	theory.



N=4	Yang-Mills	Amplitudes
The	goal	is	to	explore	the	hidden	structures	of	amplitudes	
and	to	exploit	these	structures	as	much	as	possible	to	
make	previously	impossible	computations	possible.
• Twistor string	description
• Dual	conformal	and	Yangian symmetries
• Wilson	loops/amplitudes/correlation	funcs triality
• Color/kinematic	duality
• Amplituhedron,	positivity,	on-shell	diagrams
• Simplifying	limits:	 fishnet,	multi-Regge

Bern,	Dixon,	Kosower;	Witten; Drummond,	 Henn,	 	Korchemsky,	Sokachev, Brandhuber,	 Heslop,	
Spence,	 	Travaglini,		Arkani-Hamed,	Cheung,	Cachazo,	Kaplan,	Trnka,		Bourjaily,	Bern,	Carrasco,	
Johansson,	 	Caron-Huot,	He, Beisert,	Eden,	Staudacher,	Mason,		Skinner, Alday,	Madalcena,	
Basso,	Sever,	Viera,	Roiban,	Spradlin,	 many	others	



Plan
• Introduction

• N=4	Yang-Mills	Amplitudes	Bootstrap	Program:
Input	=	Symbol	Alphabet

How	Symbol	Alphabet	be	determined?

• Symbol	Alphabet	and	Landau	Singularities
• Symbol	Alphabet	and	Cluster	Algebra

• Conclusions



N=4	Planar	Yang-Mills	Amplitudes
L-loop	n-points	N MHV	

• 0- and	1-loops:	all	n,	k
• 2-loop:	all	n-point	MHV,	6,	7	NMHV	
• 3,	4-loops:	6,	7-point	MHV	&	NMHV
• 5-loops:	6-point	MHV	&	NMHV
• 6-loops:	6-point	MHV
• L-loops:	4,	5-point	MHV

[Bern,	Dixon,	Kosower ][Caron-Huot,	Dixon,	Drummond,	Duhr,	
Foster,	Gurdogan,	Harrington,	Henn,	McLeod,	Papathanasiou,	
Spradlin,	von	Hippel	2015-present]

k



Amplitude =
R
d(loop momenta) (Integrand)

Integrand

Amplitude

hard

Quantum	Field	Theory	Textbooks:



N=4	Yang-Mills	Amplitudes	
Integrands are	known	for	all	L,	k	and	n,	but	as	we	saw	on	

the	previous	slide	the	resulting	integral	is	
only	known	for	a	few	cases….

• We	need	new	tools	to	make	these	calculations	possible.
• Having	more	data	is	crucial	for	identifying	hidden	
structures	of	these	amplitudes.

• Modern	approaches	to	computing	amplitudes	avoid	
knowledge	of	integrands	completely….	

Amplitudes	Bootstrap



Amplitude	Bootstrap	:	Old	vs	New

It	has	long	been	a	goal	of	the	S-matrix	
program	to	be	able	to	construct	scattering	
amplitudes	based	on	a	few	physical	
principles	and	a	thorough	understanding	
of	their	analytic	structure.	

1.	Momentum	twistors [Penrose,	Hodges]

2.		Symbol	of	Polylogarithms [GSVV]

3.		Amplituhedron [Arkani-Hamed,	Trnka]

Important	
New	

Ingredients



Amplitude	Bootstrap

The Amplitude Bootstrap Reloaded

Lance Dixon (SLAC)
S. Caron-Huot, LD, M. von Hippel, A, McLeod, to appear

Hexagon function bootstrap

L. Dixon      Amplitude Bootstrap Reloaded Amplitudes 2016   - July 6 10

Use analytical properties of 
perturbative amplitudes in planar N=4 
SYM to determine them directly,                                  
without ever peeking inside the loops 

First step toward doing this nonperturbatively
(no loops to peek inside) for general kinematics

LD, Drummond, Henn, 1108.4461, 1111.1704;
LD, Drummond, Duhr, von Hippel, McLeod, Pennington, 1308.2276, 
1402.3300, 1408.1505, 1509.08127;
Drummond, Papathanasiou, Spradlin, 1412.3763

Scattering	Amplitudes:
functions	of the	geometry	
of	scattering	configurations

Use	mathematical	and	physical	properties	
to	determine	these	functions	directly.



Experimental Data #1 — R (2)
6

Now let’s review some “experimental data”.

First, the two-loop six-particle MHV amplitude

R
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h1234ih1456i
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+ products of Lik(�x) functions of lower weight

with the same set of arguments.

It is a lucky accident that this amplitude can be expressed entirely
in terms of the classical Lik functions, which allows it to be written
in an essentially canonical form.

Marcus Spradlin, Brown University Cluster Polylogarithms for Scattering Amplitudes

Example:	2-loop	6-point	MHV	

GSVV
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Example:	2-loop	6-point	MHV	

GSVV
Function	and	its	Argument



Polylogarithm Functions
• Uniform	Transcendentality 2L @	L-loops
• Logarithm	Functions
• Polylogarithm Functions

• Generalized	Polylogarithm Functions

• Elliptic	Polylogarithms (n=10	L=2	k=3)

log2Lx
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can express z⇤ in terms of Z⇤(↵,�), albeit only up to complex conjugation and to a sign

related to the choice of the branches of the square root. We refer to Appendix A for a

detailed discussion.

3.2 Elliptic multiple polylogarithms

In this subsection we introduce a generalisation of polylogarithms to elliptic curves. We

start by defining elliptic multiple polylogarithms as iterated integrals on (the universal

cover of) a complex torus, and we review what this class of integrals becomes in terms of

the variables (x, y) at the end of this subsection.

Elliptic multiple polylogarithms (eMPLs) were first introduced in ref. [137]. Here we

follow a slightly di↵erent path, and inspired by refs. [138, 156] we define eMPLs by the

iterated integral

e�( n1 ... nk
z1 ... zk ; z, ⌧) =

Z z

0
dz

0
g
(n1)(z0 � z1, ⌧) e�

� n2 ... nk
z2 ... zk ; z

0
, ⌧
�
, (3.14)

where zi are complex numbers and ni 2 N are positive integers. The integers k and
P

i ni

are called the length and the weight of the eMPL. In the case where (nk, zk) = (1, 0), the

integral in eq. (3.14) is divergent and requires regularisation. We closely follow ref. [138]

for the choice of the regularisation scheme.

The integration kernels in eq. (3.14) are defined through a generating series known as

the Eisenstein-Kronecker series,

F (z,↵, ⌧) =
1

↵

X

n�0

g
(n)(z, ⌧)↵n =

✓
0
1(0, ⌧) ✓1(z + ↵, ⌧)

✓1(z, ⌧) ✓1(↵, ⌧)
, (3.15)

where ✓1 is the odd Jacobi theta function, and ✓
0
1 is its derivative with respect to its first

argument. Seen as a function of z, the function g
(1)(z, ⌧) has a simple pole with unit

residue at every point of the lattice ⇤⌧ . For n > 1, g(n)(z, ⌧) has a simple pole only at

those lattice points that do not lie on the real axis. As a consequence, the iterated integrals

in eq. (3.14) have at most logarithmic singularities. Furthermore the functions g
(n) have

definite parity,

g
(n)(�z, ⌧) = (�1)n g(n)(z, ⌧) , (3.16)

and are invariant under translations by 1, but not ⌧ ,

g
(n)(z + 1, ⌧) = g

(n)(z, ⌧) and g
(n)(z + ⌧, ⌧) =

nX

k=0

(�2⇡i)k

k!
g
(n�k)(z, ⌧) . (3.17)

Elliptic MPLs share many of the properties of ordinary MPLs. First, eMPLs form a

shu✏e algebra,

e�(A1 · · ·Ak; z, ⌧) e�(Ak+1 · · ·Ak+l; z, ⌧) =
X

�2⌃(k,l)

e�(A�(1) · · ·A�(k+l); z, ⌧) , (3.18)

where we have introduced the notation Ai = ( ni
zi ). The shu✏e product preserves both the

weight and the length of eMPLs. Second, there is a closed formula for the total di↵erential

– 9 –



Arguments	of	the	Polylogarithms
obviously inherits this property. However the A2 function has a non-local ⇤2 B2 component,

so it is rather amazing that the particular linear combination of A2’s appearing inside A3

give rise to the completely local eq. (4.5). Moreover, the two coproduct components see

distinct aspects of the geometry of the Stashe↵ polytope—the ⇤2 B2 component involves the

three quadrilateral faces (i.e., the A1⇥A1 subalgebras) while the B3⌦C⇤ component involves

the six pentagonal faces (the A2 subalgebras). It is tempting to anticipate the possibility

that this notion of locality within the Stashe↵ polytope might underlie the structure of SYM

theory scattering amplitudes in a very deep way. If this proves to be so, we cannot help

but wonder (following somewhat the motivation espoused by [3]) whether there exists an

alternative formulation of SYM theory scattering amplitudes which makes this “locality in

the Stashe↵ polytope” manifest.

A conjecture central to our approach is that the set of fA3 for all possible A3 subalgebras

of Gr(4, n) spans the space of all weight-four cluster polylogarithm functions whose coproduct

components are completely “local” (involving only quadrilaterals in ⇤2 B2 and only pentagons

in B3⌦C⇤).

We now display a simple realization of the A3 function in a familiar setting: the Gr(4, 6)

algebra, relevant to 6-particle scattering, which is in fact isomorphic to A3. In order to align

with the notation in [2], we consider (x1, x2, x3) = (x�1 , e6, 1/x
+
1 ) and relate xi,1 = x�i and

xi,2 = x+i . The 15 X -coordinates can then be written as

v1 =
h1246ih1345i
h1234ih1456i , v2 =

h1235ih2456i
h1256ih2345i , v3 =

h1356ih2346i
h1236ih3456i ,

x+1 =
h1456ih2356i
h1256ih3456i , x+2 =

h1346ih2345i
h1234ih3456i , x+3 =

h1236ih1245i
h1234ih1256i ,

x�1 =
h1234ih2356i
h1236ih2345i , x�2 =

h1256ih1346i
h1236ih1456i , x�3 =

h1245ih3456i
h1456ih2345i , (4.6)

e1 =
h1246ih3456i
h1456ih2346i , e2 =

h1235ih1456i
h1256ih1345i , e3 =

h1256ih2346i
h1236ih2456i ,

e4 =
h1236ih1345i
h1234ih1356i , e5 =

h1234ih2456i
h1246ih2345i , e6 =

h1356ih2345i
h1235ih3456i .

Notably absent from this list are the three cross-ratios u1, u2, u3 often used in the physics

literature; these are related to the vi’s by ui = 1/(1+vi). Evaluating eq. (4.4) on the variables

in (4.6) generates what we will call “the Gr(4, 6) function”.

It is interesting to note that the transformation of the Gr(4, 6) function with respect

to the dihedral group acting on the 6 particles is opposite to that of the 5-particle dihedral

group acting on the A2 function. Specifically, the Gr(4, 6) function is invariant under flipping

particle i to particle 7 � i, but it is antisymmetric under a cyclic rotation i ! i + 1. This

antisymmetry is manifest for example in eq. (4.5) upon noting that the x±i transform under

a cyclic rotation according to

x±i ! x⌥i+1. (4.7)

– 13 –

n=6

Null	vectors	in	4d	Minkowski space	subject	to	momentum	
conservation	can	be	represented	by	momentum	twistors

Hodges



1. Momentum Twistors

Example:

h1 4 5 6i ⇠ (p1 + p2)2(p3 + p4)2

(p2 + p3 + p4)2
u1 + u2 + u3 � 1 +

p
�

2u1u2u3
,

� = (1� u1 � u2 � u3)
2 � 4u1u2u3

u1 =
(p1 + p2)2(p4 + p5)2

(p1 + p2 + p3)2(p4 + p5 + p6)2
, u2, u3 = cyclic

Don’t Panic! Here’s the Punchline

see: some brackets

think: “some algebraic function of Mandalestam invariants”

Figure 1: Defining the connections between momentum-twistors, dual-coordinates, and

cyclically-ordered external four-momenta

point x in spacetime corresponds to set of twistors Z = (�, µ) which satisfy

µ↵̇ = x↵ ↵̇�↵. (2.2)

Twistors satisfying this relation form a projective line in CP3. Even though Z has

the components of a point in C4, the incidence relation cannot distinguish Z from

tZ, and therefore the space is projectivized.

In order to specify a line in twistor space—and therefore a point in spacetime—

all that is needed is a pair of twistors, say ZA and ZB, that belong to the line. Given

the twistors, the line or spacetime point is found by solving the four equations coming

from imposing the incidence relation for ZA and ZB with x. It is easy to check that

the solution is,

x↵ ↵̇ =
�A,↵µB,↵̇

h�A �Bi
+

�B,↵µA,↵̇

h�B �Ai
. (2.3)

(Here, we have made use of the familiar Lorentz-invariant contraction of two spinors

h�A �Bi ⌘ ✏↵ ��↵
A�

�

B).

Hodges’ construction starts with any set of n twistors {Z1, . . . , Zn}. Using the

association xa $ (Za, Za+1), n spacetime points are defined. Quite nicely, it is trivial

that p2

a = (xa�xa�1)2 = 0 because the corresponding lines, or (CP1s), intersect. This

is illustrated in Figure 1.

Given the importance of this latter fact, it is worth giving it a slightly more

detailed discussion than we have so far. If two lines in twistor-space intersect, i.e.

share a twistor Zint, then the corresponding spacetime points, say x and y, associated

with the lines are null-separated. To see this, take the di↵erence of the incidence

– 8 –

Relation	to	momentum



17-pages	can	be	simplified	using	a	very	
useful	tool	from	modern	mathematics	

Li2(x) + Li2(�x) = 1
2Li2(x

2)

�(1� x)⌦ x� (1 + x)⌦ (�x) = �(1� x2)⌦ x = � 1
2 (1� x2)⌦ x2

log(R) ! R

Li2(R) ! �(1�R)⌦R
Symbol

Symbol	of	Polylogarithm

QCD	computations



Symbol	Alphabet:	n=6

• Amplitude	=	Function	of	Cross-Ratios

• Full	Symbol	

• Symbol	Alphabet:	9	letters

Experimental Data #1 — R (2)
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First, the two-loop six-particle MHV amplitude
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Marcus Spradlin, Brown University Cluster Polylogarithms for Scattering Amplitudes

h1234ih2345i = 0
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There are also various generalizations of cluster algebras built out of more general ma-
trices Q that need not be skew-symmetric, but perhaps only skew-symmetrizable, or totally
sign-skew-symmetric [25]. So far, these generalizations play no part in the physics of scat-
tering amplitudes, and will not be discussed here. In this larger context, the cluster algebras
defined here are skew-symmetric cluster algebras of geometric type.

One generalization that will be used, however, is the idea of frozen variables. Concep-
tually, one chooses certain vertices that may not be mutated. These are carried along,
unchanged, in every quiver. See [27] for more details.

5.2 The A2 Cluster Algebra

The definition of cluster algebras is best understood through examples. The simplest non-
trivial cluster algebra is called A2 and starts from the seed

S1 = (a1, Q1) =

✓
(a1, a2),

✓
0 1
�1 0

◆◆
(5.8)

or, as a quiver,

S1 : a1 a2

There are two mutable variables, a1 and a2, and no frozen variables. Applying µ1, mutation
on the first vertex, gives a new seed

S2 : a3 a2

or

S2 := µ1(S1) = (a2, Q2) =

✓
(a3, a2),

✓
0 �1
1 0

◆◆
(5.9)

where a3 is given by Equation (5.6):

a3 := a0
1
=

1

a1

"
Y

i!1

ai +
Y

1!j

aj

#
=

1

a1

⇥
a0
1
a0
2
+ a0

1
a1
2

⇤
=

1 + a2
a1

. (5.10)

Applying µ1 to S2 just generates S1 again, which gives nothing new. Applying µ2 to S2

gives the seed

S3 : a3 a4

or

S3 := µ2µ1(S1) = (a3, Q3) =

✓
(a3, a4) ,

✓
0 1
�1 0

◆◆
(5.11)

where

a4 := a0
2
=

1

a2

"
Y

i!2

ai +
Y

2!j

a2

#
=

1

a2
(1 + a3) =

1 + a1 + a2
a1a2

. (5.12)

After this, the cluster variables start getting simpler again. Applying µ1 to S3 gives
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ā is the plane (a� 1, a, a+ 1)

1

{a1, a2}

a1, a2, a3 =
1 + a2
a1

, a4 =
1 + a1 + a2

a1a2
, a5 =

1 + a1
a2

an+1 =
1 + an
an�1

(x� xi)
2 = 0

(x� xj)
2 = 0

(x� xk)
2 = 0

(x� xl)
2 = 0

↵i(x� xi) + ↵j(x� xj) + ↵k(x� xk) + ↵l(x� xl) = 0

Leading LS all ↵i 6= 0 LLS
Subleading LS some ↵i = 0 SLLS, S2LLS
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Cluster	AlgebraA2

Definition 6. If {Si} is the set of seeds of a cluster algebra, then the exchange graph is
the graph whose vertices are the seeds and where undirected edges are drawn between pairs
of seeds linked by a single mutation. The edges are undirected because they can always be
traversed back by applying the same mutation again.

The exchange graph of A2 is a pentagon.

S1

S2

S3

S4

S5

There are several properties of A2 that are worth pointing out.

• The cluster variables that appear are all rational functions in {a1, a2} with positive
integer coe�cients.

• The denominators of all the cluster variables are monomials in {a1, a2}.

• The complete set of cluster variables of A2 is

A(A2) =

⇢
a1, a2,

1 + a1
a2

,
1 + a1 + a2

a1a2
,
1 + a2
a1

�
. (5.19)

No matter what sequence of mutations is performed on the initial seed, the variables
that appear will be in this set.

• Labelling the variables as above, they satisfy a recurrence relation

ak =
1 + ak�1

ak�2

(5.20)

and ak+5 = ak for all k 2 [0, . . . 5].

All the properties except the last one are actually true in more general contexts.

5.3 General Properties of Cluster Algebras

This section will discuss some general properties of the cluster algebras. The following section
will return to concrete examples to elucidate them.

One of the most remarkable properties of clusters is the Laurant Phenomenon.
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Figure 3: The polytope obtained by gluing together the triangles associated to

clusters of the Gr(2, 6) (i.e., A3) cluster algebra.
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Figure 4: The cross-ratios (X -coordinates) around a valence 4 vertex (a) and a
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gebra. For clarity we have omitted the crucial overall minus sign in front of each

X -coordinate.
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Figure 5: The exchange graph for E6.



Cluster	Adjacency

Drummond,	Foster,	Gurdogan

• Works	for	all	known	examples

• It is not knownwhether there is a physical or
mathematical principle which requires this to be true,
nor	how	general	it	is…



In	Progress
• Write	symbol	in	terms	of	preferred	clusters
• Look	at	triples,	quads,	etc



Beyond	Cluster	Algebra

• For	n>7:	cluster	algebra	is	infinite	dimensional	
and	amplitudes	involve	square	roots.

• Natural	object:		
• It	is	a	finite	polytope	with	360	faces.
• There	is	 is	a	natural	role	for	square	roots	to	
play	in	the	variables	associated	to	this	
polytope.

Gr(4, 8)/T 7
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Arkani-Hamed,	Lam,	Spradlin



Other	Interesting	Applications	of	
Cluster	Algebras	to	Amplitudes

• Coproduct:	only	cluster	X-coordinates	appear	
which	constraints	the	class	of	functions	to	
cluster	polylogarithm functions	[GPSV]

• Special	kinematics:	[Duhr et	al]
• Applications	to	other	theories:	[Henn	et	al]
• Cluster	algebras	also	show	up	in	the	
integrand:	[Arkani-Hamed et	al]



Symbol	Alphabet	and	Landau	Singularities



• Symbol	captures	the	information	about	the	
singularity	structure	of	the	polylogarithm functions.

• Given	the	integrand,	the	location	of	its	
singularities	is	described	by	Landau	equations.

• There	should	be	a	close	connection	between	
solutions	of	Landau	Equations	(integrand)	and	
Symbol	Alphabet	(integral).

Maldacena,	Simons-Duffin,	 Zhiboedov

Symbol	and	Landau	Singularities

Abreu,	Britto,	Duhr,	Gardi



Landau	Singularities

Feynman parameters, (`µr ,↵i):

I = c

Z LY

r=1

d
D
`r

Z

↵i�0

d
⌫
↵ �(1�

X⌫

i=1

↵i)
N (`µr , p

µ
i , . . .)

D⌫
(2.1)

with

D =
⌫X

i=1

↵i(q
2

i �m
2

i ) , (2.2)

and c a prefactor that will not enter into our discussion. Here, qµi is the momentum flowing
along propagator i, pµi are external momenta, and N is some numerator function of the
kinematic data. There are two distinct situations in which I can develop a singularity or
branch point:

1. The surface D = 0 pinches the integration contour in all (`r,↵i) simultaneously. The
kinematic locations at which this happens are called “Leading Landau Singularities”
(LLS).

2. The surface D = 0 hits the boundary of the integration contour, at ↵i = 0 for some
subset of the Feynman parameters, and pinches the contour in all other variables.
These are called “Non-leading Landau Singularities,” which we stratify into “Sublead-
ing” (SLLS), “Sub-sub-leading,” (S2LLS) and so forth, according to how many of the
↵i are vanishing.

Although we do not review the derivation here, these two situations are captured by the
following set of simultaneous equations:

X

i2loop

↵iq
µ
i = 0 8 loops, (2.3)

↵i(q
2

i �m
2

i ) = 0 8i. (2.4)

On the principal sheet, the integration in `
µ
r and ↵i in (2.1) is taken over the real axis,

with ↵i � 0. Branch points on the principal sheet require the solution to (2.3) and (2.4)
to pinch this contour. When discussing symbol entries, however, we are also interested in
branch points on higher sheets, which are exposed by analytically continuing (2.1) to generic
contours. Therefore, throughout this paper we will look more generally for solutions to (2.3)
and (2.4) with `

µ
r ,↵i 2 C.

B. One-loop Bubbles, Triangles, and Boxes

The Landau equations (2.3) and (2.4) are easily solved for one-loop bubble, triangle, and
box integrals in four dimensions. Equation (2.4) puts all of the propagators on-shell, with
no constraints on external kinematics, while the solvability of the loop rule (2.3) gives a
determinantal constraint after contracting with each of the propagator momenta q

µ
i .

For the bubble and triangle integrals shown in Figure 1, the locations of the LLS are
given by

Bubble: 0 = x
2

ij , (2.5)

Triangle: 0 = x
2

ij x
2

jk x
2

ik , (2.6)

4

Landau	Equations	for	a	given	Feynman	integral	are	a	
set	of	kinematic		constraints	that	are	necessary	for	
the	appearance	of	a	pole	or	a	branch	point	in	the	
integrated		function:

Landau	1959,	ELOP	

Landau	Singularities occur	for	external	momenta
such	that	the	Landau	equations	have	solutions.



Example

h1234ih2345i = 0

hij̄i hi� 1 i j � 1ji

hj(j � 1 j + 1)(i i+ 1)(k k + 1)i

h1256i ⌦ h1346i ⌦ h1246i ⌦ h1456i+ . . . 7272 terms

h1235i, h2345i, h1345i, h2456i, h1356i, h1246i, h1245i, h2356i, h1346i

hii+ 1i hiji

{a1, a2}

a1, a2, a3 =
1 + a2
a1

, a4 =
1 + a1 + a2

a1a2
, a5 =

1 + a1
a2

an+1 =
1 + an
an�1

(x� xi)
2 = 0, (x� xj)

2 = 0, (x� xk)
2 = 0, (x� xl)

2 = 0

↵i(x� xi) + ↵j(x� xj) + ↵k(x� xk) + ↵l(x� xl) = 0

Leading LS all ↵i 6= 0 LLS
Subleading LS some ↵i = 0 SLLS, S2LLS
ā is the plane (a� 1, a, a+ 1)

1



One-loop	n-point	MHV

Dennen,	Spradlin,	AV

A. The Chiral Pentagon

The one-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A1�loop

MHV

Atree

MHV

=

Z

AB

X

1<i<j<n

j

n1

i
(3.1)

in terms of the chiral pentagon integrand

j

n1

i
=

hAB ī \ j̄ihi j n 1i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1ihAB n 1i . (3.2)

It is useful to recall several comments from Ref. [13]. First of all, the full integrand in (3.1) is
cyclic invariant despite the appearance of the apparently preferred line (n, 1) on the bottom
edge of the pentagon; the formula would be equally valid if (n, 1) were replaced by (k, k+1)
for any k (and the summation taken over k + 1 < i < j < k).

Second, the numerator factors in (3.2) are specially chosen so that all of its leading
singularities are normalized to 1. In fact it would not be inappropriate to say that half of
them are 1 and half of them are 0: the scalar pentagon integral has twice as many non-zero
leading singularities as the chiral pentagon, but the numerator factors in (3.2) vanish on
half of them.

Third, for generic i and j the chiral pentagon integral (3.2) is infrared finite; the numerator
factor hAB ī \ j̄i softens the behavior of the integral precisely in the regions of integration
where soft or collinear divergences might appear. This cancellation fails only for certain
boundary terms in the sum (specifically, when i = 2 or j � i = 1 or j = n � 1) in which
case the pentagon degenerates to an IR divergent box integral. Henceforth we ignore these
degenerate cases since the box integrals were already reviewed in the previous section.

An explicit formula for the chiral integral was obtained in Ref. [13]:

Z

AB

j

n1

i
=

Li2 (1� un,i�1,i,j)� Li2 (1� uj,n,i,j�1) + Li2 (1� uj,n,i�1,j�1)
�Li2 (1� ui,j�1,n,i�1) + Li2 (1� ui,j�1,j,i�1)
+ log (uj,n,i�1,j�1) log (un,i�1,i,j)

(3.3)
in terms of the dual spacetime cross-ratio

ui,j,k,l =
hi i+1 j j+1ihk k+1 l l+1i
hl l+1 j j+1ihk k+1i i+1i =

x
2

ijx
2

kl

x
2

ljx
2

ki

. (3.4)

8

Arkani-Hamed,	Bourjaily,	
Cachazo,	Trnka

Bern,	Dixon,	Dunbar,	 Kosower

Chiral	pentagon	integrals

Landau	Singularities

h1234ih2345i = 0

hij̄i hi� 1 i j � 1ji

hj(j � 1 j + 1)(i i+ 1)(k k + 1)i

h1256i ⌦ h1346i ⌦ h1246i ⌦ h1456i+ . . . 7272 terms

h1235i, h2345i, h1345i, h2456i, h1356i, h1246i, h1245i, h2356i, h1346i

hii+ 1i hiji

{a1, a2}

a1, a2, a3 =
1 + a2
a1

, a4 =
1 + a1 + a2

a1a2
, a5 =

1 + a1
a2

an+1 =
1 + an
an�1

(x� xi)
2 = 0, (x� xj)

2 = 0, (x� xk)
2 = 0, (x� xl)

2 = 0

↵i(x� xi) + ↵j(x� xj) + ↵k(x� xk) + ↵l(x� xl) = 0

Leading LS all ↵i 6= 0 LLS
Subleading LS some ↵i = 0 SLLS, S2LLS
ā is the plane (a� 1, a, a+ 1)

1

ultimately ine�cient approach, but armed with experience from that exercise we turn

in section 3 to the development of a general, geometric algorithm for reading o↵ the

physical branch points of MHV amplitudes directly from the amplituhedron.

1.1 Momentum Twistors

We begin by reviewing the basics of momentum twistor notation [27], which we use

throughout our calculations. Momentum twistors are based on the correspondence be-

tween null rays in (complexified, compactified) Minkowski space and points in twistor

space (P3), or equivalently, between complex lines in P3 and points in Minkowski

space. We use Za, Zb, etc. to denote points in P3, which may be represented us-

ing four-component homogeneous coordinates ZI
a = (Z1

a , Z
2
a , Z

3
a , Z

4
a) subject to the

identification ZI
a ⇠ tZI

a for any non-zero complex number t. We use (a b) as short-

hand for the bitwistor ✏IJKLZK
a ZL

b . Geometrically, we can think of (a b) as the (ori-

ented) line containing the points Za and Zb. Similarly we use (a b c) as shorthand

for ✏IJKLZJ
aZ

K
b ZL

c , which represents the (oriented) plane containing Za, Zb and Zc.

Analogously, (a b c) \ (d e f) stands for ✏IJKL(a b c)K(d e f)L, which represents the line

where the two indicated planes intersect. In planar SYM theory we always focus on

color-ordered partial amplitudes so an n-point amplitude is characterized by a set of

n momentum twistors ZI
i , i 2 {1, . . . , n} with a specified cyclic ordering. Thanks to

this implicit cyclic ordering we can use ī as shorthand for the plane (i�1 i i+1), where

indices are always understood to be mod n.

The natural SL(4,C) invariant is the four-bracket denoted by

ha b c di ⌘ ✏I J K LZ
I
aZ

J
b Z

K
c ZL

d . (1.1)

We will often be interested in a geometric understanding of the locus where such four-

brackets might vanish, which can be pictured in several ways. For example, ha b c di = 0

only if the two lines (a b) and (c d) intersect, or equivalently if the lines (a c) and (b d)

intersect, or if the point a lies in the plane (b c d), or if the point c lies on the plane

(a b d), etc. Computations of four-brackets involving intersections may be simplified

via the formula

h(a b c) \ (d e f) g hi = ha b c gihd e f hi � ha b c hihd e f gi . (1.2)

In case the two planes are specified with one common point, say f = c, it is convenient

to use the shorthand notation

h(a b c) \ (d e c) g hi ⌘ hc (a b)(d e)(g h)i (1.3)

which highlights the fact that this quantity is antisymmetric under exchange of any

two of the three lines (a b), (d e), and (g h).
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A. The Chiral Pentagon

The one-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A1�loop

MHV

Atree

MHV

=

Z

AB

X

1<i<j<n

j

n1

i
(3.1)

in terms of the chiral pentagon integrand

j

n1

i
=

hAB ī \ j̄ihi j n 1i
hAB i�1 iihAB i i+1ihAB j�1 jihAB j j+1ihAB n 1i . (3.2)

It is useful to recall several comments from Ref. [13]. First of all, the full integrand in (3.1) is
cyclic invariant despite the appearance of the apparently preferred line (n, 1) on the bottom
edge of the pentagon; the formula would be equally valid if (n, 1) were replaced by (k, k+1)
for any k (and the summation taken over k + 1 < i < j < k).

Second, the numerator factors in (3.2) are specially chosen so that all of its leading
singularities are normalized to 1. In fact it would not be inappropriate to say that half of
them are 1 and half of them are 0: the scalar pentagon integral has twice as many non-zero
leading singularities as the chiral pentagon, but the numerator factors in (3.2) vanish on
half of them.

Third, for generic i and j the chiral pentagon integral (3.2) is infrared finite; the numerator
factor hAB ī \ j̄i softens the behavior of the integral precisely in the regions of integration
where soft or collinear divergences might appear. This cancellation fails only for certain
boundary terms in the sum (specifically, when i = 2 or j � i = 1 or j = n � 1) in which
case the pentagon degenerates to an IR divergent box integral. Henceforth we ignore these
degenerate cases since the box integrals were already reviewed in the previous section.

An explicit formula for the chiral integral was obtained in Ref. [13]:

Z

AB

j

n1

i
=

Li2 (1� un,i�1,i,j)� Li2 (1� uj,n,i,j�1)� Li2 (1� ui,j�1,n,i�1)
�Li2 (1� ui,j�1,n,i�1) + Li2 (1� ui,j�1,j,i�1)
+ log (uj,n,i�1,j�1) log (un,i�1,i,j)

(3.3)
in terms of the dual spacetime cross-ratio

ui,j,k,l =
hi i+1 j j+1ihk k+1 l l+1i
hl l+1 j j+1ihk k+1i i+1i =

x
2

ijx
2

kl

x
2

ljx
2

ki

. (3.4)
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Bern,	Dixon,	Dunbar,	 Kosower

Symbol:	one-loop	n-point	MHV
Arkani-Hamed,	Bourjaily,	Cachazo,	Trnka

(a) (b)

Figure 2: (a) A maximum codimension boundary of the one-loop MHV amplituhe-

dron. The circle is a schematic depiction of the n line segments (1 2), (2 3), . . . , (n 1)

connecting the n cyclically ordered external kinematic points Zi 2 G+(4, n) and the

red line shows the loop momentum L = (i j). (b) The corresponding Landau diagram,

which is a graphical depiction of the four cut conditions (3.3) that are satisfied on this

boundary.

as depicted in the Landau diagram shown in figure 2b. (For the moment we consider

i and j to be well separated so there are no accidental degenerations.) The Landau

analysis of eq. (3.3) has been performed long ago [20, 28] and reviewed in the language

of momentum twistors in [17]. A leading solution to the Landau equations exists only

if

hi j̄ih̄i ji = 0 . (3.4)

Subleading Landau equations are obtained by relaxing one of the four on-shell

conditions. This leads to cuts of two-mass triangle type, which are uninteresting (they

exist for generic kinematics, so don’t correspond to branch points of the amplitude).

At sub-subleading order we reach cuts of bubble type. For example if we relax the

second and fourth condition in eq. (3.3) then we encounter a Landau singularity which

lives on the locus

hi�1 i j�1 ji = 0 . (3.5)

Other relaxations either give no constraint on kinematics, or the same as eq. (3.5) with

i ! i+1 and/or j ! j+1.

Altogether, we reach the conclusion that all physical branch points of one-loop

MHV amplitudes occur on loci of the form

ha b̄i = 0 or ha a+1 b b+1i = 0 (3.6)
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• Landau	Singularities	

where L is the loop momentum. The first four of these cut conditions admit two discrete

solutions [26]: either L = (i j) or L = ī \ j̄. The second of these cannot avoid lying

outside the amplituhedron. We see this by representing its D-matrix as

D =

✓
i�1 i i+1

hi j̄i �hi�1 j̄i 0

0 hi+1 j̄i �hi j̄i

◆
, (2.3)

where we indicate only the nonzero columns of the 2⇥n matrix in positions i�1, i and

i+1, per the labels above the matrix. The non-zero 2⇥ 2 minors of this matrix,

hi j̄ihi+1 j̄i, hi�1 j̄ihi j̄i, �hi j̄i2 (2.4)

have indefinite signs when the external kinematics are generic and positive, so this L

lies discretely outside the amplituhedron.

We proceed with the first solution L = (i j) which can be represented by the trivial

D-matrix

D =

✓
i j

1 0

0 1

◆
. (2.5)

Substituting this solution into the fifth cut condition in eq. (2.2) leads to the condition

hi j k k+1i = 0 . (2.6)

The locus where eq. (2.6) is satisfied lies on a boundary of the positive domain G+(4, n),

but as discussed in [4] it is (for generic i, j and k) a boundary of codimension higher

than one (i.e., a boundary of a boundary, or higher). Therefore, by the logic outlined

at the beginning of this section, we conclude that the amplituhedron is telling us that

the discontinuity of one-loop MHV amplitudes around these potential branch points

are zero, i.e. they are spurious singularities. Indeed this conclusion is easily verified,

for example by looking at the explicit results of [33]. Exceptions occur if j = i + 1 or

j = k � 1, in which case the locus eq. (2.6) does lie on the boundary of G+(4, n) and

correspond to an actual branch point of the amplitude.

2.2 The Spurious Three-Mass Box Singularity

The second spurious one-loop singularity encountered in [17] is a subleading singularity

of the pentagon which lives on the locus

hj (j�1 j+1)(i i+1)(k k+1)i = 0 (2.7)

– 9 –

Spurious	Landau	Singularity

(a) (b)

Figure 2: (a) A maximum codimension boundary of the one-loop MHV amplituhe-

dron. The circle is a schematic depiction of the n line segments (1 2), (2 3), . . . , (n 1)

connecting the n cyclically ordered external kinematic points Zi 2 G+(4, n) and the

red line shows the loop momentum L = (i j). (b) The corresponding Landau diagram,

which is a graphical depiction of the four cut conditions (3.3) that are satisfied on this

boundary.

as depicted in the Landau diagram shown in figure 2b. (For the moment we consider

i and j to be well separated so there are no accidental degenerations.) The Landau

analysis of eq. (3.3) has been performed long ago [20, 28] and reviewed in the language

of momentum twistors in [17]. A leading solution to the Landau equations exists only

if

hi j̄ih̄i ji = 0 . (3.4)

Subleading Landau equations are obtained by relaxing one of the four on-shell

conditions. This leads to cuts of two-mass triangle type, which are uninteresting (they

exist for generic kinematics, so don’t correspond to branch points of the amplitude).

At sub-subleading order we reach cuts of bubble type. For example if we relax the

second and fourth condition in eq. (3.3) then we encounter a Landau singularity which

lives on the locus

hi�1 i j�1 ji = 0 . (3.5)

Other relaxations either give no constraint on kinematics, or the same as eq. (3.5) with

i ! i+1 and/or j ! j+1.

Altogether, we reach the conclusion that all physical branch points of one-loop

MHV amplitudes occur on loci of the form

ha b̄i = 0 or ha a+1 b b+1i = 0 (3.6)
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Landau	Singularities vs		Symbol	Alphabet	

All symbol	entries	are	Landau	Singularities.
There	are	spurious	Landau	Singularities	
which	are	not in	Symbol	Alphabet.

[not	surprising:	numerators,	sum	of	integrals,	etc]

Q:	How	to	eliminate	spurious	Landau	Singularities?
A:	Use	Amplituhedron.



The	integrand	of	MHV	amplitude	is	a	canonical	form	
defined	by	having	logarithmic	singularities	only	on	the	
boundary	of	the	Amplituhedron.



Amplituhedron
The	integrand	of	MHV	amplitude	is	a	canonical	
form	defined	by	having	logarithmic	singularities	
only	on	the	boundary	of	the	Amplituhedron.

1.2 Positivity and the MHV Amplituhedron

In this paper we focus exclusively on MHV amplitudes. The integrand of an L-loop

MHV amplitude is a rational function of the n momentum twistors Zi specifying the

kinematics of the n external particles, as well as of L loop momenta, each of which

corresponds to some line L
(`) in P3; ` 2 {1, . . . , L}. The amplituhedron [4, 5] purports

to provide a simple characterization of the integrand when the ZI
i take values in a

particular domain called the positive Grassmannian G+(4, n). In general G+(k, n) may

be defined as the set of k⇥nmatrices for which all ordered maximal minors are positive;

that is, hai1 · · · aiki > 0 whenever i1 < · · · < ik.

Each line L
(`) may be characterized by specifying a pair of points L

(`)
1 , L(`)

2 that

it passes through. We are always interested in n � 4, so the Zi generically provide a

basis for C4. In the MHV amplituhedron a pair of points specifying each L
(`) may be

expressed in the Zi basis via an element of G+(2, n) called the D-matrix:

L
(`)I
↵ =

nX

i=1

D(`)
↵i Z

I
i , ↵ = 1, 2 . (1.4)

For n > 4 the Zi are generically overcomplete, so the map eq. (1.4) is many-to-one.

The L-loop n-point MHV amplituhedron is a 4L-dimensional subspace of the

2L(n � 2)-dimensional space of L D-matrices. We will not need a precise charac-

terization of that subspace, but only its grossest feature, which is that it is a subspace

of the space of L mutually positive points in G+(2, n). This means that it lives in the

subspace for which all ordered maximal minors of the matrices

�
D(`)

�
,

✓
D(`1)

D(`2)

◆
,

0

@
D(`1)

D(`2)

D(`3)

1

A , etc.

are positive.

A key consequence of the positivity of the D-matrices is that, for positive external

data ZI
i 2 G+(4, n), all loop variables L

(`) are oriented positively with respect to the

external data and to each other: inside the amplituhedron,

hL
(`) i ji > 0 for i < j and all `, and (1.5)

hL
(`1) L

(`2)i > 0 for all `1, `2. (1.6)

The boundaries of the amplituhedron coincide with the boundaries of the space of

positive D-matrices, and occur for generic Z when one or more of these quantities

approach zero.
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Inside	Amplituhedron

Loop	Momenta
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One-loop	MHV	Amplitudes

(a) (b)

Figure 2: (a) A maximum codimension boundary of the one-loop MHV amplituhe-

dron. The circle is a schematic depiction of the n line segments (1 2), (2 3), . . . , (n 1)

connecting the n cyclically ordered external kinematic points Zi 2 G+(4, n) and the

red line shows the loop momentum L = (i j). (b) The corresponding Landau diagram,

which is a graphical depiction of the four cut conditions (3.3) that are satisfied on this

boundary.

as depicted in the Landau diagram shown in figure 2b. (For the moment we consider

i and j to be well separated so there are no accidental degenerations.) The Landau

analysis of eq. (3.3) has been performed long ago [20, 28] and reviewed in the language

of momentum twistors in [17]. A leading solution to the Landau equations exists only

if

hi j̄ih̄i ji = 0 . (3.4)

Subleading Landau equations are obtained by relaxing one of the four on-shell

conditions. This leads to cuts of two-mass triangle type, which are uninteresting (they

exist for generic kinematics, so don’t correspond to branch points of the amplitude).

At sub-subleading order we reach cuts of bubble type. For example if we relax the

second and fourth condition in eq. (3.3) then we encounter a Landau singularity which

lives on the locus

hi�1 i j�1 ji = 0 . (3.5)

Other relaxations either give no constraint on kinematics, or the same as eq. (3.5) with

i ! i+1 and/or j ! j+1.

Altogether, we reach the conclusion that all physical branch points of one-loop

MHV amplitudes occur on loci of the form

ha b̄i = 0 or ha a+1 b b+1i = 0 (3.6)

– 14 –

(a) (b)

Figure 2: (a) A maximum codimension boundary of the one-loop MHV amplituhe-

dron. The circle is a schematic depiction of the n line segments (1 2), (2 3), . . . , (n 1)

connecting the n cyclically ordered external kinematic points Zi 2 G+(4, n) and the

red line shows the loop momentum L = (i j). (b) The corresponding Landau diagram,

which is a graphical depiction of the four cut conditions (3.3) that are satisfied on this

boundary.

as depicted in the Landau diagram shown in figure 2b. (For the moment we consider

i and j to be well separated so there are no accidental degenerations.) The Landau

analysis of eq. (3.3) has been performed long ago [20, 28] and reviewed in the language

of momentum twistors in [17]. A leading solution to the Landau equations exists only

if

hi j̄ih̄i ji = 0 . (3.4)

Subleading Landau equations are obtained by relaxing one of the four on-shell

conditions. This leads to cuts of two-mass triangle type, which are uninteresting (they

exist for generic kinematics, so don’t correspond to branch points of the amplitude).

At sub-subleading order we reach cuts of bubble type. For example if we relax the

second and fourth condition in eq. (3.3) then we encounter a Landau singularity which

lives on the locus

hi�1 i j�1 ji = 0 . (3.5)

Other relaxations either give no constraint on kinematics, or the same as eq. (3.5) with

i ! i+1 and/or j ! j+1.

Altogether, we reach the conclusion that all physical branch points of one-loop

MHV amplitudes occur on loci of the form

ha b̄i = 0 or ha a+1 b b+1i = 0 (3.6)

– 14 –

(a) (b)

Figure 2: (a) A maximum codimension boundary of the one-loop MHV amplituhe-

dron. The circle is a schematic depiction of the n line segments (1 2), (2 3), . . . , (n 1)

connecting the n cyclically ordered external kinematic points Zi 2 G+(4, n) and the

red line shows the loop momentum L = (i j). (b) The corresponding Landau diagram,

which is a graphical depiction of the four cut conditions (3.3) that are satisfied on this

boundary.

3.1 One-Loop MHV Amplitudes

The maximum codimension boundaries of the one-loop MHV amplituhedron occur

when

L = (i j) , (3.2)

as depicted in figure 2a. On this boundary four cut conditions of “two-mass easy”

type [33] are manifestly satisfied:

hL i�1 ii = hL i i+1i = hL j�1 ji = hL j j+1i = 0 , (3.3)

as depicted in the Landau diagram shown in figure 2b. (For the moment we consider

i and j to be well separated so there are no accidental degenerations.) The Landau

analysis of eq. (3.3) has been performed long ago [20, 28] and reviewed in the language

of momentum twistors in [17]. A leading solution to the Landau equations exists only

if

hi j̄ih̄i ji = 0 . (3.4)

Subleading Landau equations are obtained by relaxing one of the four on-shell

conditions. This leads to cuts of two-mass triangle type, which are uninteresting (they

exist for generic kinematics, so don’t correspond to branch points of the amplitude).

At sub-subleading order we reach cuts of bubble type. For example if we relax the
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Two-Loop	MHV	Amplitudes

(a) (b)

Figure 3: (a) A maximum codimension boundary of the two-loop MHV amplituhe-

dron. (b) The corresponding Landau diagram (which, it should be noted, does not have

the form of a standard Feynman integral) depicting the nine cut conditions (3.7)–(3.9)

that are satisfied on this boundary.

for various a, b. (Note that whenever we say there is a branch point at x = 0, we mean

more specifically that there is a branch cut between x = 0 and x = 1.) Indeed, these

exhaust the branch points of the one-loop MHV amplitudes (first computed in [33])

except for branch points arising as a consequence of infrared regularization, which are

captured by the BDS ansatz [37].

3.2 Two-Loop MHV Amplitudes: Configurations of Positive Lines

We divide the two-loop analysis into two steps. First, in this subsection, we classify

valid configurations of mutually non-negative lines. This provides a list of the sets of

cut conditions on which two-loop MHV amplitudes have nonvanishing support. Then

in the following subsection we solve the Landau equations for each set of cut conditions,

to find the actual location of the corresponding branch point.

At two loops the MHV amplituhedron has two distinct kinds of maximum codimen-

sion boundaries [5]. The first type has L(1) = (i j) and L
(2) = (k l) for distinct cyclically

ordered i, j, k, l. Since hL(1)
L

(2)
i is non-vanishing (inside the positive domainG+(4, n))

in this case, this boundary can be thought of as corresponding to a cut of a product

of one-loop Feynman integrals, with no common propagator hL(1)
L

(2)
i. Therefore we

will not learn anything about two-loop singularities beyond what is already apparent

at one loop.

The more interesting type of maximum codimension boundary has L
(1) = (i j)

and L
(2) = (i k), as depicted in figure 3a. Without loss of generality i < j < k,

and for now we will moreover assume that i, j and k are well-separated to avoid

any potential degenerations. (These can be relaxed at the end of the analysis, in
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Conclusion. In conclusion, our analysis has revealed that two-loop MHV amplitudes

have physical branch points on the loci of the form

ha b̄i = 0 ,

ha b c c+1i = 0 ,

ha a+1 b̄ \ c̄i = 0 ,

ha (a�1 a+1)(b b+1)(c c+1)i = 0 ,

(3.30)

for arbitrary indices a, b, c. Again let us note that when we say there is a branch point

at x = 0, we mean a branch cut between x = 0 and x = 1. Indeed, this result is in

precise accord with the known symbol alphabet of two-loop MHV amplitudes in SYM

theory [34].

4 Discussion

In this paper we have improved greatly on the analysis of [17] by asking the ampli-

tuhedron directly to tell us which branch points of an amplitude are physical. This

analysis requires no detailed knowledge about how to write formulas for integrands

by constructing the canonical “volume” form on the amplituhedron. We only used

the amplituhedron’s grossest feature, which is that it is designed to guarantee that

integrands have no poles outside the space of positive loop configurations. We have

shown in several examples how to use this principle to completely classify the sets of

cut conditions on which integrands can possibly have support. Let us emphasize that

our proposal is a completely well-defined geometric algorithm:

• Input: a list of the maximal codimension boundaries of the amplituhedron; for

MHV amplitudes these are known from [5].

• Step 1: For a given maximal codimension boundary, identify the list of all cut con-

ditions satisfied on this boundary. For example, at the two-loop boundary shown

in figure 3a, these would be the nine cut conditions satisfied by the Landau di-

agram in figure 3b, shown in eqs. (3.7)–(3.9). Consider all lower codimension

boundaries that can be obtained by relaxing various subsets of these cut condi-

tions, and eliminate those which do not overlap the closure of the amplituhedron,

i.e. those which do not correspond to mutually non-negative configurations of

lines L(`).

• Step 2: For each valid set of cut conditions obtained in this manner, solve the

corresponding Landau equations (1.9) and (1.10) to determine the location of the

corresponding branch point of the amplitude.
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Two-loop	NMHV	and	Three-loop	MHV

• Two-loop	NMHV:	allow	for	sign	flips	

• Three-loop	MHV

diagram has a four-mass box subgraph. Thus, in what follows, we will limit our analysis

to the Nk�1MHV case where we encounter no four-mass boxes. We reiterate though: the

Landau diagrams in Tabs. 1-4 encode algebraic equations with solutions on the branch

points of the NkMHV n-point amplitude for all k. In addition to the four NMHV

branch points presented in Tab. 1, there are additional branch points corresponding

to degenerations of N2MHV diagrams where internal lines are identified, Tab. 7, and

there are relaxations of these degenerations, Tab. 8. Appendix A details how to solve

the Landau equations.

The Landau analysis elaborated in the Appendix has yielded the following NMHV

symbol alphabet at two loops,

ha a+ 1 b b+ 1i (3.1)

ha b c c+ 1i (3.2)

ha (b, b+ 1) (c, c+ 1) (d, d+ 1)i (3.3)

ha (a� 1, a+ 1) (b, b+ 1) (c, c+ 1)i (3.4)

ha (a� 1, d) (b, b+ 1) (c, c+ 1)i (3.5)

hb̄ \ (d, c, c+ 1) (a, a+ 1)i (3.6)

hb̄ \ (a a+ 1 b) , d̄ \ (d, c, c+ 1)i (3.7)

hb (b� 1, b+ 1) (c, c+ 1) (a, d)i, (3.8)

Plus the conjugates

where the letters a, b, c, d are cyclically ordered.
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jk
`

i

i j

k`

i j

k`

Twistor Solution Landau Diagram Condition

(a)

i

jk

`

jk
`

i

hstuffi

(b)

i

j

`

k
j

k
`

i

hstuffi

(c)

i

jk0

k

jk

k0

i

hstuffi

(c0)

j
k

k0

i

hstuffi

(d)

i

j

`

k

j

k
`

i

hstuffi

Table 1. Momentum twistor solutions and Landau diagrams for Nk�1MHV amplitudes.

There should be a second diagram (c).

– 14 –



Ziggurat	Graphs

• Landau	singularities	of	any	n-particle	amplitude	
in	any	massless,	planar	theory	are	a	subset	of	
those	of	a	special	type	of	``ziggurat	graph.'’

• For	n=6	consistent	with	symbol	alphabet.

Prlina,	Spradlin,	Stanojevic



Conclusion

• N=4	Yang-Mills	Amplitudes	Bootstrap	Program
• Symbol	Alphabet	and	Cluster	Algebra
• Symbol	Alphabet	and	Landau	Singularities
• Many	Open	Questions	Remain

Thank	you!


