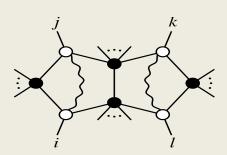
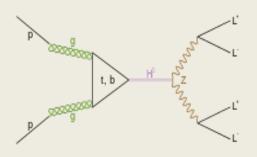
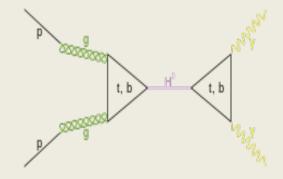


Cluster Algebras, Landau Singularities and Scattering Amplitudes





Anastasia Volovich Brown University



Igor Prlina, Marcus Spradlin,
James Stankowicz, Stefan Stanojevic

Planar N=4 Yang-Mills

- N=4 Yang-Mills is a quantum field theory which describes "real world" particle interactions. Many techniques we develop for YM have been applied to QCD and Standard Model.
- N=4 Yang-Mills is a string theory (via AdS/CFT), so learning about N=4 Yang-Mills teaches us about quantum gravity.
- N=4 Yang-Mills is solvable (integrable) which is a non-trivial fact for four-dimensional quantum field theory.

N=4 Yang-Mills Amplitudes

The goal is to explore the hidden structures of amplitudes and to exploit these structures as much as possible to make previously impossible computations possible.

- Twistor string description
- Dual conformal and Yangian symmetries
- Wilson loops/amplitudes/correlation funcs triality
- Color/kinematic duality
- Amplituhedron, positivity, on-shell diagrams
- Simplifying limits: fishnet, multi-Regge

Bern, Dixon, Kosower; Witten; Drummond, Henn, Korchemsky, Sokachev, Brandhuber, Heslop, Spence, Travaglini, Arkani-Hamed, Cheung, Cachazo, Kaplan, Trnka, Bourjaily, Bern, Carrasco, Johansson, Caron-Huot, He, Beisert, Eden, Staudacher, Mason, Skinner, Alday, Madalcena, Basso, Sever, Viera, Roiban, Spradlin, many others

Plan

Introduction

N=4 Yang-Mills Amplitudes Bootstrap Program:
 Input = Symbol Alphabet

How Symbol Alphabet be determined?

- Symbol Alphabet and Landau Singularities
- Symbol Alphabet and Cluster Algebra
- Conclusions

N=4 Planar Yang-Mills Amplitudes L-loop n-points N^kMHV

- 0- and 1-loops: all n, k
- 2-loop: all n-point MHV, 6, 7 NMHV
- 3, 4-loops: 6, 7-point MHV & NMHV
- 5-loops: 6-point MHV & NMHV
- 6-loops: 6-point MHV
- L-loops: 4, 5-point MHV

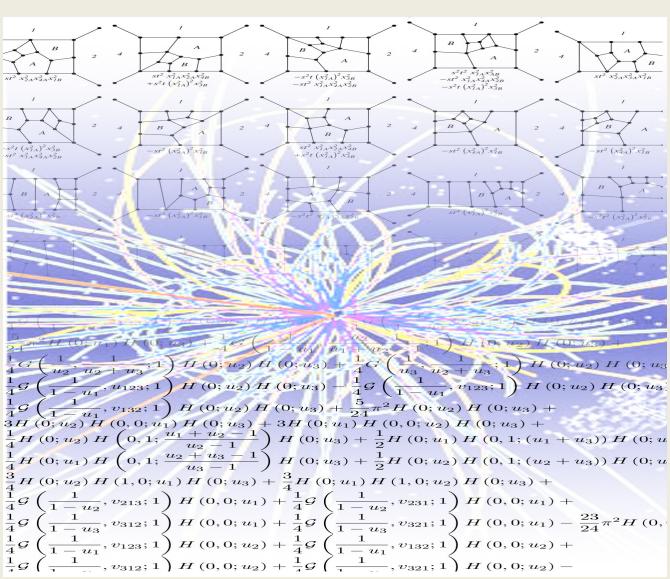
[Bern, Dixon, Kosower] [Caron-Huot, Dixon, Drummond, Duhr, Foster, Gurdogan, Harrington, Henn, McLeod, Papathanasiou, Spradlin, von Hippel 2015-present]

Quantum Field Theory Textbooks:

$Amplitude = \int d(loop\ momenta)\ (Integrand)$

hard

Amplitude



N=4 Yang-Mills Amplitudes

Integrands are known for all L, k and n, but as we saw on the previous slide the resulting integral is only known for a few cases....

- We need new tools to make these calculations possible.
- Having more data is crucial for identifying hidden structures of these amplitudes.
- Modern approaches to computing amplitudes avoid knowledge of integrands completely....

Amplitudes Bootstrap

Amplitude Bootstrap: Old vs New

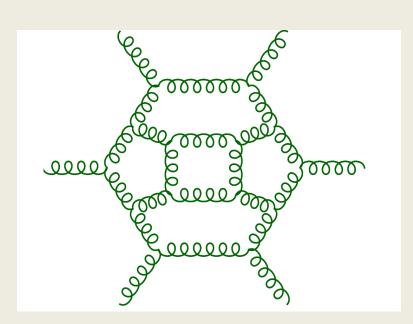
It has long been a goal of the S-matrix program to be able to construct scattering amplitudes based on a few physical principles and a thorough understanding of their analytic structure.

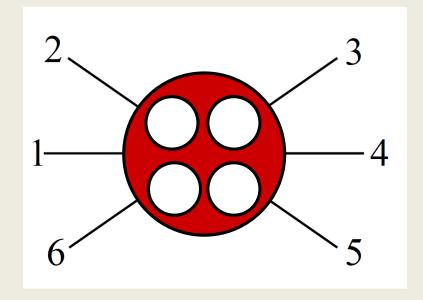
Important New Ingredients

- 1. Momentum twistors [Penrose, Hodges]
- 2. Symbol of Polylogarithms [GSVV]
- 3. Amplituhedron [Arkani-Hamed, Trnka]

Amplitude Bootstrap

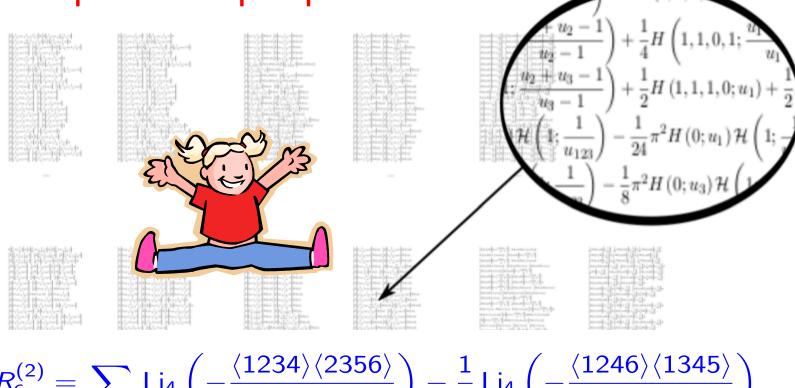
Scattering Amplitudes: functions of the geometry of scattering configurations





Use mathematical and physical properties to determine these functions directly.

Example: 2-loop 6-point MHV

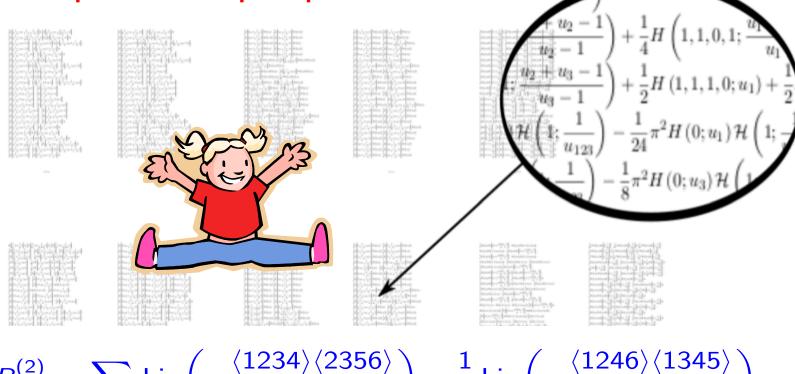


$$R_6^{(2)} = \sum_{\text{cyclic}} \text{Li}_4 \left(-\frac{\langle 1234 \rangle \langle 2356 \rangle}{\langle 1236 \rangle \langle 2345 \rangle} \right) - \frac{1}{4} \text{Li}_4 \left(-\frac{\langle 1246 \rangle \langle 1345 \rangle}{\langle 1234 \rangle \langle 1456 \rangle} \right)$$

+ products of $Li_k(-x)$ functions of lower weight

GSVV

Example: 2-loop 6-point MHV



$$R_6^{(2)} = \sum_{\text{cyclic}} \text{Li}_4 \left(-\frac{\langle 1234 \rangle \langle 2356 \rangle}{\langle 1236 \rangle \langle 2345 \rangle} \right) - \frac{1}{4} \, \text{Li}_4 \left(-\frac{\langle 1246 \rangle \langle 1345 \rangle}{\langle 1234 \rangle \langle 1456 \rangle} \right)$$

+ products of $Li_k(-x)$ functions of lower weight

Polylogarithm Functions

- Uniform Transcendentality 2L @ L-loops
- Logarithm Functions $\log^{2L} x$
- Polylogarithm Functions

$$Li_{2L}(x) = \int_0^x \frac{dt}{t} Li_{2L-1}(t) \quad Li_1(x) = -\log(1-x)$$
• Generalized Polylogarithm Functions

$$G(a_1, \dots, a_{2L}; x) = \int_0^x \frac{dt}{t - a_1} G(a_2, \dots, a_{2L}; t)$$

• Elliptic Polylogarithms (n=10 L=2 k=3)

$$\widetilde{\Gamma}(\begin{smallmatrix} n_1 & \dots & n_k \\ z_1 & \dots & z_k \end{smallmatrix}; z, \tau) = \int_0^z dz' \, g^{(n_1)}(z' - z_1, \tau) \, \widetilde{\Gamma}(\begin{smallmatrix} n_2 & \dots & n_k \\ z_2 & \dots & z_k \end{smallmatrix}; z', \tau)$$

Arguments of the Polylogarithms

Null vectors in 4d Minkowski space subject to momentum conservation can be represented by momentum twistors

$$\begin{pmatrix} | & | & \cdots & | \\ Z_1 & Z_2 & \cdots & Z_n \\ | & | & \cdots & | \end{pmatrix}, \qquad Z_i \in \mathbb{P}^3$$

Hodges

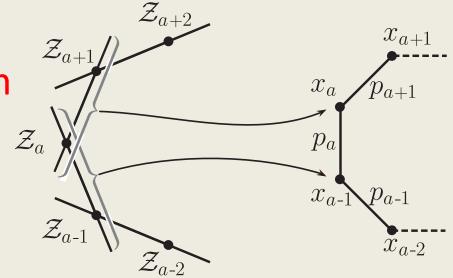
$$\langle ijkl\rangle = \det(Z_i Z_j Z_k Z_l)$$

$$v_{1} = \frac{\langle 1246 \rangle \langle 1345 \rangle}{\langle 1234 \rangle \langle 1456 \rangle}, \qquad v_{2} = \frac{\langle 1235 \rangle \langle 2456 \rangle}{\langle 1256 \rangle \langle 2345 \rangle}, \qquad v_{3} = \frac{\langle 1356 \rangle \langle 2346 \rangle}{\langle 1236 \rangle \langle 3456 \rangle},$$

$$x_{1}^{+} = \frac{\langle 1456 \rangle \langle 2356 \rangle}{\langle 1256 \rangle \langle 3456 \rangle}, \qquad x_{2}^{+} = \frac{\langle 1346 \rangle \langle 2345 \rangle}{\langle 1234 \rangle \langle 3456 \rangle}, \qquad x_{3}^{+} = \frac{\langle 1236 \rangle \langle 1245 \rangle}{\langle 1234 \rangle \langle 1256 \rangle},$$

$$x_{1}^{-} = \frac{\langle 1234 \rangle \langle 2356 \rangle}{\langle 1236 \rangle \langle 2345 \rangle}, \qquad x_{2}^{-} = \frac{\langle 1256 \rangle \langle 1346 \rangle}{\langle 1236 \rangle \langle 1456 \rangle}, \qquad x_{3}^{-} = \frac{\langle 1245 \rangle \langle 3456 \rangle}{\langle 1456 \rangle \langle 2345 \rangle},$$

Relation to momentum



$$\langle 1\,4\,5\,6 \rangle \sim rac{(p_1+p_2)^2(p_3+p_4)^2}{(p_2+p_3+p_4)^2} rac{u_1+u_2+u_3-1+\sqrt{\Delta}}{2u_1u_2u_3}, \ \Delta = (1-u_1-u_2-u_3)^2-4u_1u_2u_3 \ u_1 = rac{(p_1+p_2)^2(p_4+p_5)^2}{(p_1+p_2+p_3)^2(p_4+p_5+p_6)^2}, \quad u_2,u_3 = ext{cyclic}$$

Symbol of Polylogarithm

17-pages can be simplified using a very useful tool from modern mathematics

Symbol

$$log(R) \to R$$

$$Li_2(R) \to -(1-R) \otimes R$$

$$Li_2(x) + Li_2(-x) = \frac{1}{2}Li_2(x^2)$$

$$(1-x)\otimes x - (1+x)\otimes (-x) \Rightarrow -(1-x^2)\otimes x = (-\frac{1}{2}(1-x^2)\otimes x^2)$$

QCD computations

Symbol Alphabet: n=6

Amplitude = Function of Cross-Ratios

$$R_6^{(2)} = \sum_{\text{cyclic}} \text{Li}_4 \left(-\frac{\langle 1234 \rangle \langle 2356 \rangle}{\langle 1236 \rangle \langle 2345 \rangle} \right) - \frac{1}{4} \text{Li}_4 \left(-\frac{\langle 1246 \rangle \langle 1345 \rangle}{\langle 1234 \rangle \langle 1456 \rangle} \right)$$
+ products of $\text{Li}_k(-x)$ functions of lower weight

Full Symbol

$$\langle 1256 \rangle \otimes \langle 1346 \rangle \otimes \langle 1246 \rangle \otimes \langle 1456 \rangle + \dots 7272 \text{ terms}$$

Symbol Alphabet: 9 letters

$$\langle 1235 \rangle$$
, $\langle 2345 \rangle$, $\langle 1345 \rangle$, $\langle 2456 \rangle$, $\langle 1356 \rangle$, $\langle 1246 \rangle$, $\langle 1245 \rangle$, $\langle 2356 \rangle$, $\langle 1346 \rangle$

Amplitudes Bootstrap

start with symbol alphabet, impose constraints, find unique solution

Constraint	L = 1	L=2	L=3	L=4	L = 5
0. Functions ((10,10)	(82,88)	(639,761)	(5153,6916)	(???,???)
1. Steinmann	(7,7)	(37,39)	(174,190)	(758,839)	(3105,3434)
2. Symmetry	(3,5)	(11,24)	(44,106)	(174,451)	(???,???)
3. Final-entry	(2,2)	(5,5)	(19,12)	(72,32)	(272,83)
4. Collinear	(0,0)	(0,0)	(1,1)	(3,5)	(9,15)
5. Regge	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)

[Caron-Huot, Dixon, Drummond, McLeod, Papathanasiou, Spradlin, Von Hippel]

Bootstrap in QCD amplitudes: Almelid, Duhr, Gardi, McLeod, White; Chicherin, Henn, Mitev

How Do We Determine Symbol Alphabet?

1. Symbol Alphabet and Cluster Algebra

2. Symbol Alphabet and Landau Singularities

Symbol Alphabet and Cluster Algebra

Symbol Alphabet is given by a subset of cluster coordinates of Grassmannian Cluster Algebra

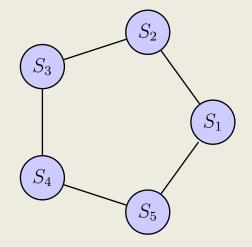
A_2 Cluster Algebra

Initial Quiver

$$a_1 \longrightarrow a_2$$

Mutation Rule

$$a_{n+1} = \frac{1 + a_n}{a_{n-1}}$$

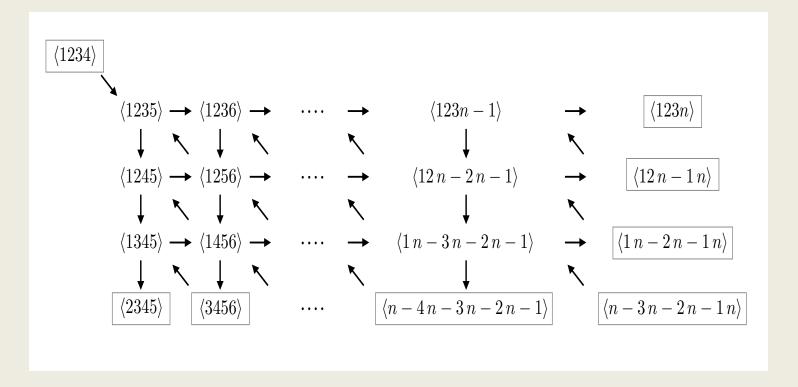


Cluster Coordinates

$$a_1, a_2, a_3 = \frac{1+a_2}{a_1}, a_4 = \frac{1+a_1+a_2}{a_1a_2}, a_5 = \frac{1+a_1}{a_2}$$

Grassmannian Cluster Algebra

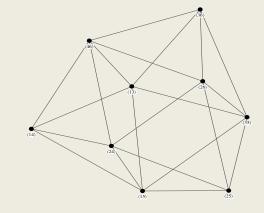
$$3(n-5)$$
 Quiver + Mutation Rule



Fomin, Zelevinsky; Scott; Gekhtman, Shapiro, Vainshtein

3-loop 6-point Symbol

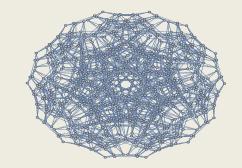
Symbol Alphabet: 9 letters



 $\langle 1235 \rangle, \langle 2345 \rangle, \langle 1345 \rangle, \langle 2456 \rangle, \langle 1356 \rangle, \langle 1246 \rangle, \langle 1245 \rangle, \langle 2356 \rangle, \langle 1346 \rangle$

```
-12 T[x2, x1, x1, x1, x1, x1, x1] - 12 T[x2, x1, x1, x1, x1, x6] +
T[x2, x1, x1, x1, x2, x1] + T[x2, x1, x1, x1, x2, x3] + T[x2, x1, x1, x1, x2, x4] +
T[x2, x1, x1, x1, x2, x6] - 12T[x2, x1, x1, x1, x6, x1] -
 12 T[x2, x1, x1, x1, x6, x6] + T[x2, x1, x1, x1, x8, x1] +
T[x2, x1, x1, x1, x8, x5] + T[x2, x1, x1, x1, x8, x6] + T[x2, x1, x1, x1, x8, x9] +
T[x2, x1, x1, x2, x1, x1] + T[x2, x1, x1, x2, x1, x3] + \cdots 5376 \cdots +
T[x8, x9, x9, x8, x9, x6] + T[x8, x9, x9, x8, x9, x9] - 12 T[x8, x9, x9, x9, x5, x5] -
 12 T[x8, x9, x9, x9, x5, x9] + T[x8, x9, x9, x9, x7, x3] + T[x8, x9, x9, x9, x7, x4] +
 T[x8, x9, x9, x9, x7, x5] + T[x8, x9, x9, x9, x7, x9] + T[x8, x9, x9, x9, x8, x1] +
T[x8, x9, x9, x9, x8, x5] + T[x8, x9, x9, x9, x8, x6] + T[x8, x9, x9, x9, x8, x9] -
 12 T[x8, x9, x9, x9, x9, x5] - 12 T[x8, x9, x9, x9, x9, x9]
```

3-loop 7-point Symbol



Symbol Alphabet: 42 letters

```
48 T[all, all, all, all, all, a34] - 48 T[all, all, all, all, all, a37] +
12 T[a11, a11, a11, a11, a14, a21] - 12 T[a11, a11, a11, a11, a14, a24] -
12 T[a11, a11, a11, a14, a25] - 12 T[a11, a11, a11, a11, a14, a33] -
12 T[a11, a11, a11, a11, a14, a34] + ... 703 674 ... + 12 T[a17, a66, a66, a66, a37, a37] -
12 T[a17, a66, a66, a66, a45, a23] - 12 T[a17, a66, a66, a66, a45, a37] -
12 T[a17, a66, a66, a66, a47, a25] - 12 T[a17, a66, a66, a66, a47, a32] -
12 T[a17, a66, a66, a66, a55, a21] - 12 T[a17, a66, a66, a66, a55, a32] -
12 T[a17, a66, a66, a66, a57, a23] - 12 T[a17, a66, a66, a66, a57, a34]
```

Cluster Adjacency

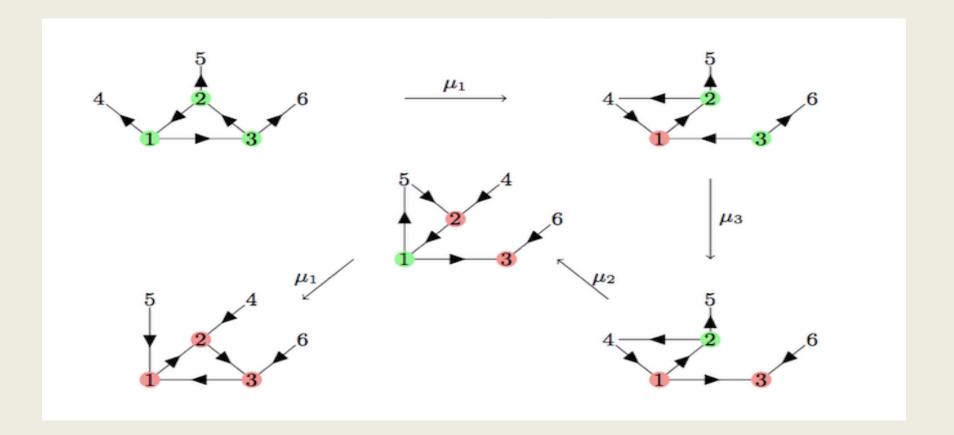
Two distinct A-coordinates can appear consecutively in a symbol only if there exists a cluster where they both appear.

Drummond, Foster, Gurdogan

- Works for all known examples
- It is not known whether there is a physical or mathematical principle which requires this to be true, nor how general it is...

In Progress

- Write symbol in terms of preferred clusters
- Look at triples, quads, etc



Beyond Cluster Algebra

Arkani-Hamed, Lam, Spradlin

- For n>7: cluster algebra is infinite dimensional and amplitudes involve square roots.
- Natural object: $Gr(4,8)/T^7$
- It is a finite polytope with 360 faces.
- There is is a natural role for square roots to play in the variables associated to this polytope.

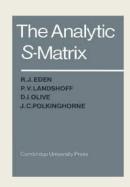
Other Interesting Applications of Cluster Algebras to Amplitudes

- Coproduct: only cluster X-coordinates appear which constraints the class of functions to cluster polylogarithm functions [GPSV]
- Special kinematics: [Duhr et al]
- Applications to other theories: [Henn et al]
- Cluster algebras also show up in the integrand: [Arkani-Hamed et al]

Symbol and Landau Singularities

- Symbol captures the information about the singularity structure of the polylogarithm functions.
- Given the integrand, the location of its singularities is described by Landau equations.
- There should be a close connection between solutions of Landau Equations (integrand) and Symbol Alphabet (integral).

Maldacena, Simons-Duffin, Zhiboedov Abreu, Britto, Duhr, Gardi



Landau Singularities

Landau 1959, ELOP

Landau Equations for a given Feynman integral are a set of kinematic constraints that are necessary for the appearance of a pole or a branch point in the integrated function:

$$\sum_{i \in \text{loop}} \alpha_i q_i^{\mu} = 0 \quad \forall \text{ loops},$$
$$\alpha_i (q_i^2 - m_i^2) = 0 \quad \forall i.$$

Landau Singularities occur for external momenta such that the Landau equations have solutions.

Example

$$\int \frac{d^{9}q}{q^{2}(q-p_{2})^{2}(q+p_{3})^{2}(q+p_{3}+p_{4})^{2}} q^{-p_{2}} q^{+p_{3}}$$

$$\int q^{2}(q-p_{2})^{2}(q+p_{3})^{2}(q+p_{3}+p_{4})^{2} q^{+p_{3}+p_{4}} p_{4}$$

$$\int (q-p_{2})^{2} = q^{2} = (q+p_{3})^{2} = (q+p_{3}+p_{4})^{2} = 0$$

$$(=> (p_{2}+p_{3})^{2}(p_{3}+p_{4})^{2} = 0$$

$$(=> (p_{2}+p_{3})^{2}(p_{3}+p_{4})^{2} = 0$$

$$\langle 1234 \rangle \langle 2345 \rangle = 0$$

One-loop n-point MHV

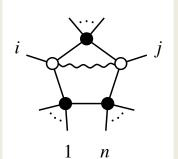
Chiral pentagon integrals

Bern, Dixon, Dunbar, Kosower

Arkani-Hamed, Bourjaily, Cachazo, Trnka

$$\frac{\mathcal{A}_{\text{MHV}}^{1-\text{loop}}}{\mathcal{A}_{\text{MHV}}^{\text{tree}}} = \int_{AB} \sum_{1 < i < j < n} i$$

$$1 \quad n$$



Landau Singularities

$$\langle i\overline{j}\rangle \qquad \langle i-1 \ i \ j-1j\rangle$$

Dennen, Spradlin, AV

$$\langle j(j-1 \ j+1)(i \ i+1)(k \ k+1) \rangle$$

$$\langle (abc) \cap (def)gh \rangle = \langle abcg \rangle \langle defh \rangle - \langle abch \rangle \langle defg \rangle$$
$$\langle (abc) \cap (dec)gh \rangle \equiv \langle c(ab)(de)(gh) \rangle \quad \bar{a} = (a-1, a, a+1)$$

Symbol: one-loop n-point MHV

Bern, Dixon, Dunbar, Kosower

Arkani-Hamed, Bourjaily, Cachazo, Trnka

$$\int_{AB} \int_{AB} \int_{AB}$$

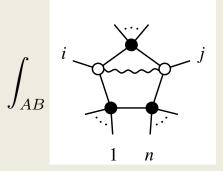
One-loop n-point MHV Symbol Alphabet

$$\langle i-1\,i\,j-1\,j\rangle$$
 $\langle i\,\overline{j}\rangle$

Symbol vs LS: one-loop n-point MHV

Bern, Dixon, Dunbar, Kosower

Arkani-Hamed, Bourjaily, Cachazo, Trnka



$$\int_{AB} i \int_{...} j = \operatorname{Li}_{2} (1 - u_{n,i-1,i,j}) - \operatorname{Li}_{2} (1 - u_{j,n,i,j-1}) - \operatorname{Li}_{2} (1 - u_{i,j-1,n,i-1}) + \operatorname{Li}_{2} (1 - u_{i,j-1,n,i-1})$$

One-loop n-point MHV Symbol Alphabet

$$\langle i-1 \, i \, j-1 \, j \rangle$$
 $\langle i \, \overline{j} \rangle$

Landau Singularities

$$\langle i-1 \ i \ j-1 \ j \rangle \qquad \langle i \ \overline{j} \rangle \qquad \langle j \ (j-1 \ j+1) (i \ i+1) (k \ k+1) \rangle$$

Spurious Landau Singularity

Landau Singularities vs Symbol Alphabet

All symbol entries are Landau Singularities.

There are spurious Landau Singularities

which are not in Symbol Alphabet.

[not surprising: numerators, sum of integrals, etc]

Q: How to eliminate spurious Landau Singularities?
A: Use Amplituhedron.

BEST INVENTIONS

The 25 Best Inventions of the Year 2013

Read Later

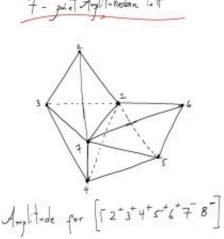
Interesting

The Amplituhedron

By TIME Staff | Nov. 13, 2013

Physicists at the Institute for Advanced Study in Princeton, N.J., recently found a major shortcut for predicting subatomic-particle collisions. The new method **represents probabilities as pyramid-like structures**, then combines the pyramids into one elegant gemstone-like structure called an amplituhedron, thereby massively simplifying the task of calculating particle interactions. Ultimately the amplituhedron could lead to the long-sought quantum theory of gravity.

The integrand of MHV amplitude is a canonical form defined by having logarithmic singularities only on the boundary of the Amplituhedron.



Amplituhedron

Arkani-Hamed, Trnka

The integrand of MHV amplitude is a canonical form defined by having logarithmic singularities only on the boundary of the Amplituhedron.

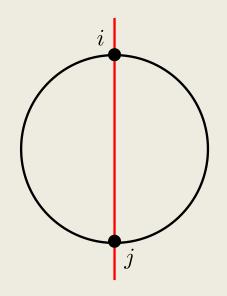
$$\mathcal{L}_{\alpha}^{(\ell)I} = \sum_{i=1}^n D_{\alpha i}^{(\ell)} Z_i^I$$
 Loop Momenta
$$G_+(2,n) \quad G_+(4,n)$$
 D-matrices External Momenta

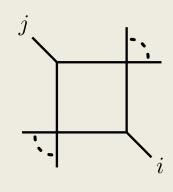
Inside Amplituhedron

$$\langle \mathcal{L}^{(\ell)} i j \rangle > 0 \text{ for } i < j \text{ and all } \ell$$

 $\langle \mathcal{L}^{(\ell_1)} \mathcal{L}^{(\ell_2)} \rangle > 0 \text{ for all } \ell_1, \ell_2.$

One-loop MHV Amplitudes

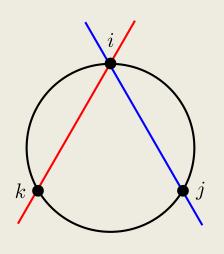


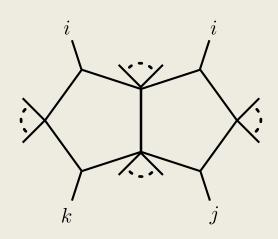


$$\langle i-1 ij-1j\rangle$$
 $\langle ij\rangle$

$$\langle i \, \bar{j} \rangle$$

Two-Loop MHV Amplitudes





$$\langle a\, \bar{b}\rangle$$

$$\langle a\, b\, c\, c+1\rangle$$

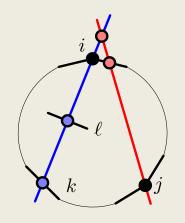
$$\langle a\, a+1\, \bar{b}\cap \bar{c}\rangle$$

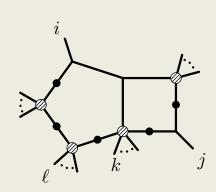
$$\langle a\, (a-1\, a+1)(b\, b+1)(c\, c+1)\rangle$$

Two-loop NMHV and Three-loop MHV

Prlina, Spradlin, Stankowicz, Stanojevic

Two-loop NMHV: allow for sign flips





Arkani-Hamed, Thomas, Trnka

$$\langle a \, a + 1 \, b \, b + 1 \rangle$$

$$\langle a \, b \, c \, c + 1 \rangle$$

$$\langle a \, (b, b + 1) \, (c, c + 1) \, (d, d + 1) \rangle$$

$$\langle a \, (a - 1, a + 1) \, (b, b + 1) \, (c, c + 1) \rangle$$

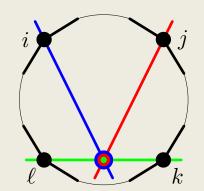
$$\langle a \, (a - 1, d) \, (b, b + 1) \, (c, c + 1) \rangle$$

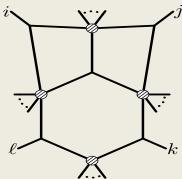
$$\langle \bar{b} \cap (d, c, c + 1) \, (a, a + 1) \rangle$$

$$\langle \bar{b} \cap (a \, a + 1 \, b) \, , \, \bar{d} \cap (d, c, c + 1) \rangle$$

$$\langle b \, (b - 1, b + 1) \, (c, c + 1) \, (a, d) \rangle,$$

Three-loop MHV

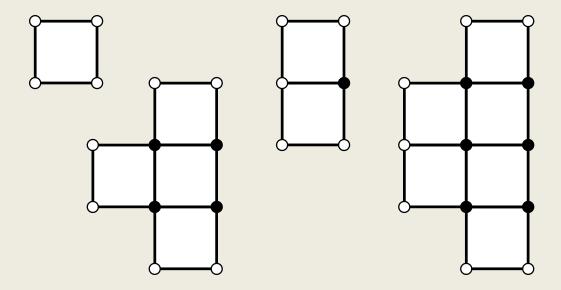




Ziggurat Graphs

Prlina, Spradlin, Stanojevic

- Landau singularities of any n-particle amplitude in any massless, planar theory are a subset of those of a special type of ``ziggurat graph."
- For n=6 consistent with symbol alphabet.



Conclusion

- N=4 Yang-Mills Amplitudes Bootstrap Program
- Symbol Alphabet and Cluster Algebra
- Symbol Alphabet and Landau Singularities
- Many Open Questions Remain

Thank you!